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Résumé

Pseudomonas aeruginosa est un agent pathogéne nosocomial majeur, doté d'une remarquable
capacité d'adaptation et de résistance aux antibiotiques. Face a I'échec croissant des
traitements, les modéles de Relations Quantitatives Structure-Activité (QSAR) offrent une
approche prometteuse pour prédire l'activité de nouvelles molécules. Leur application permet
d'accélérer la découverte de composés actifs et la conception de thérapies plus efficaces.

Les données moléculaires actives contre Pseudomonas aeruginosa ont été extraites de la base
de données ChEMBL34, puis filtrées sur la base des valeurs d'IC50 (concentration inhibitrice
médiane), converties en pIC50 (-log(IC50)), et finalement évaluées conformément a la régle
de Lipinski. Des descripteurs structuraux ont été calculés a l'aide des outils RDKit et PaDEL
afin de construire des modeles QSAR en utilisant plusieurs algorithmes, notamment le
Régresseur Forét Aléatoire (Random Forest Regressor). Le modéle jugé optimal a été validé
au moyen de métriques de robustesse rigoureuses (R2, Q2, CCC, QF32, QLOO2, QLMOQ?2),

confirmant ainsi sa performance et sa stabilité prédictive.

Mots clés : QSAR, Chembl, Lipinski, RDKit, PaDEL

Abstract

Pseudomonas aeruginosa is a major nosocomial pathogen, endowed with a remarkable ability
to adapt and resist antibiotics. In response to the increasing failure of treatments, QSAR
models offer a promising approach to predict the activity of new molecules. Their application
helps accelerate the discovery of active compounds and the design of more effective

therapies.

Molecular data active against Pseudomonas aeruginosa were extracted from the ChEMBL34
database, filtered based on IC50 values, converted into pIC50, and then evaluated according
to Lipinski's rule. Structural descriptors were calculated using RDKit and PaDEL in order to
build QSAR models with several algorithms, including the Random Forest Regressor. The
best model was validated using robust metrics (R%, Q% CCC, Q2F3, Q3-LOO, Q3?-LMO),

confirming its performance and stability.



The best QSAR model was found when using the algorithm Random Forest Regressor (R? =
0.83, Q*F3 =10.89, CCC =0.89).

QSAR provides a reliable and fast tool to identify new therapeutic candidates in the fight
against antibiotic resistance.

Key words: QSAR, Chembl, Lipinski, RDKit, PaDEL
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Introduction

I. Introduction

Depuis quelques décennies, Pseudomonas aeruginosa ou bacille pyocyanique est reconnu
comme agent pathogéne hospitalier et peut causer des problémes thérapeutiques.
Pseudomonas aeruginosa consiste 1’espéce type du genre Pseudomonas et représente environ
90% des isolats cliniques humaines appartenant a ce genre. (Troare., 2019).

Dotée d’un génome de grande taille lui conférant une flexibilité génétique remarquable,
ainsi que d’un vaste arsenal de facteurs de virulence, Pseudomonas aeruginosa est impliquée
dans une large gamme d’infections nosocomiales: des infections urinaires, des infections
cutanées secondaires a des brdlures, et beaucoup d'autres infections en milieu hospitalier y
compris les infections respiratoires, les infections des plaies chirurgicales, ainsi que des
bactériémies, des otites et des infections oculaires, illustrant ainsi son exceptionnelle capacité
d’adaptation et de pathogénicité.(Habbi et al., 2020).

Face a l'urgence croissante de la résistance de Pseudomonas aeruginosa aux antibiotiques
en milieu hospitalier, les approches thérapeutiques actuelles se montrent de moins en moins
efficaces. La modélisation QSAR peut contribuer significativement a I'identification et au
développement de nouvelles stratégies thérapeutiques ciblant Pseudomonas aeruginosa,
surmontant ainsi les limites des traitements actuels et ouvrant de nouvelles perspectives pour
la construction de molécules innovantes et plus efficaces .(Aleksi¢ et al.,2024).

Dans ce contexte, le développement de modéles QSAR (Quantitative structure-Activity
Relation ship) s'avére essentiel pour prédire l'activité biologique de nouvelles molécules
actives a partir de leurs caractéristiques structurales, réduisant ainsi le temps et le colt de
développement de nouveaux agents antimicrobiens. L'application des QSAR a Pseudomonas
aeruginosa ouvre la voie a la découverte ciblée de composés efficaces, contribuant a mieux
gérer et prévenir les infections nosocomiales associées a cette bactérie. (Veyssiere., 2019).
L’objectif de cette étude QSAR est de modéliser la relation entre la structure chimique de
composés et leur activité antibactérienne contre Pseudomonas aeruginosa, afin de prédire
I’efficacité de nouvelles molécules et d’orienter la conception de futurs agents antimicrobiens.

Globalement, notre mémoire se compose de trois chapitres :

Chapitre 1: Une partie bibliographique rappellera la résistance aux antibiotiques de
Pseudomonas aeruginosa, elle repose sur divers mécanismes tels que I’inactivation du
médicament, la modification de la cible ou I’expulsion active. Ce phénomene constitue une
menace majeure pour la santé publique mondiale.

Chapitre 2 : Matériel et méthode cette partie décrit les composés utilisés, leur activité
biologique mesurée contre p. aeruginosa et préparation des données a partir de bases

2
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publiques avec leurs activités biologiques associées. Les descripteurs moléculaires calculés.
Les données ont ensuite été normalisées et préparées pour la modélisation QSAR.

Chapitre 3 : les résultats du modele QSAR montrent une bonne corrélation entre la
structure chimique des composés et leur activité antibactérienne. Le modele obtenue a été

validé statistiguement et montre un bon pouvoir prédictif.



Chapitres 1:
Revue bibliographique
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I1- Description générale

Pseudomonas aeruginosa a été isolée pour la premiere fois en 1882 par le
bactériologiste francais Emile Gessard, & partir de pansements infectés. 1l observa alors la
production de pigments bleu-vert caractéristiques, la pyocyanine et la pyoverdine.

