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ABSTRACT



Abstract 

Quadcopters are widely applied in surveillance, inspection, monitoring, and delivery, where precise 

trajectory tracking and energy efficiency are critical under uncertain environments. This work 

presents advanced control strategies that combine nonlinear design, heuristic optimization, and 

neural adaptation to address these challenges. First, a nonlinear backstepping controller is developed 

for the six-degree-of-freedom dynamics of the quadcopter. To overcome manual gain selection, 

nature-inspired algorithms such as Grey Wolf Optimizer (GWO), Garra Rufa Optimization (GRO), and 

Pelican Optimization Algorithm (POA) are employed for automatic tuning. Simulations confirm 

improved accuracy and robustness against wind disturbances compared to traditional methods. 

Second, energy-efficient flight control is achieved through a Linear Quadratic Regulator (LQR) with 

adaptive weighting matrix tuning. A hybrid scheme using GWO and feedforward neural networks 

(FNNs) adjusts performance and control effort weightings, reducing actuator load while maintaining 

stability. The first framework, particularly with POA, ensures robustness, adaptability, and accurate 

path tracking, while the second achieves reliable trajectory following with improved energy efficiency 

based on the enhancement of FNNs. 

Résumé 

Les quadricopte res sont largement utilise s dans la surveillance, l’inspection, le suivi environnemental 

et la livraison, ou  la pre cision du suivi de trajectoire et l’efficacite  e nerge tique sont essentielles dans 

des environnements incertains. Ce travail propose des strate gies de contro le avance es combinant 

conception non line aire, optimisation heuristique et adaptation neuronale pour relever ces de fis. 

Tout d’abord, un contro leur backstepping non line aire est de veloppe  pour la dynamique a  six degre s 

de liberte  du quadricopte re. Afin de de passer les limites du re glage manuel des gains, des algorithmes 

inspire s de la nature tels que Grey Wolf Optimizer (GWO), Garra Rufa Optimization (GRO) et Pelican 

Optimization Algorithm (POA) sont utilise s pour un ajustement automatique. Les simulations 
confirment une ame lioration de la pre cision et de la robustesse face aux perturbations dues au vent 

par rapport aux me thodes traditionnelles. Ensuite, un contro le de vol e coe nerge tique est obtenu 

gra ce a  un re gulateur quadratique line aire (LQR) avec ajustement adaptatif des matrices de 

ponde ration. Un sche ma hybride combinant GWO et re seaux de neurones feedforward (FNNs) ajuste 

les ponde rations lie es a  la performance et a  l’effort de contro le, re duisant ainsi la charge des 

actionneurs tout en maintenant la stabilite . Le premier cadre, en particulier avec le POA, assure 

robustesse, adaptabilite  et suivi pre cis des trajectoires, tandis que le second permet un suivi fiable 

avec une meilleure efficacite  e nerge tique gra ce a  l’ame lioration des FNNs. 

 ملخص

ي المراقبة، التفتيش، المتابعة البيئية، وخدمات التوصيل، حيث يُعَد تتبع المسار بدقة م 
خدم الطائرات الرباعية على نطاق واسع ف 

َ
ست

ُ
ع  ت

  ، الخطي غير  التحكم  بير   تجمع  متقدمة  تحكم  اتيجيات  اسير العمل  هذا  م 
ّ
يقد المؤكدة.  غير  البيئات  ي 

ف   
ً
أساسيا  

ً
أمرا الطاقة  كفاءة 

ي الجزء الأول تم تطوير متحكم   الخوارزميات 
. ف  ي غير خطي لمعالجة ديناميكيات   Backstepping المستوحاة من الطبيعة، والتعلم العصب 

اعتماد خوارزميات مثل  الدقة   POA وخاصة  GRO و  GWO الطائرة ذات ست درجات حرية، مع   وتحسير  
ً
تلقائيا المكاسب  لضبط 

ي 
ي تم اعتماد منظم رباعي خطي   والقدرة على مقاومة الاضطرابات كالرياح. ف 

الثان  لتحقيق تحكم موفر للطاقة، حيث تم   (LQR) الجزء 

ي باستخدام مزي    ج من 
ي تقليل جهد المشغلات مع   FNNs والشبكات العصبية GWO تعديل مصفوفات الوزن بشكل تكيف 

مما ساهم ف 

النتائج أن الإطار الأول، خاصة مع  للمسار، بينما يحقق  ، يو POA الحفاظ على الاستقرار. وقد بينت 
ً
 دقيقا

ً
المتانة والتكيف وتتبعا فر 

 مع كفاءة طاقية محسّنة بفضل
ً
 موثوقا

ً
ي تتبعا

 .FNNs   الإطار الثان 
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GENERAL INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs), and particularly quadcopters, have
emerged as a prominent area of research and development within the fields of robotics,
aerospace engineering, and autonomous systems. Their capacity for vertical takeoff and
landing (VTOL), stable hovering, and operation in confined or complex environments has
made them indispensable across numerous civil and industrial domains. Applications now
include environmental monitoring, disaster response, precision agriculture, infrastructure
inspection, and surveillance. Within this context, the quadcopter platform is especially
notable for its relatively simple mechanical structure, agile flight characteristics, and high
potential for fully autonomous operation.

