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Avant –propos  

Ce polycopié de cours de Physique I répond au programme officiel du ministère de l’Enseignement 

Supérieur et de la Recherche Scientifique. Il est destiné aux étudiants de la première année ingénieur 

sciences agronomique (1er
 semestre) du domaine Sciences de la nature et de la vie. Il constitue une 

initiation à la physique pour les étudiants de sciences agronomique.  

Ce document couvre l’essentiel des aspects de la mécanique des fluides. Il est constitué de cinq 

chapitres qui s’enchainent comme suit :  

Dans le premier chapitre, on étudie l’analyse dimensionnelle, calcul d’erreur et incertitude en 

deuxième chapitre et la dynamique des fluides parfaits incompressibles en troisième chapitre, le 

dernier et quatrième chapitre est réservé à la dynamique des fluides parfaits incompressibles pour 

qu’on se termine par la dynamique des fluides réels en dernier chapitre.  

Ces cinq chapitres sont illustrés par des exercices résolus qui peuvent aider le lecteur à mieux 

comprendre le cours.  

La rédaction de ce polycopié à été tirée de la documentation existante au niveau de toutes les 

bibliothèques et les sites Internet. 

Dr. SIDI ADDA. Mustapha 
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I.1.Introduction 

L’étude des phénomènes physiques est incomplète si elle ne conduit pas à des interprétations 

quantitatives c'est-à-dire la mesure concrète des grandeurs. 

Pour étudier un phénomène physique, il faut étudier les variables importantes liées à ce 

problème, la relation mathématique entre ces variables constitue une loi physique. Peut se fait 

par l’analyse dimensionnelle. 

L’analyse dimensionnelle est un outil théorique permettant d’interpréter les problèmes en 

fonction des dimensions des grandeurs physiques impliquées, telles que la longueur, le temps 

et la masse. Elle a plusieurs utilités : 

• Vérifier la validité dimensionnelle des équations. 

• Identifier la nature des grandeurs physiques. 

• Assurer l’homogénéité des lois physiques. 

• Déterminer l’unité d’une grandeur physique à partir des unités fondamentales (mètre, seconde, 

kilogramme, etc.). 

I.2. Grandeurs physiques 

Une grandeur physique est mesurable, ce qui signifie qu’elle peut varier (augmenter ou 

diminuer). Par exemple, la longueur, le temps et la masse sont considérées comme des 

grandeurs fondamentales en mécanique. Les autres grandeurs, telles que la vitesse, 

l’accélération ou la force, s’expriment en fonction de ces trois grandeurs fondamentales. 

I.3. Unités 

La valeur d’une grandeur physique est exprimée en fonction d’un étalon appelé « unité ». Les 

unités des grandeurs dérivées sont définies à partir des unités des grandeurs fondamentales. 

Grandeurs 

fondamentales  

Symbole Dimension  Unité 

(Système 

international) 

Longueur  l [l]= L Mètre (m) 

Masse m [m]=M Kilogramme (kg) 

Temps  t [t]=T Seconde (s) 

Intensité  i [i]=I Ampère (A) 
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Il y a des unités particulières comme N (Newton) pour la force, Hz (Hertz) pour la fréquence, 

Watt pour la puissance, Pascal pour la pression… Chaque unité représente une combinaison 

des unités fondamentales.  

 

Il y a deux types d’unités : 

- Système international SI MKSA (mètre, kilogramme, seconde, ampère), c’est le système le 

plus utilisé 

- Système CGSA (centimètre, gramme, seconde, ampère),, il est moins utilisé. 

 

  

Grandeur physique Symbole Formule 

 

Dimension Unité (SI) 

 

Surface S l×l L2 m2 

Volume V l×l×l L3 m3 

Masse volumique 𝜌 m/V ML-3 Kg/m3 

Fréquence f 1/t T-1 s-1ou hertz 

Vitesse linéaire v dx/dt LT-1 m/s 

Vitesse angulaire ω dθ/dt T-1 Rd/s 

Accélération linéaire a dv/dt LT-2 m/s2 

Accélération angulaire α dθ./dt T-2 Rd/s2 

Force F m.a MLT-2 Newton 

Travail et Energie  W ou E F.d ML2 T-2 Joule 

Puissance P W/t ML2T-3 Watt 

Pression P F/S ML-1T-2 Pascal (Pa) 

 

I.4. Equations aux dimensions 

En utilisant M, L et T pour représenter les dimensions des grandeurs fondamentales que sont la 

masse, la longueur et le temps, il est possible d’exprimer les dimensions des grandeurs dérivées 

en fonction de ces trois paramètres. Les relations obtenues de cette manière sont appelées les 

équations dimensionnelles de ces grandeurs. 

[Vitesse]=[v]=[Longueur]/[Temps]=[l]/[t]=L/T= LT-1 (unité m/s) 

[Accélération]=[a]= [Vitesse]/[Temps]= LT-1/T=LT-2  (unité m/s2) 

[Force]= [F]= [Masse] [Accélération]= [m] [a]= M LT-2  (unité kg m/s2= Newton). 
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I.4. Homogénéité des équations aux dimensions 

Les deux membres d’une équation aux dimensions doivent avoir les mêmes dimensions 

puisqu’ils représentent des grandeurs de même nature. 

C=A+B …… [C]=[A]=[B] 

C=A . B…… [C]=[A].[B] 

C=A / B…… [C]=[A] / [B] 

C=An…… ….[C]=[A]n 

Exemple:  

v= at+v0  

On a : [v]=[v0]=L   et [at]=[a][t]=LT-1T=L 

 [v]= [at]=[v0].  

 

Les constantes n’ont pas de dimensions 

[angle] =[𝑐𝑜𝑠 𝛼] = [𝑠𝑖𝑛 𝛼] = [𝑡𝑔 𝛼] = [𝑐𝑜𝑡𝑔 𝛼] = [ln 𝑥] =[𝑒𝑥] = 1 

Souvent les équations aux dimensions sont homogènes. 

Cette propriété est utilisée pour définir les lois physiques par la connaissance des facteurs 

influencent  la grandeur physique en question . 

Exemple : 

La vitesse à la sortie d’un orifice  est donnée en fonction de la hauteur et  l’acclration de la 

pesanteur par la relation suivante 

v = √2 𝑔𝑥 ℎ𝑦  

Pour définir cette loi donner il faut déterminer x et y 

On suppose que l’équation est homogène donc 

[v] = [2][g]𝑥[h]𝑦 

[h] = 𝐿, [√2] =  1, v est une vitesse  [v] = L𝑇-1 𝑒𝑡 g est une accélération donc [𝑔] = 𝐿𝑇−2 

L𝑇-1 =1 . (LT-2)x Ly ⇒ 𝐿1𝑇 -1= 𝐿𝑥+𝑦𝑇−2x 

Donc ; 

{
𝑥 + 𝑦 = 1
−2𝑥 = −1

⇒ {
𝑦 =

1

2

𝑥 =
1

2

 

Soit ;  v=√2 g1/2 h1/2 =√2𝑔ℎ
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II.1. Introduction 

II.1.1 La mesure 

Lorsqu’une mesure est effectuée, il est impossible d’affirmer qu’elle reflète exactement la 

valeur réelle de la grandeur observée. Qu’il s’agisse de mesurer une longueur, une masse, un 

volume ou une durée, il faut admettre que le résultat obtenu n’est qu’une approximation plus 

ou moins fidèle de la réalité. 

II.1.2 L'erreur 

L'erreur, c'est l'écart entre la mesure et la valeur exacte. Puisque la valeur exacte est souvent 

inaccessible, l'erreur est inconnue. 

II.2. L'incertitude absolue 

L’incertitude absolue représente une estimation de l’erreur commise par l’expérimentateur. Elle 

correspond à l’écart maximal susceptible de séparer la valeur mesurée de la valeur réelle. 

Ensemble, la mesure et son incertitude définissent une plage de valeurs probables au sein de 

laquelle se situe la valeur exacte. 

L : la mesure d'une longueur 

L : l'incertitude absolue associée à la mesure de la longueur 

La valeur exacte se trouverait donc à l'intérieur du domaine délimité par L ± L 

 

L’incertitude absolue est influencée par divers facteurs tels que la précision de l’instrument de 

mesure, les conditions dans lesquelles la mesure est effectuée, ainsi que la dextérité de 

l’expérimentateur. En évaluer correctement la valeur requiert à la fois du discernement et de 

l’expérience. 

L'incertitude absolue s'exprime généralement avec un seul chiffre en utilisant les mêmes unités 

que celles associées à la mesure. 

Exemple :      125,5  ±   0,3  g 

Puisque l'incertitude est estimée à 3 dg, la mesure est arrondie (si nécessaire) au plus 

décigramme proche. 

L'incertitude absolue est de la grandeur x est mentionné ∆x 
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Le calcul de l’incertitude se fait comme suit : 

La moyenne ou la valeur exacte 𝑿̅ =
∑ 𝒙𝒊
𝑵
𝟏

𝑵
=

𝑿𝟏+𝑿𝟐+  ……..𝑿𝒌  

𝑵
 

x1, x2, x3, ….. : Sont les mesures effectuées. 

N : Le nombre des mesures   

𝜎𝑒 = 
∑ (𝑥𝑖−𝑥̅)

2𝑁
𝑖=1

𝑁−1
=

(𝑥1−𝑥̅)
2+(𝑥2−𝑥̅)

2+ ……..(𝑥𝑘−𝑥̅)
2

𝑁−1
𝜎𝑒 : Ecart type estimé  

L’incertitude absolue est ∆𝑥 =
1

√𝑁
𝜎𝑒 

II.3. L'incertitude relative 
L’incertitude relative correspond au rapport entre l’incertitude absolue et la valeur mesurée, 

généralement exprimé en pourcentage. Elle permet de comparer la précision de plusieurs 

mesures : plus l’incertitude relative est faible, plus la mesure est considérée comme précise. 