Sur le plan nomenclature, le terme Pseudomonas, dérivé du grec "pseudo” (similaire)
et "monas" (unité), designait initialement les micro-organismes. L’épithéte spécifique
aeruginosa, du latin signifiant "vert de gris", fait référence au pigment caractéristique
produit par la bactérie, conférant aux colonies leur coloration typique. P. aeruginosa
constitue I’espéce type du genre Pseudomonas (Kerr et al., 2009).

Depuis lors, cette bactérie a été largement étudiée en raison de son réle dans les
infections opportunistes, en particulier chez les patients immunodéprimés ou atteints de
maladies chroniques telles que la mucoviscidose (Mérens et al., 2013).

P. aeruginosa est particulierement connu pour sa résistance aux antibiotiques et sa
capacité a survivre dans des environnements hostiles, ce qui en fait un probléeme majeur en
milieu hospitalier. Cette espece ubiquitaire colonise une grande variété d’habitats, incluant
les milieux aquatiques (eaux stagnantes, riviéres, lacs, piscines, systémes d’eau
hospitaliers), les sols humides riches en matiere organique, la rhizosphére des plantes et les
surfaces humides comme les installations sanitaires et le matériel médical (Eyquem et al.,
2005).

De plus, elle peut coloniser la peau et les muqueuses des humains et des animaux, en
particulier chez les personnes immunodéprimeées. Son adaptabilité remarquable lui permet
de persister dans des environnements oligotrophiques, expliquant sa prévalence en milieu

hospitalier et son implication dans les infections nosocomiales (Kerr et al., 2009).
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I11. La résistance aux antibiotiques

Pseudomonas aeruginosa est une bactérie naturellement résistante a un large éventail
d’antibiotique, en raison de plusieurs mécanismes intrinseques. Elle produit notamment
une béta-lactamase chromosomique inductible de classe C, non inhibée par le clavulanate,
et posséde une faible perméabilité membranaire, limitant I’entrée des antibiotiques ( Barir
etal., 2011).

De plus, un des mécanismes majeurs de cette résistance est le systeme d’efflux actif
MexAB-OprM, fonctionnant en permanence chez les souches sauvages et expulsant les
antibiotiques avant qu’ils n’agissent. Ce systéme confére a la bactérie une résistance
naturelle a de nombreuses classes d’antibiotiques, dont les béta-lactamines (pénicillines et
céphalosporines) et les aminosides comme la kanamycine (Mentalagre et al .,2016).

Ainsi, P. aeruginosa est naturellement insensible a plusieurs familles d’antibiotiques,
telles que les pénicillines des groupes V,G,M et A, la majorité des céphalosporines de
troisiéme génération, ainsi que les quinolones de premiere génération (Mentalagre et al
,2016).

Cependant, cette bactérie peut également développer une résistance acquise,
lorsqu’une ou plusieurs souches initialement sensibles deviennent résistantes a un ou
plusieurs antibiotiques. Cette résistance peut résulter de mutation chromosomique ou de
I’acquisition de genes via des éléments génétiques mobiles comme les plasmides. Ces
multiples stratégies de résistance font de P. aeruginosa un pathogene particuliérement
difficile a traiter ( Souley et al., 2002).

Les mécanismes de la résistance (figure 01):
a- Sécrétion d’enzymes d’inactivation : qui va décomposer I’ATB.
b- Modification de la cible : qui entraine une perte d’affinit¢é de ’ATB pour sa
cible.
c- Imperméabilité : notamment par diminution de la matiére des porines chez les
bacilles a Gram négatif.
d- L’efflux des antibiotiques : Il s’agit de I’expulsion de 1’antibiotique hors de la
cellule bactérienne a travers la membrane cytoplasmique, par le biais d’une pompe
d’efflux constituée d’une protéine synthétisée par la bactérie. Le fonctionnement de
cette pompe requiert de 1’énergie.
Le motif commun a ces différents mécanismes de résistance est d’empécher 1’interaction
de ’ATB avec sa cible. Et parfois, c’est une association de plusieurs mécanismes

(Boudouda et al., 2015).
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Figure 1. Le mécanisme de la résistance aux antibiotiques chez p. aeruginosa
(Boudouda et al., 2015).

I11. 1. Mécanismes enzymatiques
I11. 1.1. Hydrolyse de béta-lactamines

La résistance de Pseudomonas aeruginosa aux béta-lactamines repose sur plusieurs
mécanismes complémentaires. Le principal est la production d’une béta-lactamase
chromosomique de classe C (AmpC), une enzyme capable d’hdrolyser 1’anneau béta-
lactame, rendant 1’antibiotique inefficace. Cette enzyme est naturellement présente et peut
étre induite en présence d’antibiotiques, ce qui aggrave la résistance. En plus de cette
hydrolyse enzymatique, la bactérie présente une permeabilité membranaire réduite, due a
une altération ou une perte de porines, notamment OprD, limitant ainsi 1’entrée des
antibiotiques dans la cellule. Enfin, P, aeruginosa utilise des systeme MexAB-OprM, pour
expulser activement les antibiotiques hors de la cellule avant qu’ils n’atteignent leur cible.
L’association de ces mécanismes confere a cette bactérie une résistance naturelle élevée
aux béta-lactamines, y compris a certaines pénicillines, céphalosporines et méme

carbapénemes (Barir et al., 2011)
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I11. 1.2. Résistance par hyperproduction de la céphalosporinase Amp C

La béta-lactamase chromosomique de type AmpC a été décrite chez un grand nombre de
bacilles a Gram négatif, notamment Pseudomonas aeruginosa. Des mutations de sa
production peuvent entrainer une expression stable et régulation de sa production peuvent
entrainer une expression stable et élevée de I'enzyme AmpC, ce qui réduit I'efficacité de
I'ensemble des B-lactamines, a I'exception des carbapénemes ( Asma., 2012). La régulation
de I'expression du géne AmpC implique plusieurs génes, dont AmpR, AmpD et AmpG. Le
gene AmMpR code un activateur transcriptionnel du gene AmpC, qui peut étre induit en
présente de R-lactamines. Cette induction est controlée (ou réprimée) par une protéine
codée par le gene AmpD ( Pascal., 2010).