Despite these advantages, quadcopters present a distinct set of control challenges.
From a systems engineering perspective, they exhibit nonlinear, coupled, and
underactuated dynamics. Their performance is particularly sensitive to external influences
such as wind disturbances, payload variations, and actuator faults. As a result, the design
of reliable and robust control strategies remains a central concern in their development [1].
Traditional control techniques—most notably the Proportional–Integral–Derivative (PID)
controller—are still widely employed due to their intuitive structure and suitability for
real-time implementation. However, the limitations of PID-based control become apparent
in the presence of high uncertainty or strongly nonlinear behavior. Consequently, advanced
methods such as the Linear Quadratic Regulator (LQR), Sliding Mode Control (SMC),
Backstepping, and Model Predictive Control (MPC) have been adopted. These techniques
offer improved robustness, optimality, and stability across a broader range of operating
conditions [2].

Alongside these model-based strategies, recent years have seen a growing interest in
intelligent and adaptive control methodologies. Artificial intelligence–inspired approaches,
including Artificial Neural Networks (ANNs), Fuzzy Logic Controllers, and Reinforcement
Learning (RL), have shown promise in dealing with uncertain or time-varying dynamics [3].
These methods are capable of adapting to unforeseen conditions and learning complex
behaviors without requiring explicit dynamic models. Hybrid control architectures that
combine classical control theory with machine learning or metaheuristic optimization
techniques are of particular interest. Such systems capitalize on the stability and
predictability of analytical control models while incorporating the flexibility and
adaptability of data-driven approaches.

This doctoral work contributes to the field of quadcopter control by addressing the
dual challenges of trajectory tracking and intelligent adaptation. The thesis is structured
into four main chapters. Chapter I provides a comprehensive review of UAV classifications,
propulsion technologies, and established control frameworks. It critically examines the
advantages and limitations of existing approaches, identifying key challenges, particularly
in achieving real-time adaptation and resilience to disturbances.
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Chapter II develops a detailed nonlinear dynamic model of the quadcopter using the
Newton–Euler formalism. The modeling incorporates both translational and rotational
dynamics, along with actuator constraints and aerodynamic effects such as drag. Two
modeling approaches are explored: the direct formulation through motion equations and
the linear state-space representation. This model is implemented in MATLAB/Simulink to
facilitate the design and evaluation of various control strategies. Supporting details are
provided in Annex I.

Chapter III is dedicated to the design and analysis of a nonlinear Backstepping
controller for trajectory tracking. While Backstepping offers improved stability over linear
controllers, it depends on fixed gain parameters that may not perform effectively under
diverse flight conditions or environmental disturbances. To address this limitation, three
metaheuristic optimization algorithms are introduced: the Grey Wolf Optimizer (GWO),
the Garra Rufa Optimizer (GRO), and the Pelican Optimization Algorithm (POA). These
algorithms are used to automatically tune the Backstepping controller’s gains. The
optimized controllers are tested across multiple simulation scenarios, including spiral and
zigzag trajectories and cases with external disturbances such as wind. Results, presented in
Annex II, demonstrate significant improvements in tracking accuracy, system stability, and
energy efficiency.

Building on the work of Chapter III, Chapter IV presents the central contribution of
this thesis: the development of a hybrid controller that combines the LQR technique with
a Feedforward Neural Network (FNN). This approach leverages the optimal control
capabilities of LQR in linear regions while enabling real-time adaptability through the
learning features of the FNN. The neural network is trained to predict optimal LQR gains
based on the current state of the quadcopter, thus enabling dynamic adjustment of the
control parameters. This hybrid controller is evaluated through simulation and
benchmarked against conventional LQR and other advanced control methods. The results,
detailed in Annex II, show that the FNN-enhanced LQR controller delivers superior
performance in terms of trajectory accuracy, control effort, and robustness, particularly in
nonlinear and uncertain environments.

The overarching objectives of this research are to design a robust and intelligent
control framework for quadcopter navigation, enhance trajectory tracking performance
under nonlinear and disturbed conditions, and reduce energy consumption during flight.
While this study is simulation-based, the findings are intended to form the basis for future
experimental validation. Potential directions for continued research include hardware
implementation of our work, integration with Model Predictive Control (MPC) techniques
for real-time tuning, and the extension of the hybrid framework to swarm robotics
applications for coordinated multi-UAV missions. In fulfilling these objectives, the thesis
addresses the themes encapsulated in its title: Intelligent Control, Trajectory Planning, and
Optimization of a Miniature Drone. The outcomes of this work are intended to contribute
meaningfully to both theoretical and practical advancements in autonomous aerial robotics.
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CHAPTER I : STATE OF THE ART OF DRONES

I.1 Introduction

Drones, formally known as UAV, have rapidly evolved into a groundbreaking technology
with far-reaching impacts across military, commercial, and recreational sectors. Their
capacity to operate either autonomously or through remote control has redefined
operational standards in fields such as agriculture, surveillance, logistics, environmental
monitoring, and cinematography .

The swift progression of drone capabilities is largely fueled by continuous innovations in
control systems, lightweight and durable materials, and the integration of artificial
intelligence. These advancements have not only enhanced performance and efficiency but
have also expanded the scope of drone applications in both urban and remote
environments.

This chapter offers a detailed exploration of drone technology. It begins by defining UAVs and
tracing their historical development, providing context for how they have transitioned from
military prototypes to mainstream tools. The chapter then presents a clear classification of
drone types, highlighting differences in design, functionality, and application areas.

A core focus is placed on the evolution of drone control systems, tracing the journey from
basic manual controls to advanced autonomous navigation and trajectory tracking. Special
attention is given to current state-of-the-art techniques, including AI-driven flight control,
adaptive learning algorithms, and predictive modeling [1].

