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Résumé 

Pseudomonas aeruginosa est un agent pathogène nosocomial majeur, doté d'une remarquable 

capacité d'adaptation et de résistance aux antibiotiques. Face à l'échec croissant des 

traitements, les modèles de Relations Quantitatives Structure-Activité (QSAR) offrent une 

approche prometteuse pour prédire l'activité de nouvelles molécules. Leur application permet 

d'accélérer la découverte de composés actifs et la conception de thérapies plus efficaces. 

Les données moléculaires actives contre Pseudomonas aeruginosa ont été extraites de la base 

de données ChEMBL34, puis filtrées sur la base des valeurs d'IC50 (concentration inhibitrice 

médiane), converties en pIC50 (-log(IC50)), et finalement évaluées conformément à la règle 

de Lipinski. Des descripteurs structuraux ont été calculés à l'aide des outils RDKit et PaDEL 

afin de construire des modèles QSAR en utilisant plusieurs algorithmes, notamment le 

Régresseur Forêt Aléatoire (Random Forest Regressor). Le modèle jugé optimal a été validé 

au moyen de métriques de robustesse rigoureuses (R2, Q2, CCC, QF32, QLOO2, QLMO2), 

confirmant ainsi sa performance et sa stabilité prédictive. 

Mots clés : QSAR, Chembl, Lipinski, RDKit, PaDEL 

 

Abstract 

Pseudomonas aeruginosa is a major nosocomial pathogen, endowed with a remarkable ability 

to adapt and resist antibiotics. In response to the increasing failure of treatments, QSAR 

models offer a promising approach to predict the activity of new molecules. Their application 

helps accelerate the discovery of active compounds and the design of more effective 

therapies. 

Molecular data active against Pseudomonas aeruginosa were extracted from the ChEMBL34 

database, filtered based on IC50 values, converted into pIC50, and then evaluated according 

to Lipinski's rule. Structural descriptors were calculated using RDKit and PaDEL in order to 

build QSAR models with several algorithms, including the Random Forest Regressor. The 

best model was validated using robust metrics (R², Q², CCC, Q²F3, Q²-LOO, Q²-LMO), 

confirming its performance and stability. 

 



 

 

The best QSAR model was found when using the algorithm Random Forest Regressor (R² = 

0.83, Q²-F3 = 0.89, CCC = 0.89). 

QSAR provides a reliable and fast tool to identify new therapeutic candidates in the fight 

against antibiotic resistance. 

Key words: QSAR, Chembl, Lipinski, RDKit, PaDEL 

 

 ملخص 

التكيف  على  العالية  بقدرتها  تتميز  المستشفيات، حيث  في  للعدوى  المسببة  العوامل  أبرز  الزنجارية من  الزائفة  تعد 

البنية  بين  الكمية  العلاقة  تقنية  نماذج  توفر  التقليدية،  للعلاجات  المتزايد  الفشل  وبسبب  الحيوية.  المضادات  ومقاومة 

المركبات   (QSAR) والنشاط اكتشاف  تسريع  في  استخدامها  ويسهم  الجديدة.  الجزيئات  بفعالية  للتنبؤ  واعداً  نهجًا 

 الفعالة وتصميم علاجات أكثر كفاءة.

البيانات  قاعدة  من  الزنجارية  الزائفة  ضد  الفعالة  الجزيئية  البيانات  استخراج  قيمChEMBL34 تم  حُسِبتَ  ثم   ، 

IC50 وتحويلها إلى pIC50 .ثم قيُِِّمَت وفقًا لقواعد ليبنسكي ، 

البنية والنشاط باستعمال   PaDELو RDKit كما حُسِبتَ الواصفات الهيكلية باستخدام  بهدف بناء علاقة كمية بين 

عدة خوارزميات، من بينها خوارزمية انحدار الغابة العشوائية. وقد تم التحقق من أداء أفضل نموذج باستخدام معايير  

 ، مما أكد كفاءته واستقراره.(R2, Q2, CCC, Q2F3, Q2−LOO, Q2−LMO) إحصائية قوية

نموذج  أفضل  على  العثور  العشوائية QSAR تم  الغابة  انحدار  خوارزمية  استخدام   =R²= 0.83, Q²-F3)عند 

(0.89, CCC = 0.89 عملية لتسريع  وفعالة  واعدة  والنشاط وسيلة  البنية  بين  الكمية  العلاقة  تقنية  أن  يؤكد  مما   ،

 اكتشاف وتطوير الأدوية الجديدة في سياق مقاومة المضادات الحيوية    .                    

 

 الكلمات المفتاحية :

QSAR, Chembl, Lipinski, RDKit, PaDEL 
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I. Introduction 

Depuis quelques décennies, Pseudomonas aeruginosa ou bacille pyocyanique est reconnu 

comme agent pathogène hospitalier et peut causer des problèmes thérapeutiques. 

Pseudomonas aeruginosa consiste l’espèce type du genre Pseudomonas et représente environ 

90% des isolats cliniques humaines appartenant à ce genre. (Troare., 2019). 

Dotée d’un génome de grande taille lui conférant une flexibilité génétique remarquable, 

ainsi que d’un vaste arsenal de facteurs de virulence, Pseudomonas  aeruginosa est impliquée 

dans une large gamme d’infections nosocomiales: des infections urinaires, des infections 

cutanées secondaires a des brûlures, et beaucoup d'autres infections en milieu hospitalier y 

compris les infections respiratoires, les infections des plaies chirurgicales, ainsi que des 

bactériémies, des otites et des infections oculaires, illustrant ainsi son exceptionnelle capacité 

d’adaptation et de pathogénicité.(Habbi et al., 2020).  

Face à l'urgence croissante de la résistance de Pseudomonas aeruginosa aux antibiotiques 

en milieu hospitalier, les approches thérapeutiques actuelles se montrent de moins en moins 

efficaces. La modélisation QSAR peut contribuer significativement à l'identification et au 

développement de nouvelles stratégies thérapeutiques ciblant Pseudomonas aeruginosa,  

surmontant ainsi les limites des traitements actuels et ouvrant de nouvelles perspectives pour 

la construction  de molécules innovantes et plus efficaces .(Aleksić et al.,2024). 