Le géne codant pour AmpC chez P. aeruginosa n’a pas encore été retrouvé sur des
plasmides. Par conséquent, il n’est généralement pas transféré a d’autres especes,
contrairement aux AmpC plasmidiques observés chez les entérobactéries (Gougeon.,
2017).

I11. 1.3. Résistance par production de pénicillinases

Parmi les pénicillinases produites par Pseudomonas aeruginosa on distingue
principalement les enzymes de type PSE (Pseudomonas Specific enzyme), telles que PSE-
1, PSE-3, PSE-4 ( Bert et al., 2002).

L’enzyme PSE-1 est la plus répandue, représente environ 90% des cas). Ces enzymes
sont étroitement apparentées, et ne différent que par 1 ou 2 acides aminés ( Buch et al.,
2010).

Les pénicillinases de type PSE sont capables d’hydrolyser les carboxypénicillines
(comme le ticarcilline) ainsi que les uréidopénicillines (comme le pipéracilline), et
montrent également une activité contre certaines céphalosporines, notamment la iéme
géneération (C4G) les céphalosporines de quat et sont inactives sur le ceftazimide et les
carbapénémes (Buch et al., 2010).
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I11. 1.4. Résistance a spectre étendue (BLSE)

Les bactéries productrices de béta-lactamases a spectre étendu (BLSE), sont des
enzymes récemment apparues a la suite de mutations des pénicillinases. Elles sont
plasmidiques donc transférables et sensibles a I'action des inhibiteurs enzymatiques. Elles
sont tres actives contre les pénicillines et moyennement actives contre les céphalosporines
de premiere génération. Les mutations génétiques a l'origine des BLSE élargissent le
spectre de ces enzymes et touchent également les céphalosporines de troisieme génération
(céftazidime et céfotaxime) et les monobactames (aztréonam). Les bactéries produisant une
BLSE n'hydrolysent pas les céphamycines (céfoxitine) ni les carbapénémes (Giske et al.,
2006).

Cinq types de BLSE de classe A (TEM, SHV, PER, VEB et GES) ont été détectés chez
P. aeruginosa. Il existe actuellement neuf types connus de BLSE GES, jusqu’a présent
quatre de ces types de GES (GES-1, -2, -8 et -9) ont été trouvé chez P. aeruginosa. Il nous
faut bien distinguer les résistances acquises aux céphalosporines de 3éme génération
(C3G), soit par hyperproduction de céphalosporinase, soit par BLSE car les phénotypes de
résistance sont différents. Ces enzymes sont habituellement détectées par une synergie
entre une C3G (notamment la céftazidime) ou I’aztréonam et 1’acide clavulanique .(Proil et
al., 2001).

La classification des p-lactamases selon Ambler repose sur la structure moléculaire des
enzymes, réparties en quatre classes principales (A a D). La classe A regroupe notamment
les pénicillinases telles que les enzymes des familles PSE, TEM, SHV, ainsi que d'autres
enzymes & spectre élargi comme PER, VEB, GES et IBC. Les carbapénémases sont
majoritairement classées en classe B, incluant les métallobéta-lactamases de type IMP et
VIM. La classe C correspond principalement aux céphalosporinases de type AmpC, tandis
que la classe D rassemble les oxacillinases (OXA), subdivisées en plusieurs groupes en
fonction de leur profil enzymatique (Groupes | a V). Un résumé detaille des enzymes
représentatives de chaque classe est présenté dans le Tableau 1.
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TABLEAU 1. PRINCIPALES RESISTANCES AUX BETA-LACTAMINES PAR P. AERUGINOSA.

Classification d'Ambler | Groupe Enzymes
PSE PSE-1,335;CARB-3,4
TEM TEM-1,2,4,21,24,42,45
ClasseA/pénicillinase SHV
SHV-2a,5,12
Autres PER-1; VEB-la, 1b, 2; GES-1,2;
IBC-2
Classes B/ carbapénémases IMP-17 , VIM-1a VIM-4
Classes C / céphalosporinases AmpC
I OXA-5,7,10(PSE-2),11,13,14
a17,19,28,35,45
I 0XA-2,3,15,20,32,34,36,53
Classes D / oxacilinases " OXA-1,4,3031
AV OXA-9
\ LCR-1,NPS-1
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I11. 1.5. Résistance par production de carbapénémases (MBLS)

Les carbapénémases de type metallo-R-lactamases (MBLs) sont devenues les
carbapénémases les plus répandues et le plus significatives chez P. aeruginosa. Ces
enzymes possedent dans leur site actif un cation indispensable a leur activité qui est
invariablement le zinc (Zn?+). En outre, 1’activité de ces enzymes est inhibée par 1’addition
de chélateur d’ions bivalents (EDTA). Ce sont des métalloprotéines, chromosomiques ou
plasmiques, qui ont une activité catalytique beaucoup plus forte que les autres R-lactamases
et hydrolysent toutes les R-lactamines sauf I’aztéréonam (Obristsch et al 2004). Ces
carbapénémases acquises constituent sept groupe décrits chez P. aeruginosa : IMP (active
sur I’IMipenem), VIM (Verona Integron-encoded Metallo-3-lactamase), SPM (Sao-paulo
Metallo-R3-lactamase), AIM (Australia IMpenemase),GIM (German IMpenemase), NDM-
1(New Delhin Metallo-R-lactamase) et FIM-1. Les types IMP et VIM demeurent les MBLs
les plus rapportées dans le bassin méditerranéen chez P. aeruginosa (Mentalegre., 2016).
I11. 1.6. Résistance aux oxacillinases classe D