The chapter concludes by summarizing key insights and identifying emerging trends and
future research directions in drone technology. As UAVs continue to evolve, they are poised
to play an increasingly integral role in shaping modern industries and redefining what’s
possible in aerial operations.

I.2 Definition of Drone

A drone, also referred to as an Unmanned Aerial Vehicle, is an aircraft that flies without a
human pilot onboard. Instead, it is operated either remotely by a human operator or
autonomously through pre-programmed flight paths or advanced onboard automation
systems. These versatile machines have become an essential tool in various domains, from
aerial photography to military surveillance [2].

The term "drone" encompasses a broad range of aerial vehicles, from compact, lightweight
quadcopters widely used in consumer photography and commercial applications, to large
fixed-wing UAVs engineered for long-range reconnaissance, search and rescue, or defense
operations [2].
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Figure I.1: Drone, UAV, Quadcopter, X4.

Despite their varying sizes & purposes, they share a fundamental set of core components:
• Airframe: The structural body of the drone that holds all other systems together.

Its design can vary widely depending on the drone’s function, from compact, foldable
builds to large, aerodynamic forms [3].

• Propulsion System: Typically consisting of electric motors paired with propellers,
though larger drones may use internal combustion engines or hybrid systems for
extended endurance [4].

• Flight Controller: The "brain" of the drone, this onboard computer collects data
from sensors and issues real-time control commands to maintain stability, execute
maneuvers, and follow navigation paths [5].

• Sensors: Critical for navigation and situational awareness, sensors include
accelerometers, gyroscopes, GPS modules, barometers, and various visual sensors
such as cameras, LiDAR, or infrared systems [5].

• Communication Systems: These enable the exchange of data and control signals
between the drone and a ground control station, often using radio frequencies, Wi-Fi,
or even satellite links for long-range missions [5].

Figure I.2: Shima’s Graphic of Drone Components.
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A defining characteristic of drones (Figure I.2 ) is their level of autonomy, which can vary
significantly. Some drones are fully manual, requiring constant input from a remote
operator, while others are semi-autonomous, capable of executing pre-defined tasks with
limited human oversight. At the cutting edge, fully autonomous drones can adapt in
real-time to their environment, make complex decisions, and complete missions with little
to no human intervention.
As drone technology continues to evolve, the distinction between manned and unmanned
aviation grows increasingly blurred, marking a shift toward smarter, more independent aerial
systems.

I.3 Historical Evolution of Drones

The concept of UAVs, now commonly known as drones, has evolved dramatically over the
past century. From early experimental prototypes to intelligent flying machines capable of
autonomous missions, the history of drones is a testament to human ingenuity and
technological advancement. This timeline outlines key milestones and the shifting roles of
UAVs across different eras.

I.3.1 Early Developments (1910s–1940s)

The origins of drone technology can be traced to the early 20th century, driven primarily by
military experimentation and the need to reduce human risk in aerial warfare [6].

• 1916 – The Hewitt-Sperry Automatic Airplane: Often considered the first true
UAV prototype, this pilotless biplane was designed during World War I to deliver
explosives without risking a pilot’s life. Although it was never used in combat, it laid
the groundwork for future autonomous flight systems [7.blanchard20191].

• 1930s – Radioplane OQ-2: Developed by actor-turned-inventor Reginald Denny,
the OQ-2 was one of the first mass-produced drones in the United States. Used as a
target for anti-aircraft gunnery training, it marked a shift toward practical military
drone applications [7].

• 1944 – German V-1 Flying Bomb ("Buzz Bomb"): Deployed during World War
II, the V-1 was a pulse-jet-powered UAV used by Nazi Germany to carry out bombing
missions over London and other Allied targets. It was one of the first UAVs used in
offensive combat, capable of flying preset trajectories without a pilot [7].

I.3.2 Cold War Era (1950s–1980s)

The Cold War catalyzed rapid development in drone technology, as the U.S. and the Soviet
Union raced to dominate the skies with increasingly sophisticated reconnaissance and target
drones as shown in Figure I.3.
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Figure I.3: Historical Overview of Drone Development in the Cold War Era.

• 1950s–1960s – Emergence of Tactical Target Drones: Drones like the Ryan
Firebee, launched by the U.S. Air Force, were widely used for gunnery practice and
later modified for reconnaissance roles. Firebees could be launched from aircraft or
ground stations and recovered by parachute, proving their versatility in training and
intelligence gathering [8].

• 1960 – Use of UAVs in the Vietnam War: The U.S. deployed modified Firebee
drones for photographic reconnaissance over hostile territory. These missions
demonstrated the strategic advantage of UAVs in collecting data without risking
human pilots [8].

• 1970s–1980s – Lockheed D-21: The Lockheed D-21 was a high-speed,
high-altitude UAV designed to be launched from a modified A-12 (precursor to the
SR-71 Blackbird). Though short-lived due to technical issues, it was a bold step in
autonomous long-range drone design [9].

I.3.3 Modern Era (1990s–Present)

The modern era has seen drones evolve from military assets into indispensable tools across
numerous industries. The combination of miniaturized sensors, powerful processors, and
improved communications technology has expanded their capabilities as seen in Figure I.4.