Dans ce contexte, le développement de modèles QSAR (Quantitative structure-Activity 

Relation ship) s'avère essentiel pour prédire l'activité biologique de nouvelles molécules 

actives à partir de leurs caractéristiques structurales, réduisant ainsi le temps et le coût de 

développement de nouveaux agents antimicrobiens. L'application des QSAR à Pseudomonas 

aeruginosa ouvre la voie à la découverte ciblée de composés efficaces, contribuant à mieux 

gérer et prévenir les infections nosocomiales associées à cette bactérie. (Veyssiere., 2019). 

L’objectif de cette étude QSAR est de modéliser la relation entre la structure chimique de 

composés et leur activité antibactérienne contre Pseudomonas aeruginosa, afin de prédire 

l’efficacité de nouvelles molécules et d’orienter la conception de futurs agents antimicrobiens. 

Globalement, notre mémoire se compose de trois chapitres : 

         Chapitre 1: Une partie bibliographique rappellera  la résistance aux antibiotiques de 

Pseudomonas aeruginosa, elle repose sur divers mécanismes tels que l’inactivation du 

médicament, la modification de la cible ou l’expulsion active. Ce phénomène constitue une 

menace majeure pour la santé publique mondiale. 

         Chapitre 2 : Matériel et méthode  cette partie décrit les composés utilisés, leur activité 

biologique mesurée contre p. aeruginosa  et préparation des données à partir de bases 
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publiques avec leurs activités biologiques associées. Les descripteurs moléculaires calculés. 

Les données ont ensuite été normalisées et préparées pour la modélisation QSAR. 

         Chapitre 3 : les résultats du modèle QSAR montrent une bonne corrélation entre la 

structure chimique des composés et leur activité antibactérienne. Le modèle obtenue a été 

validé statistiquement et montre un bon pouvoir prédictif. 
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Revue bibliographique 
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II- Description générale 

Pseudomonas aeruginosa a été isolée pour la première fois en 1882 par le 

bactériologiste français Émile Gessard, à partir de pansements infectés. Il observa alors la 

production de pigments bleu-vert caractéristiques, la pyocyanine et la pyoverdine.  

Sur le plan nomenclature, le terme Pseudomonas, dérivé du grec "pseudo" (similaire)  

et "monas" (unité), désignait initialement les micro-organismes. L’épithète spécifique 

aeruginosa, du  latin signifiant "vert de gris", fait  référence  au pigment  caractéristique 

produit par la bactérie, conférant aux colonies leur coloration typique. P. aeruginosa 

constitue l’espèce type du genre Pseudomonas (Kerr et al., 2009). 

Depuis lors, cette bactérie a été largement étudiée en raison de son rôle dans les 

infections opportunistes, en particulier chez les patients immunodéprimés ou atteints de 

maladies chroniques telles que la mucoviscidose (Mérens et al.,  2013). 

P. aeruginosa est particulièrement connu pour sa résistance aux antibiotiques et sa 

capacité à survivre dans des environnements hostiles, ce qui en fait un problème majeur en 

milieu hospitalier. Cette espèce ubiquitaire colonise une grande variété d’habitats, incluant 

les milieux aquatiques (eaux stagnantes, rivières, lacs, piscines, systèmes d’eau 

hospitaliers), les sols humides riches en matière organique, la rhizosphère des plantes et les 

surfaces humides comme les installations sanitaires et le matériel médical (Eyquem et al., 

2005). 

 De plus, elle peut coloniser la peau et les muqueuses des humains et des animaux, en 

particulier chez les personnes immunodéprimées. Son adaptabilité remarquable lui permet 

de persister dans des environnements oligotrophiques, expliquant sa prévalence en milieu 

hospitalier  et son implication dans les infections nosocomiales (Kerr et al., 2009). 
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III.  La résistance aux antibiotiques 

Pseudomonas aeruginosa est une bactérie naturellement résistante à un large éventail 

d’antibiotique, en raison de plusieurs mécanismes intrinsèques. Elle produit notamment 

une bêta-lactamase chromosomique inductible de classe C, non inhibée par le clavulanate, 

et possède une faible perméabilité membranaire, limitant l’entrée des antibiotiques ( Barir 

et al., 2011). 

 De plus, un des mécanismes majeurs de cette résistance est le système d’efflux actif 

MexAB-OprM, fonctionnant en permanence chez les souches sauvages et expulsant les 

antibiotiques avant qu’ils n’agissent. Ce système confère à la bactérie une résistance 

naturelle à de nombreuses classes d’antibiotiques, dont les bêta-lactamines (pénicillines et 

céphalosporines) et les aminosides comme la kanamycine (Mentalagre et al .,2016). 

Ainsi, P. aeruginosa est naturellement insensible à plusieurs familles d’antibiotiques, 

telles que les pénicillines des groupes V,G,M et A, la majorité des céphalosporines de 

troisième génération, ainsi que les quinolones de première génération (Mentalagre et al 

.,2016). 

Cependant, cette bactérie peut également développer une résistance acquise, 

lorsqu’une ou plusieurs souches initialement sensibles deviennent résistantes à un ou 

plusieurs antibiotiques. Cette résistance peut résulter de mutation chromosomique ou de 

l’acquisition de gènes via des éléments génétiques mobiles comme les plasmides.  Ces 

multiples stratégies de résistance font de P. aeruginosa un pathogène particulièrement 

difficile à traiter ( Souley et al., 2002). 

Les  mécanismes  de  la  résistance (figure 01): 

a-  Sécrétion d’enzymes d’inactivation : qui va décomposer  l’ATB. 

b-   Modification de la cible : qui entraîne  une perte d’affinité de l’ATB  pour sa          

cible. 

c- Imperméabilité : notamment par diminution de la matière des porines chez les 

bacilles à Gram négatif. 

d-     L’efflux des antibiotiques : Il s’agit de l’expulsion de l’antibiotique hors de   la 

cellule bactérienne à travers la membrane cytoplasmique, par le biais d’une pompe  

d’efflux constituée d’une protéine synthétisée par la bactérie. Le fonctionnement de 

cette pompe requiert de  l’énergie. 

Le motif commun à ces différents mécanismes de résistance est d’empêcher l’interaction 

de l’ATB avec sa cible. Et parfois,  c’est une association de plusieurs mécanismes 

(Boudouda et al.,  2015). 
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Figure 1. Le mécanisme de la  résistance aux antibiotiques chez  p. aeruginosa   

(Boudouda et al.,  2015). 