Chez P. aeruginosa des BLSE dérivées des enzymes OXA-10 et OXA-2 ont été
isolée.Cela inclut les variantes (OXA-10, 11, 14, 15,16, 19), qui sont capables d’hydrolyser
un large éventail d’antibiotiques béta-laclamase notamment certaines céphalosporines de 3
eéme génération I’imipéneme et le méropéneéme. L’aztréonam et la pipéracilline sont moins
touchés, mais leurs activité n’est pas inhibée par 1’acide clavulanique ou le tazobactam.
Ces enzymes appartient a la classe D des B-lactamines, et sont le plus souvent portées par
des plasmides, ce qui facilite leur transfert horizontal entre bactéries et favorise la
propagation rapide de la résistance en milieu hospitalier.En outre, I’enzyme OXA-18 a
également été identifiée chez P. aeruginosa. Contrairement aux autres OXA-18 est la seule
oxacillinase de classe D connue pour étre inhibée par 1’acide clavulanique. Elle est codée
par un gene chromosomique (blaOXA-18), ce qui limite sa mobilité génétique, mais sa
présence demeure préoccupante en termes de résistance clinique.

I11. 1.7. Résistance aux aminosides

La résistance aux aminosides chez Pseudomonas aeruginosa repose en grande partie sur
la production d’enzymes de modification qui inactivent ces antibiotiques en altérant leur
structure chimique, les empéchant ainsi de se lier efficacement a leur cible ribosomique.
Trois types principaux d’enzymes sont impliquée : les N-acétyltransférases (AAC), qui
acétylent les groupes amino, les O-nucléotidyltransférases (ANT), qui adénylylent les
groupes hydroxyles, et les O-phosphotranférases (APH), qui phosphorylent également des

groupes hydroxyles. Ces enzymes, souvent codées par des génes localisés sur des éléments
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génétiques mobiles tels que les plasmides, transposons ou intégrons, facilitent la
dissémination de la résistance entre souches bactériennes. Chez P. aeruginosa, les enzymes
les plus fréguemment rencontrées sont AAC(6")-1, ANT(2") et parfois des variantes d’APH,
conférant une résistance marquée a plusieurs aminosides, et contribuant ainsi au

développement de profils de multirésistante. (Macfarlane et al., 2000).

I11. 2. Mécanismes non enzymatiques

I11. 2.1. Surexpression de systeme d’efflux

Plusieurs protéines agissent en tant que composant actifs des systémes d’efflux Opr M,
Opr J, Opr N, sans oublier le systeme Mex AB-Opr M .
Chague systéme a une spécifique se substrat :

Mex AB-Opr M: efflue la quasi-totalite des béta-lactamines sauf I’imipénéme, les
fluoroguinolones, les macrolides, la lincomycine, la tétracycline, le trimethoprime, le
chloramphenicol et la novobiocine. (Masuda et al., 2000).

Opr M: élimine les aminoglycosides, les quinolones, les béta-lactamines
zwitterioniques (présentant un méme nombre de charges électriques de signes opposees tel
que le ceéfépime), les macrolides et la tétracycline . (Muller., 2012) .

_ Opr N : efflue quinolones, les aminoglicosides, le triméthoprime, le chloramphénicol
et certaines béta-lactamines comme les carbapénémes mais aussi la ceftazidime, le
céfépime, la ticarcilline ou I’aztréona . (Lanes .,2011).

Opr J : élimine les quinolones, les béta-lactamines zwittirioniques, les macrolides, la
tétracycline, le chloramphénicol et le triméthoprime. (Jeannot., 2008).
I11. 2.2. Résistance due a la diminution de la perméabilité

Dans les bactéries a Gram négatif, les porines bactériennes sont une des voies
principales d’entrée pour les antibiotiques usuels comme les bétalactamines et les
fluoroquinolones .Cette protéine canalaire de la membrane externe posséde un site
spécifique de liaison aux carbapénemes, et permet la pénétration sélective de I’imipéneme.
Des modifications de la quantité absolue ou de I'état fonctionnel de ces porines ont pour
conséquence une diminution de la diffusion des antibiotiques empruntant cette voie de
pénétration. Ce mécanisme par diminution de perméabilité peut entrainer une resistance
croisée a plusieurs familles d'antibiotiques. Chez P. mécanisme le plus fréquent de
résistance a I’imipénéme. (Nordmann., 2003).

Par ailleurs,certaines souches cliniques, 1’altération des différents génes impliqués dans

la biosynthése des lipopolysaccharides (des composants de la membrane extérieur de la
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bactérie) comme le locus rfb conduit au phénotype «rough» (aspect sec et rugueux)
accompagné des fois d’une baisse modérée de la sensibilité¢ a I’ensemble des aminosides.

(Doi et al., 2007).

I11. 2.3. Résistance par efflux actif

Chez P. aeruginosa, seul le systéeme d’efflux actif MexXY (Opr M) est capable
d’expulser les aminosides vers 1’extérieure, contribant ainsi a la résistance a cette classe
d’antibiotique. Ce systéme est naturellement réprimé dans les souches sauvages, la sur
expression constitutive de ’opéron mexXY qui en découle conduit a une résistance
modérée aux aminosides, ainsi qu’aux fluoroquinolones et au céfépime (Doi et al., 2007).
I11. 2.4. Résistance par modification de la cible ribosomale

La méthylation de I’ARNr 16s a récemment émergé comme niveau mécanisme de
résistance aux aminosides parmi les agents pathogénes a Gram négatif telle que P.
aeruginosa, capable de modifier non pas I’aminoside mais la structure ribosomale sur
laquelle il se fixe, ’ARN 16S (Doi et al., 2007).