Exemple :      125,5  ±   0,3  g  

L’incertitude relative égale 0,3/125,5 = 0,24% 

L'incertitude absolue est de la grandeur x est mentionné 
∆x

𝑥
 

II.4. Les chiffres significatifs. 

Lorsqu'on exprime une mesure directe ou le résultat d'un calcul, l'incertitude absolue associée 

au résultat est exprimée avec un seul chiffre significatif.  La mesure ou le résultat du calcul sera 

donc arrondi afin de ne comporter qu'un seul chiffre incertain. 

Les chiffres significatifs sont : tous les chiffres certains plus le premier chiffre incertain. 

Exemple :  le résultat d'un calcul donne   125,483 ± 0,342 cm.  

Ce résultat devrait s'écrire, en tenant compte des chiffres significatifs, 125,5 ± 0,3 cm. 

L'incertitude à été arrondie pour ne comporter qu'un seul chiffre significatif et le résultat à été 

arrondi pour ne comporter qu'un seul chiffre incertain  

II.5. Additions et soustractions 

L'incertitude absolue 

Si  Z=X+Y  ou  Z=X-Y   

∆Z= ∆X+∆Y 
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Exemple 1 

si x = 102 ± 4 et y = 55 ± 3 

A. Calculez  z ± ∆z  si z = x + y 

La valeur la plus probable pour z est : 102 + 55 = 157 

la valeur maximale possible est : (102 + 4) + (55 + 3) = 164 

la valeur minimale : (102 - 4) + (55 - 3) = 150 

Le résultat : z = 157 ± 7 

L'incertitude absolue sur le résultat de cette somme est la somme des incertitudes de chacun 

des termes de l'addition. 

B. Calculez w ± ∆w si w = x - y 

La valeur la plus probable : 102 - 55 = 47 

la valeur maximale possible : (102 + 4) - (55 - 3) = 54 

la valeur minimale :  (102 - 4) - (55 + 3) = 40 

Le résultat : w = 47 ± 7 

L'incertitude absolue sur le résultat de cette soustraction est la somme des incertitudes de 

chacun des termes de la soustraction. 

Les exemples précédents nous mènent à la règle suivante : 

Lors d'une addition ou d'une soustraction, les incertitudes absolues 

s'additionnent pour donner l'incertitude absolue du résultat de la 

somme ou de la soustraction. 

 

II.6. Multiplications et divisions 

II.6.1. Multiplications et divisions par une constante 

Le produit par une valeur constante ; 
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Si z = λ.x       z= λ. x 

Exemple 1 

si x = 108 ± 6 

A. Calculez  z ± z  si z = 3x 

La valeur la plus probable pour z est : 108 (3) = 324 

la valeur maximale possible est : (108 + 6) (3) = 342 

Le résultat : z = 324 ±18 ou  z = 320 ± 20 

L'incertitude absolue sur le résultat de la multiplication par 3 correspond à trois fois 

l'incertitude absolue associée à x. 

B. Calculez w ± ∆w si w = 1/2 x 

La valeur la plus probable : 108/2 = 54 

la valeur maximale possible : (108 + 6)/2 = 57 

∆w=1/2.∆x=1/2 . 6 =3 

 

Le résultat : w = 54 ±3 

Les exemples précédents nous permettent de conclure que lors d'une multiplication par une 

constante ne possédant pas d'incertitude, l'incertitude absolue résultante s'obtient en multipliant 

l'incertitude absolue initiale par cette constante. Cette propriété est particulièrement utile lors 

des changements d'unités. Il est important de réaliser que même si l'incertitude absolue 

résultante est inférieure à l'incertitude absolue initiale, l'incertitude relative est restée la même. 

II.6.2. Multiplications et divisions (situation générale) 

Dans ce cas le calcul débutera par l’incertitude relative ou ;  

Si z= x.y  donc  

∆𝑧

𝑧
=
∆𝑥

𝑥
+
∆𝑦

𝑦
 

Exemple 2 

si x = 76 ± 2 et y = 35 ± 3 

A. Calculez  z ± ∆z  si z = x · y 

En utilisant les valeurs extrêmes... 

la valeur la plus probable (exacte) : 76 (35) = 2660 
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∆𝑧

𝑧
=
∆𝑥

𝑥
+
∆𝑦

𝑦
 ⇒

∆𝑧

𝑧
=
2

76
+
3

35
 

∆𝑧

𝑧
= 0,112 ⇒ ∆𝑧 = 0,112 . 2660 = 298 

L'incertitude relative résultante est de 11,2 %. Elle était de 2,4 % sur x et de 5,2 % sur y. 

donc :  z = 2660 ± 298 ou 2700 ± 300 ou (49 ± 4) X 10 2 

B. Calculez w ± ∆w si w =  x / y 

La valeur la plus probable : 1,171 

donc w = 1,448 ± 0,116 que nous écrivons 1,4 ± 0,1 

∆𝑧

𝑧
=
∆𝑥

𝑥
+
∆𝑦

𝑦
= 0,112 

L'incertitude relative résultante est aussi de 11 ,2 % pour ce calcul. 

Les deux calculs précédents nous mènent à la règle suivante : 

Lors d'une multiplication ou d'une division, de termes possédant chacun leur incertitude, 

l'incertitude relative résultante est donnée par la somme des incertitudes relatives des 

termes de la multiplication ou de la division. 

II.7. Autres calculs 

Exemple 1 

si x = 98 ± 3 (± 3 %) 

A. Calculez  z ± ∆z  si z = x 2 

La valeur la plus probable pour z est : 9604 

 

∆𝑧

𝑧
= 2.

∆𝑥

𝑥
= 2.

3

98
= 0,061 

∆𝑧 = 0,061 . 𝑧 = 0,061. 9604 = 585 = 600 

z= 9600 ± 600 

B. Calculez z ± ∆z si z = x 1/2 

La valeur la plus probable : 9,899 
∆𝑧

𝑧
=
1

2
.
∆𝑥

𝑥
=
1

2
.
3

98
= 0,015 
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∆𝑧 = 0,015 . 𝑧 = 0,015.9,899 = 0,148 

z= 9 ,9 ± 0,1 

L'incertitude absolue sur ce résultat n'est que la moitié de l'incertitude relative initiale. Ce 

résultat est tout de même conforme à la règle énoncée pour l'incertitude relative des 

multiplications et des divisions. 

II.8. Multiplications et divisions (plus que deux termes) 

Dans cette section on doit exposer le cas générale qui est donné comme suit ; 

Si    f= xα.yβ . z-λ   donc  

∆𝑓

𝑓
= |𝛼|

∆𝑥

𝑥
+ |𝛽|

∆𝑦

𝑦
+ |𝜆|

∆𝑧

𝑧
  

Exemple 2 

si x = 84 ± 2 (± 2,3 %), y = 58 ± 3 (±5,2 %) et z = 23 ± 1 (±4,3 %) 

Calculez  f ± ∆f  si f = x · y / z 

En utilisant les valeurs extrêmes... 

La valeur la plus probable : 84 . 58 /23=  211,83 

∆𝑓

𝑓
= |𝛼|

∆𝑥

𝑥
+ |𝛽|

∆𝑦

𝑦
+ |𝜆|

∆𝑧

𝑧
 

α=1,  β= 1 , λ=1 

∆𝑓

𝑓
= 1

∆𝑥

𝑥
+ 1

∆𝑦

𝑦
+ 1

∆𝑧

𝑧
⇒
∆𝑓

𝑓
=
∆𝑥

𝑥
+
∆𝑦

𝑦
+
∆𝑧

𝑧
  

∆𝑓

𝑓
=
2

84
+
3

58
+
1

23
= 0,12 ⇒ ∆𝑓 = 0,12 .211,83 = 25,42 

 

donc :  w = 211,83 ± 25,42 (± 12,6 %) ou 210 ± 30  

Ce résultat est conforme à la règle énoncée pour l'incertitude relative des multiplications et 

des divisions. Cette règle est valable pour n'importe quel nombre de termes multipliés et/ou 

divisés entre eux. 

On peut utiliser les deux règles énoncées précédemment dans de nombreuses situations. 

Cependant certains calculs faisant intervenir des fonctions particulières nécessitent l'usage de 

la méthode des extrêmes. 

II.9. Fonctions particulières. 
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S’il existe des fonctions particulières dans le calcul dons il est préférable qu’on se référé a la 

forme générale décrit comme suit ; 

 

Si la grandeur physique f  est en fonction des paramètres x, y, z… donc la différentielle de f est 

donnée par ;  

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 + 

𝜕𝑓

𝜕𝑦
𝑑𝑦 

𝜕𝑓

𝜕𝑧
𝑑𝑧… 

∆𝑓 =
𝜕𝑓

𝜕𝑥
∆𝑥 + 

𝜕𝑓

𝜕𝑦
∆𝑦 

𝜕𝑓

𝜕𝑧
∆𝑧… 

Exemple 3 

si α = 45± 2o Calculez  w ± ∆w  si w = tg α 

La valeur la plus probable est : 1,000 

L’angle α est pris en radian 2°= 0,035 rd 

∆𝑤 =
𝜕𝑡𝑔

𝜕𝛼
∆𝛼 =

1

𝑐𝑜𝑠𝛼
 . 0,035 =

1

(√2/2)
2  .0,035 =    0,07 

 

Le résultat : w = 1,000 ± 0,07 ou  w = 1,00 ± 0,07 

Exemple 4 

si x = 38 ± 3 Calculez  w ± ∆w  si w = ln x 

wprob = 3,638 

∆𝑤 =
𝜕𝑙𝑛

𝜕𝑥
∆𝑥 =

1

𝑥
 . 3 =

1

(38)
. 3 =    0,08 

Le résultat : w = 3,64 ± 0,08 

Conclusion. 