 

 

 

 

 

III. 1.  Mécanismes  enzymatiques 

III. 1.1.   Hydrolyse  de  bêta-lactamines 

La résistance de Pseudomonas aeruginosa aux bêta-lactamines repose sur plusieurs 

mécanismes complémentaires. Le principal est la production d’une bêta-lactamase 

chromosomique de classe C (AmpC), une enzyme capable d’hdrolyser l’anneau bêta-

lactame, rendant l’antibiotique inefficace. Cette enzyme est naturellement présente et peut 

être induite en présence d’antibiotiques, ce qui aggrave la résistance. En plus de cette 

hydrolyse enzymatique, la bactérie présente une perméabilité membranaire réduite, due à 

une altération ou une perte de porines, notamment OprD, limitant ainsi l’entrée des 

antibiotiques dans la cellule. Enfin, P, aeruginosa utilise des système MexAB-OprM, pour 

expulser activement les antibiotiques hors de la cellule avant qu’ils n’atteignent leur cible. 

L’association de ces mécanismes confère à cette bactérie une résistance naturelle élevée  

aux bêta-lactamines, y compris à certaines pénicillines, céphalosporines et même 

carbapénèmes (Barir et al., 2011) 
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III. 1.2.   Résistance par hyperproduction de la céphalosporinase Amp C 

La bêta-lactamase chromosomique de type AmpC a été décrite chez un grand nombre de 

bacilles à Gram négatif, notamment Pseudomonas aeruginosa. Des mutations de sa 

production peuvent entraîner une expression stable et régulation de sa production peuvent 

entraîner une expression stable et élevée de l'enzyme AmpC, ce qui réduit l'efficacité de 

l'ensemble des ß-lactamines, à l'exception des carbapénèmes ( Asma., 2012). La régulation 

de l'expression du gène AmpC implique plusieurs gènes, dont AmpR, AmpD et AmpG. Le 

gène AmpR code un activateur transcriptionnel du gène AmpC, qui peut être induit en 

présente de ß-lactamines. Cette induction est contrôlée (ou réprimée) par une protéine 

codée par le gène AmpD  ( Pascal., 2010). 

Le gène codant pour AmpC chez P. aeruginosa n’a pas encore été retrouvé sur des 

plasmides. Par conséquent, il  n’est généralement pas transféré à d’autres espèces, 

contrairement aux AmpC plasmidiques observés chez les entérobactéries (Gougeon., 

2017).     

 

III. 1.3.   Résistance par production de pénicillinases 

Parmi les pénicillinases produites par Pseudomonas aeruginosa on distingue 

principalement les enzymes de type PSE  (Pseudomonas Specific enzyme), telles que PSE-

1, PSE-3, PSE-4 ( Bert  et al., 2002). 

L’enzyme PSE-1 est la plus répandue, représente environ 90% des cas). Ces enzymes 

sont étroitement apparentées, et ne différent que par 1 ou 2  acides aminés ( Buch et al., 

2010). 

Les pénicillinases de type PSE sont  capables d’hydrolyser les carboxypénicillines 

(comme le tica rcilline) ainsi que les uréidopénicillines (comme le pipéracilline), et 

montrent également une activité contre certaines céphalosporines, notamment la ième 

génération (C4G) les céphalosporines de quat  et sont inactives sur le ceftazimide et les 

carbapénèmes  (Buch et al., 2010). 
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III. 1.4.  Résistance  à spectre étendue (BLSE) 

Les bactéries productrices de bêta-lactamases à spectre étendu (BLSE), sont des 

enzymes récemment apparues à la suite de mutations des pénicillinases. Elles sont 

plasmidiques donc transférables et sensibles à l'action des inhibiteurs enzymatiques. Elles 

sont très actives contre les pénicillines et moyennement actives contre les céphalosporines 

de première génération. Les mutations génétiques à l'origine des BLSE élargissent le 

spectre de ces enzymes et touchent également les céphalosporines de troisième génération 

(céftazidime et céfotaxime) et les monobactames (aztréonam). Les bactéries produisant une 

BLSE n'hydrolysent pas les céphamycines (céfoxitine) ni les carbapénèmes (Giske et al., 

2006). 

Cinq types de BLSE de classe A (TEM, SHV, PER, VEB et GES) ont été détectés chez 

P. aeruginosa. Il existe actuellement neuf types connus de BLSE GES, jusqu’à présent 

quatre de ces types de GES (GES-1, -2, -8 et -9) ont été trouvé chez P. aeruginosa. Il nous 

faut bien distinguer les résistances acquises aux céphalosporines de 3ème génération 

(C3G), soit par hyperproduction de céphalosporinase, soit par BLSE car les phénotypes de 

résistance sont différents. Ces enzymes sont habituellement détectées par une synergie 

entre une C3G (notamment la céftazidime) ou l’aztréonam et l’acide clavulanique .(Proil et 

al., 2001). 

La classification des β-lactamases selon Ambler repose sur la structure moléculaire des 

enzymes, réparties en quatre classes principales (A à D). La classe A regroupe notamment 

les pénicillinases telles que les enzymes des familles PSE, TEM, SHV, ainsi que d'autres 

enzymes à spectre élargi comme PER, VEB, GES et IBC. Les carbapénémases sont 

majoritairement classées en classe B, incluant les métallobêta-lactamases de type IMP et 

VIM. La classe C correspond principalement aux céphalosporinases de type AmpC, tandis 

que la classe D rassemble les oxacillinases (OXA), subdivisées en plusieurs groupes en 

fonction de leur profil enzymatique (Groupes I à V). Un résumé détaillé des enzymes 

représentatives de chaque classe est présenté dans le Tableau 1. 
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TABLEAU 1. PRINCIPALES RESISTANCES AUX BETA-LACTAMINES PAR P. AERUGINOSA. 