Le géne rmt A (Ribosomal méthyl transférasse) qui code pour une méthylase de I’ARNr
16s procure a la bactérie une résistance de haut niveau a I’amikacine, la tobramycine,
I’isépamicine, I’arbekacine et la gentamycine. Toutefois, il faut souligner que la résistance
par mutation du géne codant ’ARNr 16S n’est efficace que chez les bactéries possédants
une ou éventuellement deux copies des genes de I’ARNr 16S. Mais P. aeruginosa posséde
quatre copies de ce gene, ainsi la probabilité qu’elles soient affectées toutes les quatre par
des mutations identiques est tres faible et la résistance par ce mécanisme est peu probable
(Yokoyama et al., 2003). Par ailleurs, La modification de la cible principale des
fluoroquinolones, a savoir la gyrase de ’ADN (également appelée topoisomérase II ), se
produit par des mutations ponctuelles dans les régions ou se lie 1’antibiotique, appelées
QRDR (Quinolone Résistance Determining Régions), situées dans les génes gyrA et gyrB,
qui codent respectivement les deux sous-unités de 1I’enzyme, GyrA et GyrB.

Les modifications de la cible secondaire, la topoisomérase 1V, surviennent suite a des
mutations ponctuelles dans les genes parC et parE, qui codent respectivement pour les
deux sous-unités de cette enzyme, parC et parkE (Jcaoby., 2005).

L’association de mutation a la fois dans GyrA et parC conduit a de trés haut niveau de
résistance, Contrairement a d’autres mécanismes enzymatiques de résistance (comme la

production de B-lactamases), la résistance aux fluoroquinolones n’est pas enzymatique,
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mais genetique, liée & des mutations structurales dans les cibles de 1’antibiotique (Akasaka
etal., 2001).

I11. 2.5. Role de ’opéron dans la résistance

Le géne oprH se trouve associé dans un méme opéron aux genes phoP et phoQ qui
codent pour un systeme de transduction de signal.

L’hyperexpression de la protéine de membrane externe OprH a été constatée dans les
souches mutantes de P. aeruginosa montrant une résistance élevée aux aminosides, a
I’exception de la gentamycine. Il semble que le systéme phoP-phoQ joue un réle indirect
dans la résistance aux aminosides.

Ainsi, il a été observé au niveau de différents mutants de P. aeruginosa affectés dans
les génes phoP ou phoQ une légére augmentation de la résistance a I’amiacine et a la

streptomycine (Macfarlane et al., 2000).
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IV. Matériels et méthodes
IV. 1. Collecte des données

Les molécules présentant une activité potentielle contre Pseudomonas aeruginosa ont été
recherchés dans la banque de données ChEMBL34. Apres extraction, ces molécules,
identifiées par leur identifiant ChEMBL 1D348, ont été importées dans I’environnement de
développement Google Colab en vue pour le traitement et analyse.
IV. 2. Préparation des données

La classification des molécules a été réalisée sur la base de leurs valeurs de concentration
inhibitrice a 50 % (1C50), selon des seuils prédéfinis :
-Composés actifs : IC50 <1 uM (1000 nM)
-Composés inactifs : IC50 > 10 uM (10000 nM)
-Composés intermeédiaires : 1 uM <IC50 <10 uM

Pour améliorer l'analyse, une opération de filtrage des données a été effectuée sur le
données, ou les entrées 'intermédiaires' a été exclues. Ce processus a été entrepris dans le but
de se concentrer uniquement sur les composés "active™" et "inactive", contribuant ainsi a la
construction de modeéles prédictifs.

Ensuite, 1C50, ont été convertis en pIC50, pour faciliter l'interprétation de I'efficacité des
composes pIC50=-log(IC50).
IV. 3. Classification selon la loi de Lipinski
Les descripteurs structuraux tels que le poids moléculaire et le nombre de liaisons hydrogene
(donneurs et accepteurs) ainsi que le LogP, ont été calculés a I’aide RDKit. Ces données ont
ensuite permis d’évaluer les composés selon les criteres de la reégle de lipinski, a savoir : un
poids moléculaire inférieur ou égal a 500 Da, un LogP ne dépassant pas 5, un nombre de
donneurs de liaisons hydrogene (-OH,-NH) ne doit pas étre supérieur a 5, et un nombre
d’accepteurs de liaisons hydrogéne ne doit pas étre supérieur & 10 afin d’identifier ceux
présentant les valeurs les plus élevées.
Pour identifier les attributs les plus influents sur la prédiction de l'activité biologique des
composés, Les valeurs SHAP ont été calculés pour I’intégralité du jeu de test.
IV. 4. Calcul des descripteurs
Pour la construction d'un modele QSAR, PubChem ont été calculées a l'aide de PaDEL et
RDK:it.
Parmi les descripteurs générés, les empreintes digitales PubChem (PubChem fingerprints)
furent spécifiquement ciblées et calculées. Ces empreintes sont des vecteurs binaires
représentant la présence ou l'absence de caractéristiques chimiques prédéfinies ou de sous-
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structures spécifiques au sein de chaque molécule. Elles offrent une description numérique
rapide et efficace de la topologie moléculaire et des motifs fonctionnels importants pour
I'activité biologique.

IV. 5. Construction d'un modéle QSAR

Pour la construction d'un modele QSAR, les données ont été divisées en deux: 80 % des
données ont été dédiées a l'entrainement du modeéle, tandis que les 20 % restants ont été
réservés a la validation.

Pour établir la relation entre les descripteurs et l'activité biologique, divers modéles de
régression été utilisés, notamment le modéle linéaire, le Random Forest Regressor, le Support
Vector Regressor, le Decision Tree Regressor et le KNN Regressor.

IV. 6. Validation de modeéle

Pour valider le meilleur modele de QSAR, une premiere évaluation a été réalisée en se basant
uniquement sur le score R2 et le Q2 (coefficient de validation croisée).