La méthode de la différentielle est la méthode la plus généralisée dans les cas complexes  

Les méthodes de calcul des incertitudes dans le cas d’une addition, produit ou division sont 

extraites de cette méthode générale de différentielle.    

II.10. Les chiffres significatifs 
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Lorsqu'on exprime une mesure directe ou le résultat d'un calcul, l'incertitude absolue associée 

au nombre est exprimée avec un seul chiffre significatif. La mesure ou le résultat du calcul sera 

alors arrondi afin de ne comporter qu'un seul chiffre incertain. 

Il arrive parfois que l'on désire, sans faire le calcul de l'incertitude, conserver le bon nombre de 

chiffres significatifs lors d'un calcul. Pour ces situations, nous allons, à l'aide de quelques 

exemples, formuler quelques règles valables pour les opérations mathématiques de base 

(addition, soustraction, multiplication et division). 

II.10.1. Additions et soustractions 

Exemple 1 

a = 131,12 ± 0,0?      et         b = 12,213 ± 0,00?   

la somme... 
 
   131,12? 
+ 012,213 
   143,33(3) 

il faudrait donc écrire pour le résultat de la somme   a + b = 143,33 car nous devons conserver 

qu'un seul chiffre incertain. 

Exemple 2 

a - b = ? 

   131,12? 

-  012,213 

   118,90(7) 

le résultat est donc a - b = 118,91 

Le résultat d'une addition ou d'une soustraction possède autant de décimales 

que le terme de l'addition ou de la soustraction qui en possède le moins. 

II.10.2. Multiplications et divisions 

Règle 2 : 

Les deux exemples qui suivent sont des applications de cette deuxième règle. 

Exemple 3 

a = 12,5 ± 0,?  (3 chiffres significatifs) et  b = 2,3 ± 0,?   (2 chiffres significatifs)  

La multiplication a·b donne 28,75 que l'on doit écrire avec deux chiffres significatifs. 

a·b = 29 (2 chiffres significatifs)  
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Exemple 4 

c = 1238 ± ? (4 chiffres significatifs) et d = 33,9 ± 0,? (3 chiffres significatifs) 

la division c / d donne 36.519... que l'on doit écrire avec 3 chiffres significatifs. 

c / d = 36,5 (3 chiffres significatifs) 

Remarque importante 

La deuxième règle constitue une façon plus ou moins précise d'obtenir le bon nombre de chiffres 

significatifs pour le résultat d'un produit ou d'un quotient. Ce n'est pas une règle absolue (voir 

l'exemple suivant). 

Ces règles s'appliquent aux opérations mathématiques de base énumérées précédemment. C'est 

toujours le calcul des incertitudes par la méthode des extrêmes qui donne le bon résultat. 

Exemple 

c = 94 ± 1 (2 chiffres significatifs) et d = 2,10 ± 0,02 (3 chiffres significatifs) 

la division c / d donne 44,762... 

En faisant le calcul des valeurs extrêmes 

( c / d )max = 95/2,08 = 45,673 (+0,911) 

( c / d )min = 93/2,12 = 43,868 (-0,894) 

Le résultat de ce calcul 

44,8 ± 0,9 (trois chiffres significatifs) 

II.9. Exercices 

Écrivez les résultats suivants ainsi que les incertitudes absolues avec le bon nombre de chiffres 

significatifs (indiquez aussi le nombre de chiffres significatifs que possède le résultat). 

1. (a) 845,33 ± 2,65     (b) 11 675 ± 94,4     (c) 1,851 x 103 ± 158,3     (d) 0,01863 ± 

0,00023     (e) 1,567 x 10-3 ± 0,00049 

2. Les côtés d'un rectangle sont   

a = 5,35 ± 0,05 cm et b = 3,45± 0,04 cm 

(a) Calculez  le périmètre du rectangle 

(b) Calculez l'aire du rectangle 

3. Le rayon d'une sphère est r = 10,00 ± 0,08 cm 
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(a) Calculez  l'aire de sa surface 

(b) Calculez son volume 

4. Les côtés opposé et adjacent à l'angle α d'un triangle rectangle sont respectivement 

     a = 12,1 ± 0,1 cm et b =  23,3 ± 0,2 cm. 

(a) Calculez l'angle α 

(b) Calculez la longueur de l'hypoténuse 

5. Un volume cylindrique de diamètre 1,62 ± 0,03 cm et de hauteur  3,44 ± 0,05 cm a une 

masse de 23,2 ± 0,1g. 

(a) Calculez son volume 

(b) Calculez sa masse volumique 

6. Un véhicule consomme 48,6 ± 0,5 litres de carburant en parcourant 530 ± 20 km 

Calculez sa consommation moyenne en litres par 100 km 

7. Suite à une série d'essais, on obtient comme résultats qu'un véhicule roulant à 100 ± 5 km/h 

s'immobilise en 3,3 ± 0,1 s. 

Calculez la décélération moyenne (en m/s2) de ce véhicule. 

Réponses aux exercices 

1.  (a) 845 ± 3 (3 C.S.)    (b) 11 680 ± 90 (4 C.S.)     (c) 1900 ± 200 (2 C.S.)     (d) (1,86 ± 

0,02) . 10-2 (3 C.S.)    

     (e) (1,6 ± 0,5) x 10-3 (2 C.S.)                         

2. (a) 17,6 ± 0,2 cm        (b) 18,5 ± 0,4 cm 

3. (a) 1260 ± 20 cm2      (b) (42 ± 1) . 102 cm3 

4. (a) 27,4 ± 0,4o            (b) 26,3 ± 0,2 cm 

5. (a) 7,1 ± 0,4 cm3        (b) 3,3 ± 0,2 g/cm3 

6. 9,2 ± 0,5  l/100km 

7. 8,4 ± 0,7 m/s2 
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III.1. Définition et caractéristiques d’un fluide 

 

III.1.1 Définition d’un fluide 

On appelle fluide un corps qui n’a pas de forme propre et qui est facilement déformable. Les liquides et 

les gaz sont des fluides, ainsi que des corps plus complexes tels que les polymères ou les fluides 

alimentaires. Ils se déforment et s’écoulent facilement. Un fluide englobe principalement deux 

états physiques : l’état gazeux et l’état liquide. 

III.2. Propriétés des fluides 

Tous les fluides possèdent des caractéristiques permettant de décrire leurs conditions physiques 

dans un état donné. Parmi ces caractéristiques qu’on appelle propriétés des fluides on a : 

- Compressibilité 

- Masse volumique et densité 

- Poids volumique 

- Volume massique 

- Viscosité 

III.2.1. Compressibilité 

La compressibilité est le caractère de variation de volume de fluide avec une variation de pression 

(dp), le volume de fluide subit une diminution de volume (dV). 

L’augmentation de pression entraine une diminution de volume. 

Le coefficient de compressibilité est : 

 𝛽 =
−
𝑑𝑉

𝑉

𝑑𝑝
 (Pa-1) 

 : Coefficient de compressibilité (Pa-1 ou m2/N).  
V : Volume de fluide (m3). 

dV : Variation de volume (m3). 

dp : Variation de pression (N/m2) 

 
III.2.2. Masse volumique et densité 

a- Masse volumique : La masse volumique ρ d’un fluide est la masse de l’unité de volume de 

ce fluide. Elle s’exprime en kg/m3 

Les fluides sont caractérisés par leur masse volumique ρ  
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 𝜌 =
𝑀

𝑉
 

M:Masse du fluide (kg)  

V : Volume du fluide (m3) 

 : Masse volumique (kg/m3) 

 

Fluides mercure eau de mer eau pure huile essence butane air 

ρ(kg/m3) 13 600 1030 1000 900 700 2 1.293 

 
Pour les gaz, la masse volumique dépend de la température et de la pression à cause de leur 

compressibilité. 

 
b- Densité 

La densité est le rapport de la masse volumique du fluide rapportée à un autre fluide  de 

Référence, c’est une grandeur sans unité définie par : 

𝑑 =
𝜌

𝜌𝑓
 

 

Exemple : la densité du mercure paraport a l’eau est de  

 𝑑𝑚𝑒𝑟 =
𝜌𝑚𝑒𝑟

𝜌𝑒
=

13600

1000
= 13,6  

 

 

III.2.3. Poids volumique (poids spécifique) : 

Il représente la force d’attraction exercée par la terre sur l’unité de volume, c'est-à-dire le 

poids de l’unité de volume. 