 

Classification d'Ambler Groupe  Enzymes  

ClasseA/pénicillinase 

PSE PSE-1,3à5;CARB-3,4 

TEM TEM-1 ,2,4,21,24,42,45 

SHV 
 

SHV-2a,5,12 

Autres 

 

PER-1; VEB-la, 1b, 2; GES-1,2; 

IBC-2 

Classes B ̸/ carbapénémases  IMP-17 , VIM-1à VIM-4 

Classes C / céphalosporinases   AmpC 

Classes D / oxacilinases  

I OXA-5,7,10(PSE-2),11,13,14 

 à17,19,28,35,45 

II OXA-2,3,15,20,32,34,36,53 

III OXA-1,4,3031 

IV OXA-9 

V LCR-1,NPS-1 
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III. 1.5.  Résistance par production de carbapénémases (MBLs) 

Les carbapénémases de type métallo-ß-lactamases (MBLs) sont devenues les 

carbapénémases les plus  répandues et le plus  significatives chez P. aeruginosa. Ces 

enzymes possèdent dans leur site actif un cation indispensable à leur activité qui est 

invariablement le zinc (Zn²+). En outre, l’activité de ces enzymes est inhibée par l’addition 

de chélateur d’ions bivalents (EDTA). Ce sont des métalloprotéines, chromosomiques ou 

plasmiques, qui ont une activité catalytique beaucoup plus forte que les autres ß-lactamases 

et hydrolysent toutes les ß-lactamines sauf l’aztéréonam (Obristsch et al 2004). Ces 

carbapénémases acquises constituent sept groupe décrits chez P. aeruginosa : IMP (active 

sur l’IMipenem), VIM (Verona Integron-encoded Metallo-ß-lactamase), SPM (Sao-paulo 

Metallo-ß-lactamase), AIM (Australia IMpenemase),GIM (German IMpenemase), NDM-

1(New Delhin Metallo-ß-lactamase) et FIM-1. Les types IMP et VIM demeurent les MBLs 

les plus rapportées dans le bassin méditerranéen chez P. aeruginosa (Mentalegre., 2016). 

III. 1.6.  Résistance aux oxacillinases classe D 

Chez P. aeruginosa des BLSE dérivées des enzymes OXA-10 et OXA-2 ont été 

isolée.Cela inclut les variantes (OXA-10, 11, 14, 15,16, 19), qui sont capables d’hydrolyser 

un large éventail d’antibiotiques béta-laclamase notamment certaines céphalosporines de 3 

ème génération l’imipénème et le méropénème. L’aztréonam et la pipéracilline sont moins 

touchés, mais leurs activité n’est pas inhibée par l’acide clavulanique ou le tazobactam. 

Ces enzymes appartient à la classe D des ß-lactamines, et sont le plus souvent portées par 

des plasmides, ce qui facilite leur transfert horizontal entre bactéries et favorise la 

propagation rapide de la résistance en milieu hospitalier.En outre, l’enzyme OXA-18 a 

également été identifiée chez P. aeruginosa. Contrairement aux autres OXA-18 est la seule 

oxacillinase de classe D connue pour être inhibée par l’acide clavulanique. Elle est codée 

par un gène chromosomique (blaOXA-18), ce qui limite sa mobilité génétique, mais sa 

présence demeure préoccupante en termes de résistance clinique. 

III. 1.7. Résistance aux  aminosides 

La résistance aux aminosides chez Pseudomonas aeruginosa repose en grande partie sur 

la production d’enzymes de modification qui inactivent ces antibiotiques en altérant leur 

structure chimique, les empêchant ainsi de se lier efficacement à leur cible ribosomique. 

Trois types principaux d’enzymes sont impliquée : les N-acétyltransférases (AAC), qui 

acétylent les groupes amino, les O-nucléotidyltransférases (ANT), qui adénylylent les 

groupes hydroxyles, et les O-phosphotranférases (APH), qui phosphorylent également des 

groupes hydroxyles. Ces enzymes, souvent codées par des gènes localisés sur des éléments 
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génétiques mobiles tels que les plasmides, transposons ou intégrons, facilitent la 

dissémination de la résistance entre souches bactériennes. Chez P. aeruginosa, les enzymes 

les plus fréquemment rencontrées sont AAC(6')-I, ANT(2'') et parfois des variantes d’APH, 

conférant une résistance marquée à plusieurs aminosides, et contribuant ainsi au 

développement de profils de multirésistante. (Macfarlane et al., 2000). 

 

III. 2.  Mécanismes  non enzymatiques 

III. 2.1.  Surexpression de système d’efflux 

Plusieurs protéines agissent en tant que composant actifs des systèmes d’efflux Opr M, 

Opr J, Opr N, sans oublier le système Mex AB-Opr M . 

Chaque système a une spécifique se substrat : 

   _    Mex AB-Opr M: efflue la quasi-totalite des bêta-lactamines sauf l’imipénème, les 

fluoroquinolones, les macrolides, la lincomycine, la tétracycline, le trimethoprime, le 

chloramphenicol et la novobiocine. (Masuda et al., 2000). 

_   Opr M: élimine les aminoglycosides, les quinolones, les bêta-lactamines 

zwitterioniques (présentant un même nombre de charges électriques de signes opposées tel 

que le céfépime), les macrolides et la tétracycline . (Muller., 2012) .  

_  Opr N : efflue quinolones, les aminoglicosides, le triméthoprime, le chloramphénicol 

et certaines bêta-lactamines comme les carbapénèmes mais aussi la ceftazidime, le 

céfépime, la ticarcilline ou l’aztréona . (Lanes .,2011).  

_   Opr J : élimine les  quinolones, les bêta-lactamines zwittirioniques, les macrolides, la 

tétracycline, le chloramphénicol et le triméthoprime. (Jeannot.,  2008).  

III. 2.2.  Résistance due à la diminution de la perméabilité 

Dans les bactéries à Gram négatif, les porines bactériennes sont une des voies 

principales d’entrée pour les antibiotiques usuels comme les bétalactamines et les 

fluoroquinolones .Cette protéine canalaire de la membrane externe possède un site 

spécifique de liaison aux carbapénèmes, et permet la pénétration sélective de l’imipénème. 

Des modifications de la quantité absolue ou de l'état fonctionnel de ces porines ont pour 

conséquence une diminution de la diffusion des antibiotiques empruntant cette voie de 

pénétration. Ce mécanisme par diminution de perméabilité peut entraîner une résistance 

croisée à plusieurs familles d'antibiotiques. Chez P. mécanisme le plus fréquent de 

résistance à l’imipénème. (Nordmann.,  2003). 

Par ailleurs,certaines souches cliniques, l’altération des différents gènes impliqués dans 

la biosynthèse des lipopolysaccharides (des composants de la membrane extérieur de la 
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bactérie) comme le locus rfb conduit au phénotype «rough» (aspect sec et rugueux) 

accompagné des fois d’une baisse modérée de la sensibilité à l’ensemble des aminosides. 

(Doi et al.,  2007). 