Une fois le modeéle le plus performant identifié sur la base de ces deux criteres, des analyses
statistiques complémentaires ont été appliquées uniquement sur ce modéle

Telle que Q,F3, CCC (coefficient de corrélation de concordance), Q3-Loo (leave-one-out) et
Q2-LMO (leave-many-out).
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V. Résultats et discussion
V. 1. Collecte et nettoyage des données
Un jeu de données de molécules bioactives ciblant Pseudomonas aeruginosa a été collecté a
partir de la base de données Chembl 34.
Initialement, 1504 molécules ont été récupérées. Suite aux etapes rigoureuses de nettoyage
des données (incluant la suppression des valeurs manquantes dans les colonnes clés et
I'élimination des doublons basée sur les SMILES canoniques), le nombre de molécules a été
réduit a 1028. Ce jeu de données final, composé de 1028 molécules, a ensuite été préparé pour
la modélisation QSAR par la transformation des données et le calcul de descripteurs physico-
chimiques, fournissant ainsi des descripteurs pertinents et les valeurs pIC50 correspondantes
pour l'activite.
V. 2. Classification des données

La classification des molécules basée sur leurs valeurs d'IC50 est une pratique standard en
découverte de médicaments et dans les études QSAR, visant a catégoriser les composés selon
leur puissance inhibitrice. Dans cette analyse, les molécules ciblant Pseudomonas aeruginosa
ont été réparties en trois catégories :

V. 2.1. Molécules Actives : Ces molécules présentent une puissance inhibitrice élevée,
généralement définie par une valeur d'IC50 inférieure ou égale & 1000 nM (ce qui
correspond a un plC50 supérieur ou égal a 6). Ces composés sont considérés comme
des candidats prometteurs pour des investigations ultérieures en tant que molécules de
téte potentielles.

V. 2.2. Molécules Inactives : Ces molécules présentent une activité inhibitrice faible ou
inexistante, avec des valeurs d'IC50 supérieures ou égales a 10000 nM (ou un pIC50
inférieur ou égal a 5). Ces composés ne sont généralement pas considérés pour un
développement ultérieur, mais leurs structures peuvent étre utiles comme contrdles
négatifs ou pour comprendre quelles caractéristiques structurelles ne sont pas propices
a l'activité.

V. 2.3. Molécules Intermeédiaires : Ces molécules montrent une activité
inhibitrice modérée, avec des valeurs d'IC50 se situant entre les seuils des
composés actifs et inactifs (entre 2000 nM et 10000 nM, ou un pIC50 entre 5
et 6). Bien que moins puissantes que les composés actifs, elles peuvent
néanmoins fournir des informations précieuses pour comprendre les relations

structure-activité ou pourraient étre optimisées pour améliorer leur puissance.
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Cette classification est cruciale pour la construction d'un modele QSAR car elle permet
d'entrainer le modeéle a distinguer les composés ayant différents niveaux d'activité biologique.
En se concentrant sur les caractéristiques structurelles qui différencient les composés actifs
des composés inactifs, il est possible de developper des modeles prédictifs capables
d'identifier de nouveaux candidats médicaments potentiels a partir de vastes bibliothéques de
molécules. Aprés la suppression des molécules intermédiaires, il reste 910 molécules,
permettant de créer une distinction plus claire entre les composeés actifs et inactifs, ce qui peut
améliorer la performance du modéle QSAR.

V. 3. Classification selon la loi de Lipinski

Suite a l'application des critéres de Lipinski, les molécules considérées comme ayant une
activité « intermédiaire 256 » ont été éliminées.

Nombre de molécules actives qui respectent les regles de Lipinski : on a identifié 237
molécules actives qui respectent les criteres de Lipinski.

Les molécules inactives conformes aux criteres de Lipinski : 417 molécules non actives. Ont
été alors pu déterminer le nombre de molécules actives et inactives conformes a ces régles.

La détection de 237 molécules actives conformes aux critéres de Lipinski a été satisfaisante.
Cela a révélé qu'une part importante des composés ayant démontré une efficacité contre
Pseudomonas aeruginosa possédait également des caractéristiques physico-chimiques
propices a la biodisponibilité orale. Ces composés sont considérés comme des candidats
prometteurs pour un développement futur en tant que médicaments oraux. En ce qui concerne
les 417 molécules inactives respectant les critéres de Lipinski, cela signifie que beaucoup
d'entre elles, bien qu'elles soient conformes a ces critéres, pourraient ne pas avoir une activité
contre la cible spécifique. C'est un résultat anticipé, car les criteres de Lipinski ne prédisent
que les propriétés globales des médicaments et non leur efficacité contre une cible biologique
précise.

La clarification le mode SHAP (SHapley Additive exPlanations) est une approche essentielle
pour comprendre les prédictions des modeéles d'apprentissage automatique. Cette technique est
mise en ceuvre pour déterminer une valeur a chaque caractéristique atomique, éclairant ainsi
I'importance de sa contribution a une prédiction particuliere.

La figure 02 représente de maniére visuelle l'importance moyenne absolue de chaque
caractéristique dans le modele.

En analysant ce diagramme, il a été détecté les descripteurs moléculaires (le poids moléculaire

(MW), le LogP, le nombre d'accepteurs de liaison hydrogéne (NumHAcceptors) et le nombre
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de donneurs de liaison hydrogéne (NumHDonors)) ayant eu l'influence la plus importante sur

la fagcon dont le modeéle a estimé les molécules.

o
0.0 0.1 0.2 0.3 0.4 0.5 0.6

mean(|SHAP value|) (average impact on model output magnitude)

Figure 2. L’importance relative des descripteurs moléculaires : NumHAcceptors,
NumHDonors, LogP, MW.

V. 3.1. NumHAcceptors (Nombre d*accepteurs de liaisons hydrogene)

Cette caractéristique afficha la valeur SHAP moyenne absolue la plus élevée, s'établissant a
environ 0.62. Ceci indiqua que le nombre d'accepteurs de liaisons hydrogene constitua la
propriété moléculaire la plus influente dans les prédictions du modele QSAR. Il fut rappelé
que les accepteurs de liaisons hydrogéne sont des atomes (généralement N, O, F) possédant
des paires d'électrons libres capables de former de telles liaisons (Lundberg., 2017). (Figure
2)

Une importance prononcée de NumHAcceptors suggéra que les interactions par liaisons
hydrogene jouerent un réle crucial dans I'activité biologique prédite par le modéle. Dans de
nombreux contextes pharmacologiques, les liaisons hydrogene sont reconnues comme
fondamentales pour la reconnaissance moléculaire et I'établissement des liaisons ligand-
récepteur (Klebe et al, 2006). Un nombre optimal d'accepteurs d'hydrogéne s'avérait souvent
requis pour une affinité de liaison adéquate et une activité biologique. Ce résultat s'alignait
parfaitement avec les régles de Lipinski, lesquelles soulignérent l'importance des liaisons
hydrogene pour la perméabilité et I'absorption orale des médicaments (lipinski. 2001).