• 1990s – MQ-1 Predator and Military Dominance: Developed by General
Atomics, the MQ-1 Predator transformed drone warfare. Equipped with
long-range surveillance cameras and, later, air-to-ground missiles, it enabled remote
strikes and intelligence operations in real time. Its effectiveness during operations in
the Balkans and Middle East redefined modern warfare tactics [10].
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• 2000s – Rise of the Consumer Drone Market: Technological advancements in
GPS, lithium-polymer batteries, and brushless motors led to the development of
affordable and compact drones. Companies like DJI revolutionized the market with
drones like the Phantom series, empowering photographers, filmmakers, and
hobbyists with professional-grade aerial tools [10].

• 2010s – Smart Drones and Civilian Applications: The integration of AI,
machine learning, and computer vision ushered in a new generation of smart
drones. These UAVs could follow subjects autonomously, avoid obstacles, and map
terrain with incredible precision. It’s began to be widely used in precision
agriculture, infrastructure inspection, search and rescue missions, disaster relief, and
parcel delivery (e.g., Amazon Prime Air and Zipline for medical supply delivery in
Africa) [11].

• 2020s to Present–Toward Full Autonomy and Swarm Intelligence: The
latest frontier includes autonomous drone swarms, beyond visual line of sight
(BVLOS) operations, and urban air mobility (UAM) concepts. Companies and
research institutions are developing drones that can make independent decisions in
complex environments, while regulators worldwide grapple with safety, airspace
integration, and ethical concerns [12].

Figure I.4: Modern evaluation of Drones.
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I.3.4 Technological Drivers Behind Drone Evolution

The remarkable evolution of drones over the last few decades has been fueled by rapid
advancements across multiple areas of science and engineering. These technological
breakthroughs have collectively transformed UAVs from simple remote-controlled aircraft
into intelligent, adaptive, and highly capable aerial systems [1][5][13]. Below are the key
drivers that have shaped this transformation:

• Miniaturization of Electronics: Advances in microelectronics have enabled
critical drone components, including processors, sensors, and communication
modules, to become smaller, lighter, and more power-efficient. This has enabled even
compact drones to carry sophisticated payloads including high-resolution cameras,
GPS modules, inertial sensors, and real-time communication systems [13]. Consumer
drones like the DJI Mini-series now offer 4K video and advanced stabilization in
palm-sized frames, while micro-drones can be deployed indoors or in tight urban
environments for surveillance [13].

• Improvements in Battery Efficiency and Power Systems: Battery technology,
particularly lithium-polymer (Li-Po) and lithium-ion batteries, has significantly
improved in energy density, charge/discharge rates, and weight-to-power ratios.
These improvements have extended drone flight times, increased payload capacity,
and enabled longer mission durations [11]. High-end drones now routinely achieve
30–60 minutes of flight time, while solar-powered drones and fuel-cell prototypes
are pushing toward multi-hour or even multi-day endurance capabilities [11].

• Global Navigation Satellite Systems (GNSS): GNSS technologies, including
GPS (U.S.), GLONASS (Russia), Galileo (EU), and BeiDou (China), have
revolutionized drone navigation and positioning. These systems provide real-time
geolocation data with centimeter-level accuracy when paired with RTK (Real-Time
Kinematic) or PPK (Post-Processing Kinematic) corrections [7]. Precision
agriculture drones use GNSS to perform centimeter-accurate crop spraying, while
mapping drones rely on it for creating detailed topographic surveys [7].

• Advanced Control Algorithms and Real-Time Feedback Systems: Modern
drones leverage complex control algorithms, such as PID
(Proportional-Integral-Derivative) controllers, model predictive control, and
nonlinear adaptive systems to maintain flight stability and respond to environmental
changes. These algorithms allow drones to execute precise maneuvers, hover in
turbulent conditions, and follow complex flight paths automatically [4].
Cinematography drones can now autonomously track moving subjects and avoid
collisions, while delivery drones are capable of landing precisely at designated
locations, even in dynamic or windy environments [4].
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• Connectivity and Communication Advancements:

From traditional radio frequency (RF) systems to modern Wi-Fi, cellular
(4G/5G), and satellite communication, drones are now more connected than ever.
Enhanced connectivity allows for long-range control, real-time video streaming,
telemetry sharing, and swarm coordination [14]. BVLOS (Beyond Visual Line of Sight)
operations, such as Zipline’s medical supply deliveries in remote areas, are now possible
through reliable cellular or satellite communication links [14].

• Artificial Intelligence and Onboard Computing: Onboard AI, combined with
edge computing hardware like NVIDIA Jetson, Raspberry Pi, or custom neural
processors, has turned drones into autonomous agents capable of real-time decision-
making. AI enables drones to analyze visual data, detect objects, plan routes, avoid
obstacles, and adapt to unexpected situations without human input [11]. AI-powered
drones are used in disaster zones to identify survivors, in agriculture to detect crop
disease, and in industrial settings for predictive maintenance and anomaly detection
[11].

• Sensor Fusion and Environmental Awareness: Combining inputs from multiple
sensors, such as LiDAR, ultrasonic sensors, thermal cameras, and vision-based SLAM
(Simultaneous Localization and Mapping), allows drones to develop a detailed
understanding of their surroundings [15]. Sensor fusion enhances flight safety,
obstacle avoidance, and autonomous navigation in GPS-denied environments. Drones
can now navigate indoors, inside mines, under bridges, or through forests, where
traditional GPS-based navigation would fail [15].