 

III. 2.3.  Résistance par efflux actif 

Chez P. aeruginosa, seul le système d’efflux actif MexXY (Opr M) est capable 

d’expulser les aminosides vers l’extérieure, contribant ainsi à la résistance à cette classe 

d’antibiotique. Ce système est naturellement  réprimé dans les souches sauvages, la sur 

expression constitutive de l’opéron mexXY qui en découle conduit à une résistance 

modérée aux aminosides, ainsi qu’aux fluoroquinolones et au céfépime (Doi et al., 2007). 

III. 2.4.  Résistance par modification de la cible ribosomale 

La méthylation de l’ARNr 16s a récemment émergé comme niveau mécanisme de 

résistance aux aminosides parmi les agents pathogènes à Gram négatif telle que P. 

aeruginosa, capable de modifier non pas l’aminoside mais la structure ribosomale sur 

laquelle il se fixe, l’ARN 16S  (Doi et al., 2007). 

Le gène rmt A (Ribosomal méthyl transférasse) qui code pour une méthylase de l’ARNr 

16s procure à la bactérie une résistance de haut niveau à l’amikacine, la tobramycine, 

l’isépamicine, l’arbekacine et la gentamycine. Toutefois, il faut souligner que la résistance 

par mutation du gène codant l’ARNr 16S n’est efficace que chez les bactéries possédants 

une ou éventuellement deux copies des gènes de l’ARNr 16S. Mais P. aeruginosa possède 

quatre copies de ce gène, ainsi la probabilité qu’elles soient affectées toutes les quatre par 

des mutations identiques est très faible et la résistance par ce mécanisme est peu probable 

(Yokoyama et al., 2003). Par ailleurs, La modification de la cible principale des 

fluoroquinolones, à savoir la gyrase de l’ADN (également appelée topoisomérase II ), se 

produit par des mutations ponctuelles dans les régions où se lie l’antibiotique, appelées 

QRDR (Quinolone Résistance Determining Régions), situées dans les gènes gyrA et gyrB, 

qui codent respectivement les deux sous-unités de l’enzyme, GyrA et GyrB. 

Les modifications de la cible secondaire, la topoisomérase IV, surviennent suite à des 

mutations ponctuelles dans les gènes parC et parE, qui codent respectivement pour les 

deux sous-unités de cette enzyme, parC et parE (Jcaoby.,  2005). 

L’association de mutation à la fois dans GyrA et parC conduit à de très haut niveau de 

résistance, Contrairement à d’autres mécanismes enzymatiques de résistance (comme la 

production de β-lactamases), la résistance aux fluoroquinolones n’est pas enzymatique, 



 Revue  bibliographique  
 

  
14 

mais génétique, liée à des mutations structurales dans les cibles de l’antibiotique (Akasaka 

et al., 2001).  

 

III. 2.5.  Rôle de l’opéron  dans la résistance 

Le gène oprH se trouve associé dans un même opéron aux gènes phoP et phoQ qui 

codent pour un système de transduction de signal.   

L’hyperexpression de la protéine de membrane externe OprH a été constatée dans les 

souches mutantes de P. aeruginosa montrant une résistance élevée aux aminosides, à 

l’exception de la gentamycine. Il semble que le système phoP-phoQ joue un rôle indirect 

dans la résistance aux aminosides. 

Ainsi, il a été observé au niveau de différents mutants de P. aeruginosa affectés dans 

les gènes phoP ou phoQ une légère augmentation de la résistance à l’amiacine et à la 

streptomycine (Macfarlane et al., 2000). 
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IV.    Matériels et méthodes 

IV. 1.  Collecte des données 

Les molécules  présentant une activité potentielle contre Pseudomonas aeruginosa ont été 

recherchés dans la banque de données ChEMBL34. Après extraction, ces molécules, 

identifiées par leur identifiant ChEMBL ID348, ont été importées dans l’environnement de 

développement Google Colab en vue pour le traitement et analyse.  

IV. 2.   Préparation des données 

La classification des molécules a été réalisée sur la base de leurs valeurs de concentration 

inhibitrice à 50 % (IC50), selon des seuils prédéfinis : 

-Composés actifs : IC50 < 1 μM (1000 nM) 

-Composés inactifs : IC50 > 10 μM (10000 nM) 

-Composés intermédiaires : 1 μM ≤ IC50 ≤ 10 μM 

Pour améliorer l'analyse, une opération de filtrage des données a été effectuée sur le 

données, où les entrées 'intermédiaires' a été exclues. Ce processus a été entrepris dans le but 

de se concentrer uniquement sur les composés "active" et "inactive", contribuant ainsi à la 

construction de modèles prédictifs. 

Ensuite, IC50, ont été convertis en pIC50, pour faciliter l'interprétation de l'efficacité des 

composés pIC50= -log(IC50). 

IV. 3.  Classification selon la loi  de Lipinski 

Les descripteurs structuraux tels que le poids moléculaire et le nombre de liaisons hydrogène 

(donneurs et accepteurs) ainsi que le LogP, ont été calculés à l’aide RDKit.  Ces données ont 

ensuite permis d’évaluer les composés selon les critères de la règle de lipinski, à savoir : un 

poids moléculaire inférieur ou égal à 500 Da, un LogP ne dépassant pas 5, un nombre de 

donneurs de liaisons hydrogène (-OH,-NH)  ne doit pas être supérieur à 5, et un nombre 

d’accepteurs de liaisons hydrogène  ne doit pas être supérieur à 10 afin d’identifier ceux 

présentant les valeurs les plus élevées. 

Pour identifier les attributs  les plus influents sur la prédiction de l'activité biologique des 

composés, Les valeurs SHAP ont été calculés pour l’intégralité du jeu de test. 

IV. 4.  Calcul des descripteurs 

Pour la construction d'un modèle QSAR, PubChem ont été calculées à l'aide de PaDEL et 

RDKit. 

Parmi les descripteurs générés, les empreintes digitales PubChem (PubChem fingerprints) 

furent spécifiquement ciblées et calculées. Ces empreintes sont des vecteurs binaires 

représentant la présence ou l'absence de caractéristiques chimiques prédéfinies ou de sous-
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structures spécifiques au sein de chaque molécule. Elles offrent une description numérique 

rapide et efficace de la topologie moléculaire et des motifs fonctionnels importants pour 

l'activité biologique. 

IV. 5. Construction d'un modèle QSAR 

Pour la construction d'un modèle QSAR, les données ont été divisées en deux: 80 % des 

données ont été dédiées à l'entraînement du modèle, tandis que les 20 % restants ont été 

réservés à la validation.  