V. 3.2. NumHDonors (Nombre de donneurs de liaisons hydrogéne)

NumHDonors se positionna comme la deuxieme caractéristique la plus importante, avec une
valeur SHAP moyenne absolue d'environ 0.40. Les donneurs de liaisons hydrogene furent
géneralement identifiés comme des groupes N-H ou O-H.

A l'instar des accepteurs, I'importance des donneurs de liaisons hydrogéne accentua le réle
prépondérant des interactions par liaisons hydrogéne dans la prédiction de l'activité. Les

liaisons hydrogene furent considérées comme des forces intermoléculaires clés régissant les
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interactions entre les molécules médicamenteuses et leurs cibles biologiques (Klebe et al.,
2006). L'équilibre entre les donneurs et accepteurs de liaisons hydrogéne fut souvent jugé
critique pour l'activité. (Figure 2)
V. 3.3. LogP (Coefficient de partage octanol-eau)
Le LogP démontra une importance significative, avec une valeur SHAP moyenne absolue
d'environ 0.32. Le LogP fut défini comme une mesure de la lipophile d'une molécule.
La lipophile, propriété physico-chimique fondamentale en chimie médicinale, influenga
fortement I'absorption, la distribution, le métabolisme et I'excrétion (ADME) des composés
(Han et al. 2019). Un LogP optimal s'aveérait souvent nécessaire pour que la molécule atteigne
sa cible biologique. Des valeurs de LogP trop faibles pouvaient entrainer une mauvaise
perméabilité membranaire, tandis que des valeurs trop élevées pouvaient conduire a une
mauvaise solubilité aqueuse et a un fort piégeage dans les membranes lipidiques ou le tissu
adipeux (Han et al., 2019). L'importance de LogP dans ce modéle QSAR fut donc attendue et
considérée comme cruciale pour la prédiction de I'activité biologique effective. (Figure 2)
V. 3.4. MW (Poids moléculaire)
Le poids moléculaire (MW) se révéla étre la caractéristique la moins importante parmi celles
affichées, avec une valeur SHAP moyenne absolue d'environ 0.22.
Le poids moléculaire, bien qu'étant un descripteur de taille simple, fut reconnu comme
important. Des poids moléculaires excessivement élevés purent entraver la perméabilité
membranaire et la biodisponibilité orale, souvent en raison d'une taille excessive pour
traverser les pores des membranes ou d'une affinité démesurée pour les protéines
plasmatiques (Klebe et al, 2006). Bien que son influence fut moindre par rapport aux
propriétés liées aux liaisons hydrogene et a la lipophile dans le graphique présenté, son impact
demeura notable. (Figure 2)
Ces résultats s'accordérent parfaitement avec les principes établis de la chimie médicinale et
les regles de Lipinski concernant la "drug-likeness" (Klebe et al, 2006).
V. 4. Calcul des descripteurs

Pour la modélisation des relations structure-activité quantitative (QSAR), la génération et la
manipulation des structures chimiques sont fondamentales, et elles sont efficacement réalisées
grace a l'utilisation combinée de RDKit et PaDEL-Descriptor. RDKit fournit des
fonctionnalités chimiomatiques critiques. Gérant implicitement la conversion des chaines
SMILES en représentations moléculaires, une premiere étape indispensable pour tout calcul
de descripteur. Ensuite, PaDEL-Descriptor est employé pour calculer un ensemble vaste et
diversifié de descripteurs moléculaires, notamment les empreintes digitales PubChem, qui
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sont des clés structurelles représentant des caractéristiques chimiques prédéfinies au sein de
chaque molécule (Landrum et al, 2006).

Cette traduction numérique des structures chimiques est absolument essentielle, car elle
fournit les données brutes nécessaires aux algorithmes d'apprentissage automatique pour
construire un modele QSAR capable de prédire l'activité biologique d'une molécule en
fonction de sa structure (Consonniet al, 2009).

V. 5. Comparaison des Modeles de QSAR

La Figure (3) représente une comparative de la performance des modeles de régression par
différents algorithmes.

Cette figure a permis de visualiser la performance de différents algorithmes sur I'ensemble de
données de test.

Le R2 mesure la proportion de la variance de variable dépendante (ici, probablement les
valeurs pIC50) qui peut étre prédite a partir des variables indépendantes par le modele. Plus le

R2 se rapproche de 1, plus la capacité prédictive du modele est optimale (Breimen., 2001).

o.8 - _—— accuracy
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2 —

0.1 —

0.0

Linear Model
KN Regressor

Decision Tree Regressor

Random Forest Regressor
Support Vector Regressor

Figure 3. Analyse comparative de la performance des modéles de régression par différents
algorithmes.