Together, these technological drivers have not only expanded the functional capabilities of
drones but also broadened their accessibility and affordability across industries. As these
technologies continue to advance, the next generation of UAVs will be even smarter, more
efficient, and capable of tasks once thought impossible for unmanned systems.
From their early days as experimental flying bombs to today’s sophisticated autonomous
systems, drones have transformed from military curiosities into versatile tools that are
reshaping industries and redefining our interaction with the skies.

I.4 Types of Drones

Drones come in a wide array of shapes, sizes, and functionalities, tailored to meet the
diverse demands of industries, governments, and individuals [11]. They can be classified
across several axes, primarily by their design (aerodynamic structure), propulsion system,
and intended application. Understanding these categories provides valuable insight into how
drones are engineered and where they are most effectively deployed.
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I.4.1 Classification by Design

The aerodynamic design of a drone directly influences its flight capabilities, including
endurance, maneuverability, speed, and payload capacity.

Fixed-Wing Drones

Fixed-wing drones (Figure I.5) resemble traditional airplanes, featuring a rigid wing structure
that generates lift as the drone moves forward. Unlike rotary-wing drones, they cannot hover
but are highly efficient in forward flight, making them ideal for covering long distances or
large areas [16].

• Use Cases: These drones are often used in military reconnaissance, border patrol,
and large-scale agricultural monitoring.

• Advantages: Long endurance (often exceeding several hours), high cruising speeds,
and ability to operate at higher altitudes.

• Limitations: Require runways or catapult systems for launch and landing, and are
less suitable for confined or urban environments.

Figure I.5: Show of Fixed-Wing Drones

Rotary-Wing Drones

Rotary-wing drones, the most common being quadcopters, utilize multiple rotors to generate
lift and maintain stable hovering Figure I.6). This category also includes hexacopters (6
rotors) and octocopters (8 rotors), which offer redundancy and increased payload capacity
[16].
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• Use Cases: Widely used in aerial photography, surveillance, search and rescue, and
infrastructure inspection.

• Advantages: Vertical takeoff and landing (VTOL), excellent stability, and precise
maneuverability in tight spaces.

• Limitations: Shorter flight times due to higher energy consumption and limited
aerodynamic efficiency.

Figure I.6: Exemple of Rotary-Wing Drone.

Hybrid Drones (VTOL Drones)

Hybrid drones combine the vertical lift capability of rotary systems with the efficient forward
flight of fixed wings as shown in Figure I.7. Typically designed with tiltable rotors or separate
lift and cruise systems, these drones offer the best of both worlds [6].

• Use Cases: Used in mapping, surveying, and emergency logistics where space is
constrained but range is essential.

• Advantages: Can take off and land vertically like a helicopter while cruising like an
airplane, increasing operational flexibility [6].

• Limitations: Often more mechanically complex and expensive than purely fixed- or
rotary-wing systems.

Figure I.7: VTOL Hybrid Drone.
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I.4.2 Classification by Propulsion System

The propulsion system defines how a drone is powered and, by extension, influences flight
duration, altitude capabilities, and noise profile.

Electric Drones

Powered by rechargeable batteries, electric drones (Figure I.8) dominate the consumer and
light commercial markets due to their simplicity, low maintenance, quiet operation [10].

• Use Cases: Ideal for photography, mapping, agriculture, and delivery services
in urban areas.

• Advantages: Low noise, environmentally friendly, and easy to operate with minimal
infrastructure.

• Limitations: Limited by battery life, typically offering 20–40 minutes of flight per
charge depending on the drone size and payload [10].

Figure I.8: Type of Electrical Drone.

Combustion Engine Drones

These drones use gasoline, diesel, or heavy fuels and are typically deployed in military or
industrial scenarios where long-endurance missions are required [17](Figure I.9).

• Use Cases: Suited for long-range surveillance, aerial spraying, and maritime
operations.

• Advantages: Extended flight time (several hours), greater payload capacity, and
suitability for large-scale missions.

• Limitations: Noisier, heavier, more maintenance-intensive, and less eco-friendly
compared to electric drones.
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Figure I.9: Type of Combustion Engine Drone.

I.4.3 Classification by Application

The practical uses of drones are diverse, spanning defense, commercial industries, public
safety, and personal entertainment. Each category of drone is optimized for the specific
needs of its intended environment.

Military Drones

Designed for strategic missions, military drones are capable of operating in hostile or GPS-
denied environments, often carrying advanced surveillance equipment or precision weaponry
[17].

• Examples: The MQ-9 Reaper, a high-altitude drone used by the U.S. Air Force for
both intelligence gathering and armed strikes.

• Capabilities: Long endurance (up to 27 hours), high-altitude operation, real-time
data transmission, stealth features, and advanced targeting systems [17].

Commercial Drones

Used across industries, commercial drones streamline workflows, reduce costs, and increase
safety in environments where human access is limited or inefficient.

• Use Cases:
✓ Agriculture: Crop health monitoring, irrigation planning, and pesticide

spraying [11].

✓ Logistics: Last-mile delivery services, including time-sensitive shipments like
medicines and lab samples [11].

✓ Construction & Infrastructure: Structural inspections, site mapping, and
thermal scanning for preventative maintenance [11].

• Examples: DJI’s Matrice 300 for industrial use and Wing (an Alphabet company)
for drone delivery (Figure I.10).
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Figure I.10: Commercial Drones « DJI’s Matrice 300 ».

Recreational Drones

Targeted at hobbyists and enthusiasts, these drones emphasize ease of use, portability, and
entertainment features like video capture, FPV (first-person view), and stunt flying [3].