Pour établir la relation entre les descripteurs et l'activité biologique, divers modèles de 

régression été utilisés, notamment le modèle linéaire, le Random Forest Regressor, le Support 

Vector Regressor, le Decision Tree Regressor et le KNN Regressor. 

IV. 6. Validation de modèle 

Pour valider le meilleur modèle de QSAR, une première évaluation  a été réalisée en se basant 

uniquement sur le score R² et le Q² (coefficient de validation croisée).  

Une fois le modèle le plus performant identifié sur la base de ces deux critères, des analyses 

statistiques complémentaires ont été appliquées uniquement sur ce modèle   

Telle que Q₂F₃, CCC (coefficient de corrélation de concordance), Q²-Loo (leave-one-out) et 

Q²-LMO (leave-many-out). 
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V. Résultats et discussion 

V. 1. Collecte et nettoyage des données 

Un jeu de données de molécules bioactives ciblant Pseudomonas aeruginosa a été collecté à 

partir de la base de données Chembl 34.  

Initialement, 1504 molécules ont été récupérées. Suite aux étapes rigoureuses de nettoyage 

des données (incluant la suppression des valeurs manquantes dans les colonnes clés et 

l'élimination des doublons basée sur les SMILES canoniques), le nombre de molécules a été 

réduit à 1028. Ce jeu de données final, composé de 1028 molécules, a ensuite été préparé pour 

la modélisation QSAR par la transformation des données et le calcul de descripteurs physico-

chimiques, fournissant ainsi des descripteurs pertinents et les valeurs pIC50 correspondantes 

pour l'activité.  

V. 2.  Classification des données 

La classification des molécules basée sur leurs valeurs d'IC50 est une pratique standard en 

découverte de médicaments et dans les études QSAR, visant à catégoriser les composés selon 

leur puissance inhibitrice. Dans cette analyse, les molécules ciblant Pseudomonas aeruginosa 

ont été réparties en trois catégories : 

V. 2.1. Molécules Actives : Ces molécules présentent une puissance inhibitrice élevée, 

généralement définie par une valeur d'IC50 inférieure ou égale à 1000 nM (ce qui 

correspond à un pIC50 supérieur ou égal à 6). Ces composés sont considérés comme 

des candidats prometteurs pour des investigations ultérieures en tant que molécules de 

tête potentielles. 

V. 2.2. Molécules Inactives : Ces molécules présentent une activité inhibitrice faible ou 

inexistante, avec des valeurs d'IC50 supérieures ou égales à 10000 nM (ou un pIC50 

inférieur ou égal à 5). Ces composés ne sont généralement pas considérés pour un 

développement ultérieur, mais leurs structures peuvent être utiles comme contrôles 

négatifs ou pour comprendre quelles caractéristiques structurelles ne sont pas propices 

à l'activité. 

V. 2.3. Molécules Intermédiaires : Ces molécules montrent une activité 

inhibitrice modérée, avec des valeurs d'IC50 se situant entre les seuils des 

composés actifs et inactifs (entre 1000 nM et 10000 nM, ou un pIC50 entre 5 

et 6). Bien que moins puissantes que les composés actifs, elles peuvent 

néanmoins fournir des informations précieuses pour comprendre les relations 

structure-activité ou pourraient être optimisées pour améliorer leur puissance. 
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Cette classification est cruciale pour la construction d'un modèle QSAR car elle permet 

d'entraîner le modèle à distinguer les composés ayant différents niveaux d'activité biologique. 

En se concentrant sur les caractéristiques structurelles qui différencient les composés actifs 

des composés inactifs, il est possible de développer des modèles prédictifs capables 

d'identifier de nouveaux candidats médicaments potentiels à partir de vastes bibliothèques de 

molécules. Après la suppression des molécules intermédiaires, il reste 910 molécules, 

permettant de créer une distinction plus claire entre les composés actifs et inactifs, ce qui peut 

améliorer la performance du modèle QSAR. 

V. 3. Classification selon la loi de  Lipinski 

Suite à l'application des critères de Lipinski, les molécules considérées comme ayant une 

activité « intermédiaire 256 » ont été éliminées.  

Nombre de molécules actives qui respectent les règles de Lipinski : on a identifié 237 

molécules actives qui respectent les critères de Lipinski. 

Les molécules inactives conformes aux critères de Lipinski : 417 molécules non actives. Ont 

été alors pu déterminer le nombre de molécules actives et inactives conformes à ces règles.  

La détection de 237 molécules actives conformes aux critères de Lipinski a été satisfaisante. 

Cela a révélé qu'une part importante des composés ayant démontré une efficacité contre 

Pseudomonas aeruginosa possédait également des caractéristiques physico-chimiques 

propices à la biodisponibilité orale. Ces composés sont considérés comme des candidats 

prometteurs pour un développement futur en tant que médicaments oraux. En ce qui concerne 

les 417 molécules inactives respectant les critères de Lipinski, cela signifie que beaucoup 

d'entre elles, bien qu'elles soient conformes à ces critères, pourraient ne pas avoir une activité 

contre la cible spécifique. C'est un résultat anticipé, car les critères de Lipinski ne prédisent 

que les propriétés globales des médicaments et non leur efficacité contre une cible biologique 

précise.  

La clarification le mode SHAP (SHapley Additive exPlanations) est une approche essentielle 

pour comprendre les prédictions des modèles d'apprentissage automatique. Cette technique est 

mise en œuvre pour déterminer une valeur à chaque caractéristique atomique, éclairant ainsi 

l'importance de sa contribution à une prédiction particulière. 

La figure 02 représente de manière visuelle l'importance moyenne absolue de chaque 

caractéristique dans le modèle. 

En analysant ce diagramme, il a été détecté les descripteurs moléculaires (le poids moléculaire 

(MW), le LogP, le nombre d'accepteurs de liaison hydrogène (NumHAcceptors) et le nombre 



 Résultats  et  discussion  
 

 
21 

de donneurs de liaison hydrogène (NumHDonors)) ayant eu l'influence la plus importante sur 

la façon dont le modèle a estimé les molécules. 

 

Figure 2. L’importance relative des descripteurs moléculaires : NumHAcceptors, 

NumHDonors, LogP, MW. 