𝑊 =
𝐺

𝑉
=

𝑀𝑔

𝑉
= 𝜌𝑔(N/m3) 

 

III.2.4.Volume massique (volume spécifique) 

C’est le volume qu’occupe l’unité de masse d’une substance, c’est l’inverse de la masse 

volumique 

𝜔 =
𝑉

𝑀
 (m3/kg) 

Exemplee : 

a- Soit un volume d’huile V= 5 m3 qui pèse 4,25 t . Calculer la masse volumique, le poids 

spécifique et la densité de cette huile avec  g= 9.81 m/s2.  
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b- Calculer le poids G d’un volume V= 0,5 litres de liquide  ayant une densité égale à 0,75 

Solution : 

a- Masse volumique 

  

𝜌ℎ =
𝑀

𝑉
=

4250

5
=

850𝑘𝑔

𝑚3  

Poids spécifique (Volumique)𝑊ℎ = 𝜌. 𝑔 = 850 9,81 = 8338,5
𝑁

𝑚3 

b- Densité 

𝑑ℎ =
𝜌ℎ
𝜌𝑒
=
850

1000
= 0,85 

 

c- 𝐺 = 𝑀. 𝑔 = 𝜌𝑙. 𝑉. 𝑔 = 𝑑𝑙𝜌𝑒𝑉𝑔 = 0,75 1000 0,5 9,81 = 3 678,75𝑁 = 3,679 𝑘𝑁    

 

III.2.5. Viscosité 

La viscosité d’un fluide est la propriété de résister aux efforts tangentiels qui tendent à faire déplacer 

les couches de fluide les unes par rapport aux autres. Lorsque le fluide se déplace en couches 

parallèles ; le facteur de proportionnalité est le coefficient de viscosité dynamique, (  ) et on écrit 

alors : 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 

La viscosité cinématique, , est définie comme étant le rapport entre la 

viscosité dynamique et la masse volumique. 

𝜈 =
𝜇

𝜌
 

Dans le système SI, l’unité de la viscosité dynamique est le (Pa.s) ou 

(kg/ms) ou Pl  

Pa.s : Pascal seconde 

Pl : Poiseuille avec 1 Pa.s = 1 Pl =1kg /ms 

Dans le système CGS l’unité est le Poise (Po) avec  Pl = 10 Po 

 

Dans le système SI, l’unité de la viscosité cinématique, , est le (m2/s) ; dans le 

système CGS l’unité est le stockes où 1 stokes = 1 cm2/s = 10-4 m2/s 
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Exemple : 

Déterminer la viscosité dynamique d’une huile moteur de densité d = 0.8 et de 

viscosité cinématique ν= 1.3 St 

𝜈 = 1,3𝑆𝑡 = 1,3 𝑐𝑚2 𝑠⁄ = 130𝑚2 𝑠⁄  

𝜇 = 𝜈 𝜌 = 𝜈 𝑑 𝜌𝑒 = 130.0,8.1000 = 1,04
105𝑘𝑔

𝑚
. 𝑠 = 1,04. 105 𝑃𝑙   

 

III.3..Statique des fluides 

 

III.3.1. Introduction 
La statique des fluides est la branche de la mécanique des fluides qui traite principalement les fluides 

au repos. L’étude des propriétés des fluides au repos constitue la statique des fluides. 

III.3.2. La pression 

La pression est la quantité de la force exercée perpendiculairement sur une  unité de surface : 

 

 

 

 

 

 
 
 

𝑃(𝑃𝑎) =
𝐹(𝑁)

𝑆(𝑚2)
 

 
 
 
 
L’unité de la pression en système SI  est le Pascal (Pa=1N/m2)  

Autres unités  : 

- Le bar  1bar = 105 Pa = 105 N / m 2  

- L’atmosphère 1atm = 101325 Pa ≈1,0133 bar  

 

 Pascal (Pa) Bar Atmosphère 

Pascal 1 10-5 9,869 10-6 

Bar 105 1 0,987167 

Kgf/cm2 98039 0.9803 0,968 

 

F 

S 

Figure 2.1  
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Atmosphère 101325 1,0133 1 

cm d’eau 98.04 9,80 10-4 9,68 10-4 

mm de Hg 133 1,333 10-3 1,316 10-3 

mbar 102 10-3 9,87 10-4 

 

III.3.3. Pression en un point d’un fluide au repos  

 
Théorème de Pascal 

1- La pression hydrostatique en un point donné d’un fluide au repos est la même (agit de façon 

égale) dans toutes les directions 

2- Toute variation de pression en un point d’un liquide au repos est transmise intégralement à tous 

les autres points du liquide. 

On peut vérifier que la pression exercée au sein d’un liquide en équilibre, 

• est constante en tous points d’un même plan horizontal. 

• est indépendante de la direction considérée. 

• croît au fur et à mesure que l’on s’éloigne de sa surface libre. 

 
III.3.4. Principe fondamental de l’hydrostatique 

3.1 Principe fondamental de l’hydrostatique 

 

 

 

 

 

 

La pression exercée en une section élémentaire ds horizontale du fluide sous une auteur est 

comme suit ; 

  

𝑝𝐴 =
𝐹𝑝

𝑑𝑠
= 𝑚.

𝑔

𝑑𝑠
=
𝜌 𝑉𝑔

𝑑𝑠
=
𝜌 𝑑𝑠 ℎ 𝑔

𝑑𝑠
= 𝜌 𝑔 ℎ 

 
PA est la pression au point A 

Fp est la force de pesanteur. 

ρ est la masse volumique du fluide en (kg/m3). 

 

h  

  xA 

Figure 2.2 

ds 
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h est la profondeur de la section élémentaire  (m) 

g est l’accélération de la pesanteur.  

 

Application  

Exercice 1 : Une plaque métallique de dimension (20x10x0,5) cm pèse 5 kg. Quelle pression 

exerce-t-elle sur le sol suivant la face sur laquelle on la pose ? 

Solution  

On a 𝑃1 =
𝐹

𝑆
=

𝑚𝑔

𝑆
=

5∗9,81

0,2 .  0,1
= 2452,5 𝑁/𝑚² (pa) 

𝑃2 =
𝐹

𝑆2
=
𝑚𝑔

𝑆2
=

5 ∗ 9,81

0,2 .  0,005
= 49050 𝑁/𝑚²(𝑝𝑎) 

𝑃3 =
𝐹

𝑆3
=
𝑚𝑔

𝑆3
=

5 ∗ 9,81

0,1 .  0,005
= 98100 𝑁/𝑚²(𝑝𝑎) 

 

Exercice 2 : On enfonce une punaise métallique dans une planche en exerçant sur sa tête une force 

de 3 kgf  avec le pouce ; la tête a 1cm de diamètre et la pointe 0.5mm 

Quelles sont les pressions exercées sur le pouce ensuite sur la planche ? 

 

 

Solution  

Pression sur le pouce : 
 

𝑃𝑝𝑐 =
𝐹

𝑆
=

𝐹

𝜋𝑑𝑝
2

4

=
2 . 9,81

𝜋0,01²
4

= 2,5 . 105𝑃𝑎 

𝑃𝑝𝑙 =
𝐹

𝑆
=

𝐹

𝜋𝑑𝑝
2

4

=
2 . 9,81

𝜋 .  (5. 10−4)²
4

≅  108𝑃𝑎 

 

Exercice 3 : Combien faut-il de mètres d’eau pour avoir une différence de pression de 1bar? 

 

Solution  

{
∆𝑃 = 1𝑏𝑎𝑟 = 105𝑁/𝑚²
∆𝑃 = 𝜌𝑔ℎ                          

⇒ 𝜌𝑔ℎ =  105  
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ℎ =  
105

𝜌𝑔
=

105

9810
≅ 10,19𝑚 

Exercice 4 : Calculer la pression relative et la pression absolue auquel est soumis un plongeur en 

piscine à une profondeur de 5,5 m. On donne la masse volumique de l’eau ρ = 1000 kg/m3
 

Solution  

Pression relative 

Pr = ρ g h = 1000. 9.81. 5,5 = 53 955 Pa = 0,54 bar  

Pression absolue  

Pab= Pr + P atmosphérique  

Soit 

 Pab = 53 955+ 101 325 = 155 280 Pa = 1,55 bar 

 

Exercice 5 : La cuve ci-contre est à moitié pleine d’eau et l’autre pleine de huile . Calculez la 

différence de pression entre les points A et B, puis entre les points B et C. Comparer ces résultats et 

conclure ! 

On donne : h = 2,5 m , masse volumique de l’eau 103 kg/m3 et celle de l’huile est 900 kg/m3 

 

 

 

 

 

Solution    

PAB = eau g (hA-hB) = eau g h/2 soit PAB = 103 9.81 1,25 = 12 262,5Pa 

PBC = air g(hB-hC) = air g h/2 soit PBC = 900 9.81 1,25 = 11 036,25 Pa 

Conclusion : la pression dans l’eau est importante par rapport à  la pression dans l’huile a cause 

de la masse volumique . 

 

III.4. Transmission des pressions dans les liquides 

Soit le schéma de principe d’une presse hydraulique (Fig.2.3). On y produit une force 

considérable à partir d’une force relativement peu importante, en considérant la surface d’un piston 

à la sortie 2 plus large que celui à l’entrée 1. 

 
Huile 

 

 

 

Eau 
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                          Figure.2.3 : Principe d’une presse hydraulique 

Lorsque les deux pistons 1 et 2 sont sur le même niveau, on a : 

𝑃1 = 𝑃2 ⇒
𝐹1
𝑆1
=
𝐹2
𝑆2
⇒ 𝐹1 𝑆2 = 𝐹2 𝑆1 

S1 et S2 sont respectivement inversement proportionnelles aux F1 et F2.  