• Use Cases: Aerial photography, cinematography, freestyle flying, and racing.
• Examples: The DJI Mini 4 Pro (Figure I.11) for casual photography or FPV

racing drones used in competitive drone sports.
• Features: Often include GPS stabilization, follow-me modes, automated flight paths,

and social media integration [3].

Figure I.11: Recreational Drones « DJI Mini 4 Pro ».

The sheer variety of drone types highlights the technology’s remarkable adaptability.
Whether flying over battlefields, scanning farmland, delivering vaccines, or capturing
breathtaking landscapes, drones are designed with purpose-driven engineering tailored to
each mission. As drone technology advances, hybrid models and modular platforms are
expected to further blur the lines between these classifications, opening the door to even
more specialized and versatile applications in the near future.
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I.5 State of the Art in Drone Control Systems

Drone control systems have seen a remarkable evolution, transitioning from simple
stabilization mechanisms to highly sophisticated frameworks that enable full autonomy,
intelligent decision-making, and even cooperative behavior among swarms. This section
explores the spectrum of control strategies developed over the years, grouped into five
major categories: classical, adaptive and robust, optimal, learning-based, and hybrid
control. We also examine cutting-edge advances in trajectory tracking, a critical challenge
in dynamic real-world environments.

I.5.1 Classical Control Methods

Classical control forms the backbone of early UAV development and is still widely used today
due to its simplicity, reliability, and ease of implementation.

PID Control (Proportional-Integral-Derivative)

PID controllers are ubiquitous in drone applications. They continuously adjust motor inputs
based on error signals, such as deviation from desired altitude, orientation, or velocity. The
proportional component corrects the present error, the integral accumulates past errors to
eliminate steady-state drift, and the derivative anticipates future trends based on the rate
of error change (Figure I.12) [18].

Figure I.12: Quadrotor flight control drone test rig.

• Strengths:

✓ Easy to implement and tune, widely supported by hardware.
✓ Lightweight computation suitable for real-time control on embedded systems.
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• Weaknesses:

✓ Poor performance under nonlinear dynamics or external disturbances.
✓ Requires extensive manual tuning for different flight conditions.

• Use Case:

✓ Stabilization and basic altitude/attitude control in hobbyist and entry-level
drones [18].

Backstepping Control

This Lyapunov-based method (Figure I.13) handles nonlinear systems by breaking down
their dynamics into nested subsystems. By stabilizing each subsystem recursively, the overall
drone behavior is tightly controlled [18].

• Strengths:

✓ Handles nonlinear dynamics effectively through recursive stability design.
✓ Offers better tracking performance than PID for complex maneuvers.

• Weaknesses:

✓ Computationally more intensive than PID.
✓ Requires precise modeling of system dynamics [18].

• Use Case:

✓ High-precision trajectory tracking, aggressive maneuvering (e.g., acrobatic
drones).

Figure I.13: Drones Controled by Backstepping Controller.
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Sliding Mode Control (SMC)

SMC introduces a switching control strategy to drive system states toward a desired
trajectory and maintain them there. It is known for robustness to disturbances and model
inaccuracies [19].

• Strengths:

✓ Robust to external disturbances and model uncertainties.
✓ Strong convergence guarantees under varying conditions.

• Weaknesses:
c

✓ Chattering effect causes high-frequency oscillations in actuators.

✓ May degrade mechanical components over time if not mitigated.

• Use Case:

✓ Outdoor drones facing wind gusts or sensor noise.

I.5.2 Adaptive and Robust Control

As drones move into unpredictable and dynamic environments, adaptive and robust control
strategies are vital for maintaining performance in the face of uncertainty.

Model Reference Adaptive Control (MRAC)

MRAC modifies control parameters on-the-fly to match the behavior of a predefined reference
model. For example, as the drone’s weight changes due to payload or battery discharge, the
controller adapts accordingly [19].

• Strengths:

✓ Online adaptability to changing drone parameters (e.g., mass, inertia).
✓ Good for handling model mismatches and unknown disturbances [19].

• Weaknesses:

✓ May suffer from stability issues if adaptation is too aggressive.
✓ Sensitive to noise and requires careful gain design.

• Use Case:

✓ Delivery drones adjusting for payload changes or battery drain during flight.
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H-infinity (H∞) Control

This technique optimizes the system’s worst-case performance, offering resilience against
disturbances and parameter variations [20].

• Strengths:
✓ Guarantees performance in worst-case disturbances or modeling errors [20].
✓ Well-suited for multi-objective trade-offs between robustness and performance

[20].
• Weaknesses:

✓ High complexity in controller design and tuning [20].
✓ Requires accurate linearized models around operating points [20].

• Use Case:
✓ Wind-resistant control for long-range surveillance drones.

Gain Scheduling

Instead of using one controller for all conditions, gain scheduling switches between pre-tuned
controllers based on measurable parameters (e.g., airspeed, altitude) [17].

• Strengths:
✓ Flexible control across varying flight regimes.
✓ Effective in handling nonlinearities through multiple operating points [17].

• Weaknesses:
✓ May result in performance gaps during transition between gains [17].
✓ Requires thorough pre-tuning and flight envelope knowledge.

• Use Case:
✓ VTOL drones transitioning between hover and forward flight.

I.5.3 Optimal Control Strategies

Optimal control frameworks aim to achieve the best possible performance according to a
mathematical cost function, balancing factors like control effort, trajectory deviation, and
fuel consumption.