 

V. 3.1. NumHAcceptors (Nombre d'accepteurs de liaisons hydrogène) 

Cette caractéristique afficha la valeur SHAP moyenne absolue la plus élevée, s'établissant à 

environ 0.62. Ceci indiqua que le nombre d'accepteurs de liaisons hydrogène constitua la 

propriété moléculaire la plus influente dans les prédictions du modèle QSAR. Il fut rappelé 

que les accepteurs de liaisons hydrogène sont des atomes (généralement N, O, F) possédant 

des paires d'électrons libres capables de former de telles liaisons (Lundberg., 2017). (Figure 

2) 

Une importance prononcée de NumHAcceptors suggéra que les interactions par liaisons 

hydrogène jouèrent un rôle crucial dans l'activité biologique prédite par le modèle. Dans de 

nombreux contextes pharmacologiques, les liaisons hydrogène sont reconnues comme 

fondamentales pour la reconnaissance moléculaire et l'établissement des liaisons ligand-

récepteur (Klebe et al, 2006). Un nombre optimal d'accepteurs d'hydrogène s'avérait souvent 

requis pour une affinité de liaison adéquate et une activité biologique. Ce résultat s'alignait 

parfaitement avec les règles de Lipinski, lesquelles soulignèrent l'importance des liaisons 

hydrogène pour la perméabilité et l'absorption orale des médicaments (lipinski. 2001). 

V. 3.2. NumHDonors (Nombre de donneurs de liaisons hydrogène) 

 NumHDonors se positionna comme la deuxième caractéristique la plus importante, avec une 

valeur SHAP moyenne absolue d'environ 0.40. Les donneurs de liaisons hydrogène furent 

généralement identifiés comme des groupes N-H ou O-H. 

 À l'instar des accepteurs, l'importance des donneurs de liaisons hydrogène accentua le rôle 

prépondérant des interactions par liaisons hydrogène dans la prédiction de l'activité. Les 

liaisons hydrogène furent considérées comme des forces intermoléculaires clés régissant les 
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interactions entre les molécules médicamenteuses et leurs cibles biologiques (Klebe et al., 

2006). L'équilibre entre les donneurs et accepteurs de liaisons hydrogène fut souvent jugé 

critique pour l'activité. (Figure 2) 

V. 3.3. LogP (Coefficient de partage octanol-eau) 

 Le LogP démontra une importance significative, avec une valeur SHAP moyenne absolue 

d'environ 0.32. Le LogP fut défini comme une mesure de la lipophile d'une molécule. 

 La lipophile, propriété physico-chimique fondamentale en chimie médicinale, influença 

fortement l'absorption, la distribution, le métabolisme et l'excrétion (ADME) des composés 

(Han et al. 2019). Un LogP optimal s'avérait souvent nécessaire pour que la molécule atteigne 

sa cible biologique. Des valeurs de LogP trop faibles pouvaient entraîner une mauvaise 

perméabilité membranaire, tandis que des valeurs trop élevées pouvaient conduire à une 

mauvaise solubilité aqueuse et à un fort piégeage dans les membranes lipidiques ou le tissu 

adipeux (Han et al., 2019). L'importance de LogP dans ce modèle QSAR fut donc attendue et 

considérée comme cruciale pour la prédiction de l'activité biologique effective. (Figure 2) 

V. 3.4. MW (Poids moléculaire) 

 Le poids moléculaire (MW) se révéla être la caractéristique la moins importante parmi celles 

affichées, avec une valeur SHAP moyenne absolue d'environ 0.22. 

 Le poids moléculaire, bien qu'étant un descripteur de taille simple, fut reconnu comme 

important. Des poids moléculaires excessivement élevés purent entraver la perméabilité 

membranaire et la biodisponibilité orale, souvent en raison d'une taille excessive pour 

traverser les pores des membranes ou d'une affinité démesurée pour les protéines 

plasmatiques (Klebe et al, 2006). Bien que son influence fut moindre par rapport aux 

propriétés liées aux liaisons hydrogène et à la lipophile dans le graphique présenté, son impact 

demeura notable. (Figure 2) 

Ces résultats s'accordèrent parfaitement avec les principes établis de la chimie médicinale et 

les règles de Lipinski concernant la "drug-likeness" (Klebe et al, 2006). 

V. 4. Calcul des descripteurs 

Pour la modélisation des relations structure-activité quantitative (QSAR), la génération et la 

manipulation des structures chimiques sont fondamentales, et elles sont efficacement réalisées 

grâce à l'utilisation combinée de RDKit et PaDEL-Descriptor. RDKit fournit des 

fonctionnalités chimiomatiques critiques. Gérant implicitement la conversion des chaînes 

SMILES en représentations moléculaires, une première étape indispensable pour tout calcul 

de descripteur. Ensuite, PaDEL-Descriptor est employé pour calculer un ensemble vaste et 

diversifié de descripteurs moléculaires, notamment les empreintes digitales PubChem, qui 
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sont des clés structurelles représentant des caractéristiques chimiques prédéfinies au sein de 

chaque molécule (Landrum  et al, 2006). 

Cette traduction numérique des structures chimiques est absolument essentielle, car elle 

fournit les données brutes nécessaires aux algorithmes d'apprentissage automatique pour 

construire un modèle QSAR capable de prédire l'activité biologique d'une molécule en 

fonction de sa structure (Consonniet al, 2009). 

V. 5.  Comparaison des Modèles de QSAR 

La Figure (3) représente  une comparative de la performance des modèles de régression par 

différents algorithmes. 

Cette figure a permis de visualiser la performance de différents algorithmes sur l'ensemble de 

données de test. 

Le R² mesure la proportion de la variance de variable dépendante (ici, probablement les 

valeurs pIC50) qui peut être prédite à partir des variables indépendantes par le modèle. Plus le 

R² se rapproche de 1, plus la capacité prédictive du modèle est optimale (Breimen., 2001). 

 

 

 

Figure 3. Analyse comparative de la performance des modèles de régression par différents 

algorithmes. 

 

V. 5.1. Linear model (modèle linéaire) : la barre pour le modèle linéaire est extrêmement 

courte, indiquant un R2 proche de 0,01. Cela suggère que le modèle linéaire a une très 

faible capacité à expliquer la variance des données de test. Il est possible que la 

relation entre les variables ne soit pas linéaire ou que ce modèle soit trop simple pour 

capturer la complexité des données. (figure 3) 
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V. 5.2. Random Forest Regressor : ce modèle présente la barre la plus haute, avec un R2 

d’environ 0,82. C’est la performance la plus élevée parmi tous les modèles évalués. 