III.5. Equilibre des fluides non miscibles 

 

Un tube en U rempli d’un liquide de masse volumique (ρ1), si dans l’une des branches un autre liquide 

non miscible au premier et de masse volumique (ρ2) est versé, il est observé une dénivellation h=(h2-

h1) entre les deux liquides. Les deux surfaces libres étant à la pression atmosphérique. D’après le 

principe de Pascal, il est possible d’écrire les équations suivantes : 

 
 
 
 
 

 

P1 = patm + 1 g h1 

P2 = patm + 2 g h2 

𝑝𝑎𝑡𝑚 +  𝜌1 𝑔 ℎ1 =  𝑝𝑎𝑡𝑚 + 𝜌2 𝑔 ℎ2  ⇒  ℎ 1 =
𝜌2

𝜌1
 ℎ2  

 

La simple mesure des hauteurs des deux fluides h1 et h2 permet de déterminer la masse volumique 

d’un fluide. De même ce concept est utilisé pour la masure des pressions avec les manomètres à 

colonne de liquide ou manomètre différentiel. 

  

  

  
 p2 

2 1 

h2 

patm 

 

 

ρ2 

patm 

h1  

2 

 

1 
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III.6. Poussée d’Archimède 

Supposons un cube d'arête a entièrement immergé dans un liquide, sa face du haut étant 

horizontale et située à une profondeur z1 > 0 (le sens positif est vers le bas). On notera le 

vecteur unitaire dirigé selon l'axe des z croissants (donc orienté vers le bas). 

Dans le cas d'un liquide incompressible au repos soumis à un champ 

de pesanteur uniforme,  

la pression   absolue p à une profondeur z vaut : 

 

𝑃1 = 𝑃𝑎𝑡 + 𝜌𝑔ℎ ⇒ 𝐹1 = (𝑃𝑎𝑡 + 𝜌𝑔ℎ)𝑠 

𝑃2 = 𝑃𝑎𝑡 + 𝜌𝑔(ℎ + 𝑎) ⇒ 𝐹2 = (𝑃𝑎𝑡 + 𝜌𝑔(ℎ + 𝑎))𝑠 
Les force F1 et F2 , exercées par le liquide sur les faces supérieures (d'aire s = a2) 

du cube 

 
Sur la verticale 

 𝐹𝐴⃗⃗⃗⃗ = ∑𝐹 ⇒𝐹𝐴 = 𝐹2 − 𝐹1 ⇒𝐹𝐴 = (𝑃𝑎𝑡 + 𝜌𝑔(ℎ + 𝑎))𝑠 − (𝑃𝑎𝑡 + 𝜌𝑔ℎ)𝑠 

𝐹𝐴 =  𝜌 𝑔 𝑎 𝑠 = 𝜌𝑔𝑉 

• ρ est la masse volumique du liquide ; 

• V est le volume de corp (cube) ; 

• g est l'accélération de la pesanteur. 

• Tout corps totalement immergé dans un liquide est soumis à une poussée dirigée du bas vers 

le haut et égale au poids du liquide déplacé, c'est-à-dire correspondant au volume du corps 

immergé cette poussée s’appeler  la poussée d’Archimède est dirigée dans le sens inverse 

du champ de pesanteur.  

 

 

 

 

 
  

 

  

 

 

 

 

 

 

 

 

 

h h F1 

a 

F2 

https://fr.wikipedia.org/wiki/Cube
https://fr.wikipedia.org/wiki/Pesanteur
https://fr.wikipedia.org/wiki/Pression
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• FA-Pd > 0, le corps s’élève dans le fluide et cette ascension aboutit à une flottaison du solide. 

• FA-Pd = 0, le corps est immobile dans le fluide, puisque la poussée d’Archimède équilibre 

le poids du solide. 

• FA-Pd < 0, le corps s’enfonce dans le fluide, c’est le type de chute qui est 

rencontrée dans la décantation des solides. 

• Pd : Poids du corps immergée. 

Donc en conclusion la poussée d’Archimède est exprimée comme une force 

dirigée ver le haut et  exercée par un fluide sur un corps immergé, la valeur de 

cette  force est calculée par la relation suivante ; 

  

𝐹𝐴 = 𝜌𝑔𝑉 

 

III.7. Equations de l’hydrostatique 
 

L’élément de fluide est en équilibre statique sous l’influence de trois forces de volume et de  

forces de pression hydrostatique. Les forces qui agissent sur cet élément de 

volume (dxdydz) dans la direction z sont : 

1. Les forces de volume : ρZ (dxdydz) 

2. Les forces de surface (de pression) :  (𝑃 −
𝜕𝑃

𝜕𝑧

𝑑𝑧

2
)𝑑𝑥 𝑑𝑦   et (𝑃 +

𝜕𝑃

𝜕𝑧

𝑑𝑧

2
)𝑑𝑥 𝑑𝑦 

Dans un état d’équilibre on obtiens  les équations d’équilibre dans toutes les autres directions : 

{
 
 

 
 𝜌 𝑎𝑥 −

𝜕𝑃

𝜕𝑥
= 0

𝜌 𝑎𝑦 −
𝜕𝑃

𝜕𝑦
= 0

𝜌 𝑎𝑧 −
𝜕𝑃

𝜕𝑧
= 0

            ⇒  𝜌 𝐹 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑃 = 0⃗  

 

ax, ay, az : Les accélération dans les trois directions   

 

Les équations (2.6) est appelées équations fondamentales de l’hydrostatique (équations d’Euler). Ces 

équations montrent que la pression hydrostatique en un point donné d’un fluide au repos dépend 

des coordonnées du point dans le volume du liquide et de la masse volumique, c'est-à-dire  

P = f(x, y, z, ρ). 

Dans le cas où la force massique est seulement la force de pesanteur, les composantes de la force massique 

unitaire sont :  ax=0 ay=0 az=-  g 

 

𝜌 𝑎𝑧 −
𝜕𝑃

𝜕𝑧
= 0 ⇒ 𝑑𝑃 = 𝜌 𝑎𝑧𝑑𝑧 
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⇒𝑑𝑃 = 𝜌 𝑎𝑧𝑑𝑧 ⇒ 𝑃 = −𝜌𝑔𝑧 + 𝑐 
 

Il y a d’autres cas ou les forces au d’autres directions sont pris en compte    

 
III.8.  Champ de pesanteur avec accélération horizontale constante 

Soit un liquide homogène soumis à une accélération horizontale constante a, donc : 

 𝐹 = (
𝑥
𝑦
𝑧
) = (

𝑎
0
𝑔
)       

 

{
  
 

  
 
𝜕𝑃

𝜕𝑥
= −𝜌𝑎

𝜕𝑃

𝜕𝑦
= 0

𝜕𝑃

𝜕𝑧
= −𝜌𝑔

 

 

La pression est fonction uniquement de x et de z La variation totale de la pression est définie comme 

suit  

D’où la pression est : 

𝑑𝑝 =
𝜕𝑃
𝜕𝑥
𝑑𝑥 +

𝜕𝑃
𝜕𝑦
𝑑𝑦 +

𝜕𝑃
𝜕𝑧
𝑑𝑧 

 
 

𝑃 = ∫
𝜕𝑃
𝜕𝑥
𝑑𝑥 +

𝜕𝑃
𝜕𝑦
𝑑𝑦 +

𝜕𝑃
𝜕𝑧
𝑑𝑧 = −𝜌𝑎𝑥 − 𝜌𝑔𝑧 + 𝑐 

 

⇒ 𝑃 + 𝜌𝑎𝑥 + 𝜌𝑔𝑧 = 𝑐 

Sur les lignes égale pression dp = 0  soit  P=cst donc  

𝜌𝑎𝑥 + 𝜌𝑔𝑧 = 𝑐 ⇒  𝑧 = −
𝑎

𝑔
𝑥 + 𝑐′     

𝑐′ =
𝑐

𝜌𝑔
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III.9. Champ de pesanteur avec rotation uniforme 

Considérons un réservoir cylindrique qui tourne à une vitesse angulaire  constante. 

 

 

 

 

 

 

 

 

 

 
 
 
 

𝐹 = (
𝑥
𝑦
𝑧
) = (

𝜔2𝑟
0
−𝑔

) 

{
  
 

  
 
𝜕𝑃

𝜕𝑟
= −𝜌𝜔2𝑟

𝜕𝑃

𝜕𝑦
= 0

𝜕𝑃

𝜕𝑧
= −𝜌𝑔

    ⇒
𝜕𝑃

𝜕𝑟
+
𝜕𝑃

𝜕𝑧
= −𝜌𝑔 + 𝜌𝜔2𝑟 ⇒ 𝑃 = −𝜌𝑔𝑧 + 𝜌𝜔2

𝑟2

2
 + 𝑐 

 
Sur les lignes égale pression dp = 0  soit P=cst donc 

  

−𝜌𝑔𝑧 + 𝜌𝜔2
𝑟2

2
= 𝑐′ ⇒ 𝑧 = 𝜔2

𝑟2

2𝑔
+ 𝑐′ 

 

Exercice 6 : On donne F1 = 100 N et D1 = 10cm   (diamètre du petit piston) Le petit piston 

descend d’une hauteur h1 = 1m 

1. Si le diamètre du grand piston est D2 = 1m, quelle est l’intensité de la force F2 exercée sur le grand 

piston ? 

2. De quelle hauteur h2 monte le grand piston ? 

 

Exercice 7 : Un récipient contient de l’eau sur 20cm et de l’huile sur 50cm. La pression au point A 

 

2r 
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est égale à la pression atmosphérique. Calculer la pression aux points B et C ; sachant que ρeau = 103kg/m3 

et ρhuile = 900kg/m3
 

Solution : 

Soit PA = Patm = 105 Pa 

 

PB = PA + ρh g H2 = 105 + 900 .9.81. 0.5 = 104500 Pa 

 
PC = PB + ρe g H1 = 104500 + 1000. 9.81. 0.2 = 106482 Pa 

 

Exercice 8 : Un récipient en partie rempli d’eau et soumis à une accélération horizontale 

constante. L’inclinaison de la surface de l’eau est de 30°. Quelle est l’accélération du récipient ? 