Linear Quadratic Regulator (LQR)

LQR minimizes a quadratic cost function by regulating system states and minimizing energy
usage (Figure I.14). It works best with linearized models of drone dynamics [21].

• Strengths:

✓ Minimizes control effort and state error systematically.
✓ Simple to implement with known linear models.

• Weaknesses:

✓ Requires linearization, which limits accuracy for highly nonlinear dynamics [21].
✓ Sensitive to modeling inaccuracies.

18



CHAPTER I : STATE OF THE ART OF DRONES

• Use Case:

✓ Hover stabilization and smooth path following in GPS-guided drones.

Figure I.14: Flight Drone using LQR.

Linear Quadratic Gaussian (LQG)

LQG extends LQR by integrating Kalman filtering, a technique for estimating unmeasured
states and handling noisy sensor data [22].

• Strengths:

✓ Combines LQR with Kalman filtering for noise-resilient control [22].
✓ Suitable for systems with partial observability or sensor noise [22].

• Weaknesses:

✓ Increased computational cost compared to LQR.
✓ Can be sensitive to model inaccuracies and unmodeled disturbances.

• Use Case:

✓ Precision indoor navigation with noisy sensors (e.g., IMUs, barometers).

Computed Torque Control (CTC)

CTC compensates for the nonlinear dynamics by using inverse dynamics models. Once
linearized, classical controllers like PID or LQR can be used effectively [23].

• Strengths:

✓ Effectively linearizes nonlinear systems for high-accuracy control [23].
✓ Suitable for systems requiring precise trajectory tracking.

• Weaknesses:

✓ Requires detailed dynamic modeling.
✓ Prone to instability if model mismatches occur [23].
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• Use Case:

✓ Industrial inspection drones performing fine manipulations (e.g., power line
monitoring) [23].

I.5.4 Learning-Based Control

With the rise of AI, learning-based methods have enabled drones to operate in uncertain,
complex, and previously unmodeled environments.

Fuzzy Logic Control (FLC)

FLC uses human-like reasoning through heuristic rules such as "IF the drone is tilting left
AND wind is strong, THEN increase right rotor thrust." It’s highly flexible and requires no
accurate mathematical model [16].

• Strengths:

✓ Handles vague, imprecise input without needing accurate models [16].
✓ Easy to encode expert knowledge through rules.

• Weaknesses:

✓ Difficult to scale with system complexity [16].
✓ Rule tuning becomes unmanageable for high-DOF systems [16].

• Use Case:

✓ Mid-level control in unpredictable environments like forests or indoors.

Artificial Neural Networks (ANNs)

ANNs can approximate complex nonlinear dynamics and are often embedded within model
predictive frameworks [21].

• Feedforward ANNs: Used to learn and generalize system behavior from data [24].
• Recurrent ANNs (RNNs): Excellent for time-series prediction, handling wind gusts

or sudden changes in payload [24].
• Strengths:

✓ Excellent at approximating unknown nonlinear dynamics [24].
✓ Adaptability to new data makes them flexible for changing conditions [24].

• Weaknesses:
✓ Requires large training datasets and computational resources [24].
✓ Interpretability and stability are often difficult to guarantee [24].

• Use Case:
✓ Predictive control in urban navigation or anomaly detection during flight.
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Reinforcement Learning (RL)

RL enables drones to learn through interaction with their environment. Over time, the agent
optimizes its control policy by receiving rewards or penalties [12].

• Deep RL: Combines deep neural networks with RL, enabling real-time, end-to-end
control [15].

• Imitation Learning: Drones mimic expert pilots by learning from demonstration
data, useful for replicating human-level agility [16].

• Strengths:
✓ Learns optimal policies directly from interactions [12].
✓ Suitable for environments with high uncertainty and dynamic obstacles [12].

• Weaknesses:
✓ High sample complexity; training is resource-intensive [12].
✓ Transfer from simulation to real-world flight is non-trivial [12].

• Use Case:
✓ Drone racing, obstacle avoidance, and autonomous exploration.

I.5.5 Hybrid and Advanced Nonlinear Control

Hybrid control strategies leverage the strengths of multiple control paradigms, combining
the robustness of traditional methods with the adaptability of learning-based systems.

Lyapunov-Based Nonlinear Control

By defining energy-like functions (Lyapunov functions), controllers ensure global or local
stability even in nonlinear, time-varying systems [25].

• Integration: Often combined with backstepping or sliding mode for aggressive, high-
performance flight [25].

MPC + Neural Networks

Model Predictive Control (MPC) (Figure I.15) solves an optimization problem over a
finite future horizon [25]. When paired with Neural Networks that predict disturbances
or unknown dynamics, it becomes a powerful tool for adaptive trajectory planning.

Hierarchical Control Architectures

• High-level Control: Handles mission planning, task scheduling, and environmental
perception using AI and global optimization [25].

• Low-level Control: Executes fine-tuned motor commands using PID, LQR, or SMC
[25].
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• Advantage: Decouples abstract decision-making from real-time control loops for
greater scalability and safety [25].

Figure I.15: Diagram of the Drone’s MPC Controller.

I.6 Recent Advances in Trajectory Tracking

Trajectory tracking remains a vital challenge in drone navigation—especially in
unpredictable, cluttered, or dynamic environments. Recent advances aim to improve
agility, resilience, and autonomy.