Une valeur de R2 de 0,82 signifie que le Random Forest Regressor explique environ 

82% de la variance des valeurs réelles sur l’ensemble de test. Cela indique une très 

bonne capacité de prédiction et de généralisation pour ce modèle. (figure 3) 

V. 5.3. Support Vector Regressor (SVR) : le SVR obtient un R2 d’environ 0,62. C'est une 

performance supérieure à celle du Random Forest Regressor. Cela implique que le 

SVR explique environ 62% de la variance des données de test. (figure 3) 

V. 5.4. Decision Tree Regressor : ce modèle attient un R2 d’environ 0,68. Sa performance 

est meilleure que celle du SVR mais demeure inférieur au Random Forest Regressor, 

expliquant environ 68 % de la variation des données de test (figure 3) 

V. 5.5. KNN Regressor : le KNN Regressor affiche un R2 d’environ 0,64. Sa performance 

est comparable à celle SVR et de décision Tree Regression, expliquant environ 64% 

de la variance des données de test. (figure 3) 

  Le Random Forest Regressor est clairement le modèle le plus performant, affichant le R2 le 

plus élevé sur l’ensemble de test. Les modèles comme le Décision Tree Regressor, SVR et 

KNN Regressor offrent des performances acceptables mais inférieures. Le modèle linéaire, 

quant à lui, est manifestement inadapté à ces données. Ces résultats suggèrent que les modèles 

basés sur les arbres (Random Forest, Decision Tree) ont une meilleure capacité à capturer les 

relations non linéaires et les interactions complexes au sein des données par rapport aux 

modèles. (Figure 3)  

V. 6.  validation d’un  modèle QSAR 

Le tableau  02 présente une évaluation complète des performances du modèle Random Forest 

Regressor en utilisant plusieurs métriques statistiques. Ces métriques sont cruciales pour 

comprendre non seulement la précision du modèle sur les données d'entraînement, mais aussi 

et surtout sa capacité à généraliser et à fournir des prédictions fiables sur de nouvelles 

données, jamais vues auparavant (Gramatica et al. 2007). 

✓ Q2F3 (0.89) : Une valeur de 0.89 est très élevée et confirme la bonne capacité du 

modèle Random Forest Regressor à prédire de manière fiable sur des ensembles de 

données réellement nouveaux ou externes. Cela renforce la confiance dans la 

généralisation du modèle au-delà de l'échantillon initial (Roy et al., 2018).  

✓ CCC (0.89): Le CCC mesure l'accord entre les valeurs prédites et les valeurs réelles. 

Une valeur de 0.89 indique une très bonne concordance entre les prédictions du 

modèle et les valeurs réelles. Contrairement au R2 qui évalue la proportion de 
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variance expliquée, le CCC évalue la précision et l'accord des prédictions. Une valeur 

proche de 1 signifie un accord quasi parfait (Lin., 1989). Tableau 2 

✓ Q2-LOO (0.82) : Le Q2-LOO est une métrique de validation croisée. Elle est calculée 

en entraînant le modèle à plusieurs reprises. Une valeur de 0.82 est excellente et 

indique que le modèle Random Forest Regressorest robuste aux variations de 

l'échantillon d'entraînement et a une bonne capacité prédictive, même lorsqu'une seule 

observation est retirée. C'est un indicateur de la stabilité du modèle (Gramatica et al. 

2007). Tableau 2 

✓ Q2-LMO (0.80) : Similaire au Q2-LOO, Cela est souvent considéré comme un test 

plus rigoureux de la robustesse et de la capacité de généralisation qu'un simple LOO. 

Une valeur de 0.80 est très bonne et confirme la robustesse du modèle Random Forest 

Regressor face à des sous-ensembles de données plus importants qui ne sont pas inclus 

dans l'entraînement. C'est un excellent signe que le modèle n'est pas trop sensible à la 

composition exacte de l'ensemble d'entraînement (Roy et al. 2018). Tableau 2 

L'ensemble de ces métriques confirma la robustesse et la performance supérieure du modèle 

Random Forest Regressor pour la prédiction des valeurs de pIC50. Les valeurs élevées des 

métriques de validation externe et croisée (Q2F3, CCC, Q2-LOO, Q2-LMO) consolidèrent la 

fiabilité du modèle pour prédire l'activité biologique de nouvelles molécules, un critère 

fondamental pour l'application pratique des modèles QSAR en découverte de médicaments 

(Tropsha., 2010). Ces résultats positionnèrent le Random Forest Regressor comme un outil 

prédictif fiable et robuste pour les études de relations structure-activité quantitative. 

 

TABLEAU 2. EVALUATION DES PERFORMANCES DU MODELE RANDOM FOREST REGRESSOR. 

 

tests  Valeur 

Q²F³ 0.89 

CCC 0.89 

Q²-LOO 0.82 

Q²-LMO 0.80 
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Conclusion 

Le problème de la résistance de Pseudomonas aeruginosa aux antibiotiques représente un 

enjeu crucial en matière de santé publique. Cette problématique, aggravée par l'apparition de 

souches résistantes à plusieurs traitements, met en évidence la nécessité de concevoir des 

stratégies thérapeutiques innovantes. Cette recherche constitue une avancée importante en 

explorant de nouvelles méthodes de découverte de médicaments, cruciales pour lutter contre 

l'insuffisance grandissante des thérapies actuelles et optimiser les prévisions cliniques 

(Taroare., 2019). 

  En exploitant les données de la base de donnée  Chembl 34 et en appliquant des techniques 

de modélisation QSAR avancées, notamment le  Random  Forest  Regressor, cette recherche a 

réussi à construire un modèle prédictif  robuste. Les performances exceptionnelles du modèle, 

validées par des métriques solides (R2, Q2, Q2F3, CCC, Q2-LOO, Q2-LMO), attestent de sa 

fiabilité et de sa capacité à généraliser sur de nouvelles données. Cela signifie que le modèle 

développé peut servir d’outil précieux pour la sélection rapide et efficace de nouvelles 

molécules prometteuses, réduisant ainsi considérablement  le temps et les couts associés à la 

recherche de composés antibactériens. 

Cette étude ouvre de nouvelles perspectives pour la conception de futurs médicaments contre 

Pseudomonas aeruginosa en offrant une méthodologie prédictive capable d’accélérer 

l’identification de candidats thérapeutiques potentiels, contribuant  ainsi à la lutte urgente 

contre la résistance aux antibiotiques.   
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