Solution  

tgθ=a/g 

Donc : a = g *tg  =  tg  =   =  m/s2 

 Exercice 9 : Un récipient en partie rempli d’eau et soumis à une accélération horizontale 

constante. Calculer cette accélération si on : L=3m  H1 =1.8m  H2 =1.2m  g = 9.81 m/s2 

Exercice 10 : Un réservoir cylindrique de 3m de haut, 1m de diamètre contient 2m d’eau et 

tournant autour de son axe. Quelle vitesse angulaire  constante peut-on atteindre sans 

renverser l’eau. Quelle est la pression au fond du réservoir en A (axe) et B paroi) quand  = 

10rad/s 

 

 

 

 

 

 

 

1m 

 

 

 

2m 

 

 

 

3m 



 

 

 

Chapitre IV 

Dynamique des fluides 

parfaits incompressibles 
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IV.1. Introduction 

Dans la dynamique des fluide l’étude faite sur un liquide en mouvement ou  la pression a les mèmes 

propriétés que dans un liquide en repos, pour simplifier la problème liquide parfait est un liquide non 

visqueux ou on néglige les frottement    

La dynamique étudie les fluides en mouvement pour simplifier le problème, on néglige les frottements. 

Dans un liquide non visqueux ou parfait en mouvement, la pression a les mêmes propriétés que dans 

un liquide au repos. 

On s’intéresse dans ce chapitre aux équations fondamentales qui régissent la dynamique des fluides 

parfaits incompressibles à savoir : 

- L’équation d’Euler (Conservation de la quantité de mouvement) 

- L’équation de continuité (conservation de la masse) 

-  Le théorème de Bernoulli (conservation de l’énergie) 

IV. 2. Equations générales de la dynamique des fluides parfaits 

De la même manière que  dans la section ( §III ) , sauf que dans cette section on ajoutent la 

force d’inertie (accélération du mouvement)   

Les forces qui agissent sur cet élément de volume (dSdz) sont : 

1. La force de volume :      Z (dSdz) P 

2. Les forces de pression : pdS et  (𝑷 +
𝝏𝑷

𝝏𝒛
𝒅𝒛)𝒅𝒔 

3. La force d’inertie (accélération) :  𝝆𝒅𝒔𝒅𝒛
𝝏𝒘

𝝏𝒕
 

 

 

{
  
 

  
  𝑎𝑥 −

1

𝜌

𝜕𝑃

𝜕𝑥
=
𝜕𝑣

𝜕𝑥

𝑎𝑦 −
1

𝜌

𝜕𝑃

𝜕𝑦
=
𝜕𝑢

𝜕𝑦

𝑎𝑧 −
1

𝜌

𝜕𝑃

𝜕𝑧
=
𝜕𝑤

𝜕𝑧

⇒ 𝐹 −
1

𝜌
∇⃗ 𝑝 =

𝜕𝑉 

𝜕𝑡
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𝜌𝐹  : Force de volume par unité de volume. 

∇⃗ 𝑝 : Force de pression par unité de volume. 

𝜌
𝑑𝑉 

𝑑𝑡
 : Force d’inertie par unité de volume. 

Ces équations sont appelées équations générales de la dynamique des fluides parfaits ou équations 

d’Euler 

 

En introduisant les expressions des composantes de l’accélération pour un écoulement tridimensionnel, 

les équations (3.1) s’écrivent sous la forme : 

 

{
  
 

  
 𝑎𝑥 −

1

𝜌

𝜕𝑃

𝜕𝑥
=
𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
+ 𝑢

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

𝑎𝑦 −
1

𝜌

𝜕𝑃

𝜕𝑦
=
𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

𝑎𝑧 −
1

𝜌

𝜕𝑃

𝜕𝑧
=
𝜕𝑤

𝜕𝑡
+ 𝑣

𝜕𝑤

𝜕𝑥
+ 𝑢

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

⇒ 𝐹 −
1

𝜌
∇⃗ 𝑝 =

𝜕𝑉 

𝜕𝑡
+ ∇⃗ 𝑉 ⊗ 𝑉  

 

IV.3. Equation de continuité  

 

 

 

 

Considérant un fluide parfait incompressible circule par un écoulement permanant dans une 

veine ou ; 

S1 et S2 respectivement les sections d’entrée et la section de sortie du fluide à l’instant t  

S’1 et S’2 respectivement les sections d’entrée et la section de sortie du fluide à l’instant t’ (t+dt)  
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V1 et V2 les vecteurs vitesses d’écoulement respectivement à travers les sections S1 et S2 de la 

veine  

dx1 et dx2 respectivement les déplacements des sections S1 et S2 pendant l’intervalle de temps 

dt  

dm1 : masse élémentaire entrante comprise entre les sections S1 et S’1  

dm2 : masse élémentaire sortante comprise entre les sections S2 et S’2  

m : masse comprise entre S1 et S2  

dV1 : volume élémentaire entrant compris entre les sections S1 et S’1  

dV2 : volume élémentaire sortant compris entre les sections S2 et S’2  

A l’instant t : le fluide compris entre S1 et S2 a une masse égale à (dm1+m)  

A l’instant t’ : le fluide compris entre S’1 et S’2 a une masse égale à (m+dm2)  

La masse déplacée étant conservée, on écrit alors : dm1+m = m+dm2 ; soit dm1 = dm2  

Alors : ρ1dV1 = ρ2 dV2 ou encore :  

𝜌1 𝑆1𝑑𝑥1 = 𝜌2 𝑆2𝑑𝑥2  ⇒ 𝜌1 𝑆1
𝑑𝑥1
𝑑𝑡

=  𝜌2 𝑆2
𝑑𝑥2
𝑑𝑡
   

Le fluide est incompressible donc ρ1 =ρ2 

 
𝑑𝑥1

𝑑𝑡
= 𝑉1  et    

𝑑𝑥2

𝑑𝑡
= 𝑉2 

On obtient S1 V1 = S2 V2 

Cette relation  représente l’équation de continuité du débit et aussi l’équation de  la conservation 

de la masse liquide. 

D’une manière générale et avec des apports ou des pertes latéraux (q) l’équation s’écrite comme 

suit ;  

𝜕𝑄

𝜕𝑥
+
𝜕𝐴

𝜕𝑡
= 𝑞 

Ou Q est le débit volumique  

𝑄 =
𝑑𝑊

𝑑𝑡
=
𝑆 𝑑𝑥

𝑑𝑡
= 𝑆𝑉 

Avec ; 

W : Le volume de fluide écoulé dans l’instant dt. 

S : La section transversale de l’écoulement.  

V : La vitesse moyenne d’écoulement à travers la section S.   
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IV. 4. Théorème de Bernoulli  

Ce théorème ce base sur le principe de conservation de l’énergie d’un fluide dans l’espace. 

 

 

Considérant que ;   

- Le fluide est parfait et incompressible, l’écoulement est permanent et la conduite est lisse. 

 

- Appliquons le principe de conservation de l’énergie  entre les instants t et t+∆t. La variation 

de l’énergie ∆E est égale à la somme des travaux des forces extérieures (poids de l’élément 

fluide, forces de pression).   

1

2
𝑑𝑚1𝑉1

2 + 𝑑𝑚1 𝑔 𝑍1 + 𝑃1𝑆1𝑑𝑥1 =
1

2
𝑑𝑚2𝑉2

2 + 𝑑𝑚2 𝑔 𝑍2 + 𝑃2𝑆2𝑑𝑥2 

1

2
𝑑𝑚1𝑉1

2 + 𝑑𝑚1 𝑔 𝑍1 + 𝑃1𝑑𝑊1 =
1

2
𝑑𝑚2𝑉2

2 + 𝑑𝑚2 𝑔 𝑍2 + 𝑃2𝑑𝑊2 

1

2
𝑑𝑚1𝑉1

2 + 𝑑𝑚1 𝑔 𝑍1 + 𝑃1𝑑𝑚1/𝜌 =
1

2
𝑑𝑚2𝑉2

2 + 𝑑𝑚2 𝑔 𝑍2 + 𝑃2𝑑𝑚2/𝜌 

𝑑𝑚1 = 𝑑𝑚2 = 𝑑𝑚  

1

2
𝑑𝑚 𝑉1

2 + 𝑑𝑚  𝑔 𝑍1 + 𝑃1𝑑𝑚 /𝜌 =
1

2
𝑑𝑚 𝑉2

2 + 𝑑𝑚  𝑔 𝑍2 + 𝑃2𝑑𝑚 /𝜌 

1

2
𝑉1
2 +  𝑔 𝑍1 + 𝑃1/𝜌 =

1

2
𝑉2
2 +  𝑔 𝑍2 + 𝑃2/𝜌 
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𝑉1
2

2𝑔
+
𝑃1
𝜌𝑔

+ 𝑍1 =
𝑉2
2

2𝑔
+
𝑃2
𝜌𝑔

+ 𝑍2     (𝑚) 

Cette équation est de forme de hauteur de fluide peut s’écrite en forme de pression de la forme 

suivante ; 

𝜌𝑉1
2

2
+  𝜌𝑔 𝑍1 + 𝑃1 =

𝜌𝑉2
2

2
+  𝜌𝑔 𝑍2 + 𝑃2     (𝑃𝑎) 

 IV.4.1. Ecoulement à travers les orifices  

i posant un réservoir de surface transversale S rempli d’un liquide de masse volumique ρ 

percé d’un orifice de section s situé à une hauteur h sous la surface libre. 