V.5.1. Linear model (modele linéaire) : la barre pour le modeéle linéaire est extrémement
courte, indiquant un R2 proche de 0,01. Cela suggeére que le modeéle linéaire a une tres
faible capacité a expliquer la variance des données de test. Il est possible que la
relation entre les variables ne soit pas linéaire ou que ce modéle soit trop simple pour

capturer la complexité des données. (figure 3)
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V. 5.2. Random Forest Regressor : ce modele présente la barre la plus haute, avec un R2
d’environ 0,82. C’est la performance la plus élevée parmi tous les modeles évalués.
Une valeur de R2 de 0,82 signifie que le Random Forest Regressor explique environ
82% de la variance des valeurs réelles sur ’ensemble de test. Cela indique une tres
bonne capacité de prédiction et de genéralisation pour ce modele. (figure 3)

V. 5.3. Support Vector Regressor (SVR) : le SVR obtient un R2 d’environ 0,62. C'est une
performance superieure & celle du Random Forest Regressor. Cela implique que le
SVR explique environ 62% de la variance des données de test. (figure 3)

V. 5.4. Decision Tree Regressor : ce mod¢le attient un R2 d’environ 0,68. Sa performance
est meilleure que celle du SVR mais demeure inférieur au Random Forest Regressor,
expliquant environ 68 % de la variation des données de test (figure 3)

V. 5.5. KNN Regressor : le KNN Regressor affiche un R2 d’environ 0,64. Sa performance
est comparable a celle SVR et de décision Tree Regression, expliquant environ 64%
de la variance des données de test. (figure 3)

Le Random Forest Regressor est clairement le modéle le plus performant, affichant le R2 le
plus élevé sur ’ensemble de test. Les modeles comme le Décision Tree Regressor, SVR et
KNN Regressor offrent des performances acceptables mais inférieures. Le modele linéaire,
quant a lui, est manifestement inadapté a ces données. Ces résultats suggeérent que les modéles
bases sur les arbres (Random Forest, Decision Tree) ont une meilleure capacité a capturer les
relations non linéaires et les interactions complexes au sein des données par rapport aux
modeles. (Figure 3)

V. 6. validation d’un modele QSAR

Le tableau 02 présente une évaluation complete des performances du modele Random Forest
Regressor en utilisant plusieurs métriques statistiques. Ces métriques sont cruciales pour
comprendre non seulement la précision du modeéle sur les données d'entrainement, mais aussi
et surtout sa capacité a géneraliser et a fournir des predictions fiables sur de nouvelles
données, jamais vues auparavant (Gramatica et al. 2007).

v Q2F3 (0.89) : Une valeur de 0.89 est tres élevée et confirme la bonne capacité du
modele Random Forest Regressor a prédire de maniere fiable sur des ensembles de
données réellement nouveaux ou externes. Cela renforce la confiance dans la
géneralisation du modele au-dela de I'échantillon initial (Roy et al., 2018).

v' CCC (0.89): Le CCC mesure l'accord entre les valeurs prédites et les valeurs réelles.
Une valeur de 0.89 indique une trés bonne concordance entre les prédictions du

modele et les valeurs réelles. Contrairement au R2 qui évalue la proportion de
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variance expliquée, le CCC évalue la preécision et I'accord des prédictions. Une valeur
proche de 1 signifie un accord quasi parfait (Lin., 1989). Tableau 2
v Q2-LOO0O (0.82) : Le Q2-LOO est une métrique de validation croisée. Elle est calculée
en entrainant le modele a plusieurs reprises. Une valeur de 0.82 est excellente et
indique que le modéle Random Forest Regressorest robuste aux variations de
I'échantillon d'entrainement et a une bonne capacité prédictive, méme lorsqu'une seule
observation est retirée. C'est un indicateur de la stabilité du modele (Gramatica et al.
2007). Tableau 2
v Q2-LMO (0.80) : Similaire au Q2-LOO, Cela est souvent considéré comme un test
plus rigoureux de la robustesse et de la capacité de généralisation qu'un simple LOO.
Une valeur de 0.80 est trés bonne et confirme la robustesse du modele Random Forest
Regressor face a des sous-ensembles de données plus importants qui ne sont pas inclus
dans I'entrainement. C'est un excellent signe que le modéle n'est pas trop sensible a la
composition exacte de I'ensemble d'entrainement (Roy et al. 2018). Tableau 2
L'ensemble de ces métriques confirma la robustesse et la performance supérieure du modeéle
Random Forest Regressor pour la prédiction des valeurs de plC50. Les valeurs élevées des
métriques de validation externe et croisée (Q2F3, CCC, Q2-LOO, Q2-LMO) consoliderent la
fiabilitt¢ du modéle pour prédire l'activité biologique de nouvelles molécules, un critére
fondamental pour I'application pratique des modéles QSAR en découverte de médicaments
(Tropsha., 2010). Ces résultats positionnerent le Random Forest Regressor comme un outil

prédictif fiable et robuste pour les études de relations structure-activité quantitative.

TABLEAU 2. EVALUATION DES PERFORMANCES DU MODELE RANDOM FOREST REGRESSOR.

tests Valeur
Q2F3 0.89
CcCC 0.89
Q2-LOO 0.82
Q>-LMO 0.80
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Conclusion

Le probleme de la résistance de Pseudomonas aeruginosa aux antibiotiques représente un
enjeu crucial en matiére de santé publique. Cette problématique, aggravée par lI'apparition de
souches résistantes a plusieurs traitements, met en évidence la nécessité de concevoir des
stratégies thérapeutiques innovantes. Cette recherche constitue une avancée importante en
explorant de nouvelles méthodes de découverte de médicaments, cruciales pour lutter contre
I'insuffisance grandissante des thérapies actuelles et optimiser les prévisions cliniques
(Taroare., 2019).

En exploitant les données de la base de donnée Chembl 34 et en appliquant des techniques
de modélisation QSAR avancées, notamment le Random Forest Regressor, cette recherche a
réussi a construire un modele prédictif robuste. Les performances exceptionnelles du modele,
validées par des métriques solides (R2, Q2, Q2F3, CCC, Q2-LOO0, Q2-LMO), attestent de sa
fiabilité et de sa capacité a généraliser sur de nouvelles données. Cela signifie que le modele
développé peut servir d’outil précieux pour la sélection rapide et efficace de nouvelles
molécules prometteuses, réduisant ainsi considérablement le temps et les couts associés a la
recherche de composeés antibactériens.

Cette étude ouvre de nouvelles perspectives pour la conception de futurs médicaments contre
Pseudomonas aeruginosa en offrant une méthodologie prédictive capable d’accélérer
I’identification de candidats thérapeutiques potentiels, contribuant ainsi a la lutte urgente

contre la résistance aux antibiotiques.
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