 

 

 

 

 

Appliquant le théorème de Bernoulli entre les points 1 et 2 comme suit ; 

   

𝑉1
2

2𝑔
+
𝑃1
𝜌𝑔

+ 𝑍1 =
𝑉2
2

2𝑔
+
𝑃2
𝜌𝑔

+ 𝑍2      

P1=P2=Patm 

{
𝑉2 = 𝑄/𝑆2
S >>> s

⇒𝑉2 ≪< (𝑜𝑛 𝑣𝑎 𝑙𝑎 𝑛é𝑔𝑙𝑖𝑔é) 

La relation sera comme suit ; 

𝑉1
2

2𝑔
+
𝑃𝑎𝑡𝑚
𝜌𝑔

+ 𝑍1 =
𝑉2
2

2𝑔
+
𝑃𝑎𝑡𝑚
𝜌𝑔

+ 𝑍2      

 𝑍1 =
𝑉2
2

2𝑔
+ 𝑍2   ⇒ 𝑉2 = √2𝑔(𝑍1 − 𝑍2)    

𝑉2 = √2𝑔ℎ 

Cette vitesse est une vitesse soi-disant parfaite ou théorique (Vt) dont la vitesse réelle Vr=φvVth 

(φv<1) c.a.d Vr<Vth et ça a cause de la perte d’énergie entre la surface libre et la sortie de l’orifice. 

Aussi la section de l’écoulement à la sortie sr<sth ou  sr=φs sth 

Avec sth=πD2/4 

D : diamètre de l’orifice  

Le débit d’écoulement est donné en fonction de la vitesse par ; 

h 

s 

1x 

2 
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𝑄𝑡ℎ = 𝑉𝑡ℎ𝑠𝑡ℎ =
𝑉𝑟

𝜑𝑣

𝑠𝑟

𝜑𝑠
= 𝑉𝑟𝑠𝑟  

1

𝜑𝑣𝜑𝑠
   

On mit φv φs=φq on obtient ; 

 𝑄𝑡ℎ =
𝑄𝑟

𝜑𝑞
⇒𝑄𝑟 = 𝜑𝑞𝑄𝑡ℎ 

IV.4.2. Application du théorème de Bernoulli sur quelques exemples  

d- Vidange d’un réservoir. 

La figure présentée au-dessous démontre le vidange d’un réservoir d’une section transversal 

générale . 

 

    

  

 

 

 

 

 

 

 

Calcul du temps de vidange  

A un instant t donné, on a : 

𝑄 = 𝜑𝑞𝑆2√2𝑔ℎ = −
𝑑𝑉

𝑑𝑡
 

dV: Volume infiniment petit qui sort du réservoir dans une instant dt 

𝑑𝑡 = −
𝑑𝑉

𝜑𝑞𝑆0√2𝑔ℎ
=- 

𝑆ℎ𝑑ℎ

𝜑𝑞𝑆0√2𝑔ℎ
⇒∫ 𝑑𝑡 = −

𝑡

0
∫

𝑆ℎ𝑑ℎ

𝜑𝑞𝑆0√2𝑔ℎ

ℎ

0
 

Sh: Section horizontale au niveau h 

Pour un réservoir qu’a une section Sh variable en fonction de la hauteur h le temps de vidange 

est donnés par la formule: 

 

 

𝑡 = −∫
𝑆ℎ𝑑ℎ

𝜑𝑆0√2𝑔ℎ
=

0

𝐻
 ∫

𝑆ℎ𝑑ℎ

𝜑𝑆0√2𝑔ℎ

𝐻

0
 

 

 

S
h
 

dh 

H 

Q 

h 
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Pour une section S du réservoir constante le temps de vidange est données par 

 

 

𝑡 =
2𝑆√𝐻

𝜑𝑆0√2𝑔
 

e- Tube de venturi  

Tube de venturi est une conduite avec rétrécissement ou étranglement comme démontré dans 

la figure. Généralement cette appareil est utilisé pour de calculer le débit en fonction de la 

différence de pression (∆p) ou la dénivellation (h).   

 

Par l’application du théorème de Bernoulli entre le point 1 et 2 

𝑉1
2

2𝑔
+
𝑃1
𝜌𝑔

+ 𝑍1 =
𝑉2
2

2𝑔
+
𝑃2
𝜌𝑔

+ 𝑍2      

Z1=Z2 

𝑉1
2

2𝑔
+
𝑃1
𝜌𝑔

=
𝑉2
2

2𝑔
+
𝑃2
𝜌𝑔
 ⇒ 

𝑃1 − 𝑃2
𝜌𝑔

=  
𝑉2
2 − 𝑉1

2

2𝑔
  

Le débit est condtant le long de la conduite donc Q=cst 

⇒𝑉1𝑆1 = 𝑉2𝑆2 ⇒𝑉2 = 𝑉1
𝑆1
𝑆2
⇒𝑉2 = 𝑉1

𝜋𝐷1
2/4

𝜋𝐷2
2/4

 

𝑉2 = 𝑉1
𝐷1
2

𝐷2
2 

⇒ 
𝑃1 − 𝑃2
𝜌𝑔

=  

𝑉1
2𝐷1

4

𝐷2
4 − 𝑉1

2

2𝑔
⇒
𝑃1 − 𝑃2
𝜌

=  

𝑉1
2 (
𝐷1
4

𝐷2
4 − 1)

2
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𝑉1 = √

2(𝑃1 − 𝑃2)

𝜌 (
𝐷1
4

𝐷2
4 − 1)

 

En sachant la section S1 nous pouvons calculer le débit par la relation  

𝑄 = 𝑉1
𝜋𝐷1

2

4
 

 

f- Tube de Pitot. 

le tube de Pitot a pour bute de mesurer la vitesse d’écoulement dans un point a l’aide de la 

différence de hauteurs d’eau comme le montre la figure. 

 

  

Appliquant le théorème de Bernoulli entre A et A’  

𝑉𝐴
2

2𝑔
+
𝑃𝐴
𝜌𝑔

+ 𝑍𝐴 =
𝑉𝐴′
2

2𝑔
+
𝑃𝐴′
𝜌𝑔

+ 𝑍𝐴′      

De l’hydrostatique on a ; 

𝑃𝐴
𝜌𝑔

=
𝑃𝐵
𝜌𝑔

=
𝑃𝑎𝑡𝑚 + 𝜌𝑔ℎ𝐵

𝜌𝑔
 

Donc  

𝑉𝐴
2

2𝑔
+
𝑃𝑎𝑡𝑚 + 𝜌𝑔ℎ𝐵

𝜌𝑔
+ 𝑍𝐴 =

𝑉𝐴′
2

2𝑔
+
𝑃𝑎𝑡𝑚
𝜌𝑔

+ 𝑍𝐴′  ⇒  
𝑉𝐴
2

2𝑔
  = 𝑍𝐴′ − 𝑍𝐴 − ℎ𝐵   

⇒
𝑉𝐴
2

2𝑔
= ℎ𝐴′ − ℎ𝐵  ⇒

𝑉𝐴
2

2𝑔
= ∆ℎ 

Soit ; 
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𝑉𝐴 = √2𝑔∆ℎ 

IV.5. Application. 

Exercice 1 :  

Soit un fluide supposé incompressible (eau) qui s’écoule à travers un tube de venturi représenté 

par la figure 1.  

Données : ρm = 13.6 103 kg/m3 ρeau = 103 kg/m3 V1= 6m/s D1= 25 cm  
-On demande de calculer le diamètre D2 si p1= p2  

-Si cette pression (p2) est de 12N/cm2, quelle est la valeur de ∆h ? 

Exercice 2 :  
Un tube de venturi est disposé sur une conduite d’eau incliné. Les tubes de liaison au manomètre sont 

remplis d’eau.  

1) Calculer la dénivellation ∆h du manomètre en fonction de V1, S1, S2, ρeau, ρm  

2) Calculer le débit volumique si ∆h = 90mm et D1= 200mm et D2= 90mm .  

 

 

 

 
 

𝑉1
2

2𝑔
+
𝑃1
𝜌𝑔

+ 𝑍1 =
𝑉2
2

2𝑔
+
𝑃2
𝜌𝑔

+ 𝑍2      

⇒ 
𝑃1 − 𝑃2
𝜌𝑔

=  
𝑉2
2 − 𝑉1

2

2𝑔
+ 𝑍2 − 𝑍1  

Le débit est condtant le long de la conduite donc Q=cst 

⇒𝑉1𝑆1 = 𝑉2𝑆2 ⇒𝑉2 = 𝑉1
𝑆1
𝑆2
⇒𝑉2 = 𝑉1

𝜋𝐷1
2/4

𝜋𝐷2
2/4

 

𝑉2 = 𝑉1
𝐷1
2

𝐷2
2 

⇒ 
𝑃1 − 𝑃2
𝜌𝑔

=  

𝑉1
2𝐷1

4

𝐷2
4 − 𝑉1

2

2𝑔
+ 𝑍2 − 𝑍1 
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⇒𝑃1 − 𝑃2 =  𝜌
𝑉1
2(
𝐷1
4

𝐷2
4−1)

2
 + 𝜌𝑔(𝑍2 − 𝑍1)………..I 

 

 

 

𝑃𝑎 = 𝑃1 + 𝜌𝑔(𝐿 + 𝑧 + ∆ℎ) 

𝑃𝑏 =  𝑃2 + 𝜌𝑔𝐿 + 𝜌𝑚𝑔∆ℎ) 

𝑃1 − 𝑃2 = (𝜌𝑚 − 𝜌)𝑔∆ℎ −  𝜌𝑔𝑧 

𝑃1 − 𝑃2 = (𝜌𝑚 − 𝜌)𝑔∆ℎ − 𝜌𝑔(𝑍2 − 𝑍1) …… . . 𝐼𝐼 

𝐷𝑒 𝐼  𝑒𝑡 𝐼𝐼  (𝜌𝑚 −𝜌)𝑔∆ℎ− 𝜌𝑔(𝑍2 − 𝑍1) =  𝜌

𝑉1
2 (
𝐷1
4

𝐷2
4 − 1)

2
 + 𝜌𝑔(𝑍2 − 𝑍1) 

∆ℎ =

𝜌𝑉1
2 (
𝐷1
4

𝐷2
4 − 1)

2𝑔(𝜌𝑚 − 𝜌)
  

𝑉1 = √

2𝑔(𝜌𝑚 − 𝜌). ∆ℎ

𝜌 (
𝐷1
4

𝐷2
4 − 1)

 

V1=0,97 

 

𝑄 = 𝑉1 . 𝑆1 = 𝑉1 .
𝜋𝐷1²

4
= 0,97 .

𝜋0,2²

4
 

𝑄 = 0,03𝑚3/𝑠 = 30𝑙/𝑠 
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Chapitre V 

 Dynamique des fluides réels 
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V.1. Introduction  

Avant d’entamer ce sujet il faut prendre une idée sur la notion du turbulence ce phénomène 

est bien décrit par le physicien Osborne Reynolds. 

V.2. Nombre de Reynolds et régime d’écoulement. 

Le nombre de Reynolds est sans dimension et représente le rapport entre les force d’inertie et 

les forces de viscosité, ce nombre est définie par la relation suivante ; 

𝑅𝑒 =
𝑉𝐷𝜌

𝜇
=
𝑉𝐷

𝜈
 

 

D : Diamètre de la conduite. 

V : Vitesse moyenne d’écoulement. 

ρ : Masse volumique du liquide. 

μ : Viscosité dynamique. 

ν : Viscosité cinématique  

Pour les dans les conduites trois régimes sont distingués ; 

Régime laminaire : Les fils de courant sont en parallèles avec un mouvement calme.   

Régime turbulent : apparition d’un mouvement turbulent agité. 

Régime transitoire : Est un état de transition entre le régime laminaire et turbulent. 

 Régime laminaire ………..Re≤2000 

 Régime turbulent ……….. Re≥3000 

 Régime transitoire ……….2000<Re<3000   

V.3. Théorème de BERNOULLI pour fluides réels. 

Le frottement des couches du fluide entre elles et avec les parois de la conduite engendre une 

perte d’énergie du fluide cette perte est appelé perte de charge d’où l’équation de Bernoulli 

s’écrire comme suit ; 
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𝑉1
2

2𝑔
+
𝑃1
𝜌𝑔

+ 𝑍1 =
𝑉2
2

2𝑔
+
𝑃2
𝜌𝑔

+ 𝑍2 + ∆𝐻1,2      

 

∆H1,2 : Perte de charge totale entre deux point 1 et 2 

La perte de charge dans une conduite est proportionnelle a la longueur de cette conduite, cette 

proportionnalité est exprimée par le coefficient de perte de charge noté par la lettre grec λ. 

Avec ; 

∆𝑃1,2
𝜌𝑔

= ∆𝐻1,2 = λ
𝑉2

2𝑔
 
𝐿

𝐷
 

 

λ : Coefficient de perte de charge. 

L : Longueur entre les deux points considérés. 

V : Vitesse moyenne d’écoulement. 

D : Diamètre de la conduite. 

Le coéfficient de perte de charge λ est calculé par les formules suivantes ; 

Loi de Poiseuille  λ =
64

𝑅𝑒
    Pour un régime laminaire. 

La loi de Blasius  λ = 0,316 𝑅𝑒
−1/4

  Pour régime turbulent et conduite lisse. 

La loi de Blench λ = 0,79√
𝜀

𝐷
  Pour régime turbulent et conduite rugueuse  

ε : Rugosité. 

 

D’une façon plus généralisée et pour tous les cas possibles, on peut définir λ par le diagramme 

de Moody.  
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On distingue deux types de perte de charge  

Perte de charge linéaire (∆Hl), présentées précédemment. 

Perte de charge singulière (∆Hs) liées au singularité trouvées dans la trajectoire de l’écoulement 

(Coude, divergence, convergence, vanne…) , sont données par la relation suivante ; 

∆𝐻𝑠 = 𝐾
𝑉2

2𝑔
  

K : Coefficient de perte de charge singulière dépend de caractéristiques de la singularité. 

 

 

 

Diagramme de Moody 
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V.4. Application  

Exercice 1 : 

Du pétrole de viscosité μ=0.11 Pa.s et de densité 0.9 circule dans une conduite de longueur 

1650m et de diamètre 25cm à un débit volumique 19.7 l/s.  

- Déterminer la viscosité cinématique du pétrole dans le système SI et le système CGS  

- Calculer la vitesse de l’écoulement.  

- Calculer le nombre de Reynolds et en déduire la nature de l’écoulement.  

- Déterminer le coefficient de perte de charge linéaire et calculer la perte de charge dans la 

conduite 

Solution 

- La viscosité cinématique 

ν =
𝜇

𝜌
=
0,11

900
= 1,22 . 10−4 𝑠𝑡 

- La vitesse de l’écoulement 

𝑉 =
𝑄

𝑆
=

𝑄

𝜋𝐷2/4
=
4 . 19,7  10−3

𝜋 0,25²
= 0,40 𝑚 /𝑠 

 

- Le nombre de Reynolds 

𝑅𝑒 =
𝑉𝐷

𝜈
=

0,40 .  0,25

1,22 .  10−4
=819,67  

𝑅𝑒 = 819,67 < 2000 donc le régime est laminaire  

𝜆 =
64

𝑅𝑒
=

64

819,67
= 0,078 

∆𝐻 =
𝜆𝐿 𝑉2

2𝑔𝐷
=
0,078 . 1650 . 0,4² 

2 . 9,81 .  0,25
= 4,20𝑚 

Exercice 2 :  

Déterminer la perte de charge et la perte de pression d’une huile de densité 0.8 et de 

viscosité 9 cSt s’écoulant dans une conduite de 20 cm de diamètre et de rugosité absolue ε = 

0.25mm 

et de longueur 300m si le débit est de 120 litres par seconde. 

Solution. 

∆𝐻 =
𝜆𝐿 𝑉2

2𝑔𝐷
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𝑉 =
𝑄

𝑆
=

𝑄

𝜋𝐷2/4
= 

0,12

𝜋0,22/4
= 3,82 𝑚/𝑠          Q=120 l/s=0,12m3/s 

𝑅𝑒 =
𝑉𝐷

𝜈
= 
3,82 . 0,2

9 .  10−6
= 8,5 . 104 

𝑅𝑒 = 8,5 . 10
4 > 2000   Donc le régime est turbulent  

On a  

{
𝑅𝑒 = 8,5 . 10

4 > 2000  (régime est turbulent)
𝐿𝑎 𝑐𝑜𝑛𝑑𝑢𝑖𝑡𝑒 𝑒𝑠𝑡 𝑟𝑢𝑔𝑒𝑢𝑠𝑒 𝜖 = 0,25 𝑚𝑚           

     

Donc on utilise le diagramme de Moody  

Re=8,5 . 104      et        
𝜖

𝐷
= 

0,25.10−3

0,2
= 1,25 10−3 

Du diagramme on trouve λ≈ 0,019 

∆𝐻 =
𝜆𝐿 𝑉2

2𝑔𝐷
=
0,019 . 300 . 3,82²

2 .  9,81 .  0,20
= 21,20 𝑚 

La perte de charge exprimé en pression ; 

∆𝑃 = 𝜌𝑔∆𝐻 = 800 . 9,81 . 21,20 = 166,38𝑘𝑝𝑎 

Exercice 3 : 

Une conduite constituée de deux tronçons (fig) de diamètres et de longueurs différentes 

transportant une huile de masse volumique ρh = 850 kg/m3 et de viscosité cinématique 10-5 

m2/s  

- Calculer la différence de pression entre l’entrée et la sortie de la conduite sachant que :  

L1= 5m L2 = 0.2m D1 = 20mm D2 = 5 mm V1 = 0.5 m/s Kc = 0 

 

Exercice 4 : 

Un jet d’eau est alimenté à parti d’un réservoir de grandes dimensions au moyen d’une pompe 

centrifuge de débit volumique de 2 l/s, à travers une conduite de longueur 15m et de diamètre 

intérieur de 3cm. La conduite présente un coude de 90° (Kc=0.3), μ eau = 10-3 Pa.s  

1) Calculer la vitesse de l’écoulement  
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2) Calculer le nombre de Reynolds et préciser la nature de l’écoulement  

3) Calculer le coefficient de perte de charge  

4) Calculer la perte de charge totale dans le circuit  

5) Calculer la puissance nette de la pompe  

6) En déduire la puissance absorbée (Pa) par la pompe sachant que son rendement est de 75%  

 

 

 

Réponse ; V=2,83 m/s , Re= 84900, λ=0,018 , ∆H=3,8 , Pn=211,74 wat 

Pa=282,3 wat 
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