I.6.1 Deep Reinforcement Learning for Dynamic Planning

Traditional path planners struggle with real-time obstacle avoidance, especially in unknown
or rapidly changing terrains. Deep RL enables drones to learn navigation policies directly
from simulated or real-world experiences [12].

• Examples:
✓ Drones trained with Proximal Policy Optimization (PPO) can race through

obstacle courses [12].
✓ Soft Actor-Critic (SAC) allows low-latency responses to moving objects in

real-time.
✓ Transfer Learning: Simulation-trained policies are transferred to real-world

drones using domain adaptation techniques [12].

I.6.2 Adaptive Optimal Control for Uncertain Dynamics

To handle real-time variability in drone dynamics (e.g., payload shifts, sensor drift), modern
systems blend optimal control with online learning.

• H∞ + Adaptive Tuning: Combines robustness with real-time adaptability, ideal
for autonomous delivery or rescue missions in adverse weather [20].
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• LQR with Online Learning: Continuously updates its cost matrices and state
estimators using new flight data [21].

I.6.3 Swarm Intelligence and Multi-Agent Systems

In swarm robotics, multiple drones cooperate using decentralized control laws, inspired by
nature (e.g., bird flocks, fish schools).

• Decentralized Algorithms: Each drone operates autonomously but responds to
nearby agents using rules like cohesion, separation, and alignment [12].

• Consensus Control: Ensures all drones in a fleet agree on shared states such as
velocity, heading, or formation pattern [12].

• Applications:

✓ Coordinated surveillance over large areas.
✓ Disaster relief missions with distributed sensor networks.
✓ Light shows with synchronized aerial maneuvers.

The field of drone control systems has evolved into a rich ecosystem of both theoretical and
practical tools. From the foundational simplicity of PID to advanced applications like deep
reinforcement learning and swarm coordination, each approach offers its own unique
strengths. As drone missions become more complex, demanding greater adaptability,
intelligence, and resilience, the trend is shifting toward hybrid, modular systems that
integrate control theory with artificial intelligence. The future belongs to drones that not
only fly but also think, learn, and collaborate.

I.7 Contemporary Trends and Specialized Applications in Drone
Control

The evolution of drone control has been marked by a steady progression from basic techniques
to highly advanced, intelligent systems. At the heart of early developments, Proportional-
Integral-Derivative (PID) controllers were widely implemented for trajectory tracking,
due to their simplicity and effectiveness. Foundational work by Pedro Castillo Garcia et
al. (2005) addressed modeling and control strategies [26], while Jinhyun Kim et al. (2009)
concentrated on achieving robust hovering capabilities [27].

The integration of expert system knowledge into control mechanisms led to the adoption
of Fuzzy Logic Control (FLC), which provides a framework for managing nonlinearities
with linguistic rules and heuristics. Santos et al. (2010) laid early groundwork with fuzzy
controllers, while later developments included fuzzy gain-scheduling PID controllers and
adaptive fuzzy techniques to improve performance across varying flight conditions [28].
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Another milestone in this journey has been the introduction of Model Predictive Control
(MPC) as an advanced framework for trajectory optimization. Alexis et al. (2012) made a
significant contribution to the early application of MPC in drone control [29].
As the field progressed, Nonlinear MPC (NMPC) gained popularity due to its ability to
handle system constraints and reduce control effort, a feature that is especially important
for drones carrying suspended payloads. In addition, hybrid approaches that combine
vector field methods with MPC have been proposed for resource-constrained multi-agent
systems, enabling efficient trajectory tracking during coordinated missions.

Despite their initial success, PID controllers were found to have limitations in handling
nonlinearities and uncertainties, prompting researchers to explore more advanced
alternatives. One such direction involved optimal linear control strategies, particularly the
Linear Quadratic Regulator (LQR). Argentim et al. (2013) compared LQR to PID,
demonstrating performance improvements [30]. Furthermore, enhancements like the LQR
with integral action (LQRI) have been proposed, enabling real-time trajectory tracking
while achieving better energy efficiency than traditional PID control [30].

To bolster robustness under uncertain conditions, Sliding Mode Control (SMC) methods
gained popularity. Adaptive SMC techniques developed by Mofd and Mobayen (2018), and
model-free fuzzy SMC strategies introduced by Abro G. E. M. et al. (2021), showcased the
potential for maintaining stability despite disturbances. Additionally, Backstepping control
emerged as another method designed to ensure reliable tracking performance under
uncertain dynamics [31] [32]. Advanced SMC variants, such as Terminal Sliding Mode
Control (TSMC) and Nonsingular Fast Terminal Sliding Mode Control (NFTSMC), were
proposed to enhance precision and dynamic response. However, certain formulations still
face issues such as singularity near equilibrium points.

While Computed Torque Control (CTC) has long been established in robotic manipulator
systems, its application to drone platforms has garnered increasing attention. Meddahi Y.
et al. (2020) conducted a study focused on the nonlinear computed torque control of a
quadrotor helicopter [23]. They introduced a CTC methodology that enables the quadrotor
to execute trajectory-following missions in simulation, particularly for prospecting
environments. Additional documents have explored its viability for drone-based medical
logistics. For instance, Eid et al. (2020) designed and simulated a CTC-based drone
system aimed at providing first aid in hard-to-reach regions [4]. Their drone was equipped
with medical sensors to assess patients’ vitals and used SolidWorks and CFD for
aerodynamic and structural validation.

In recent years, the field has experienced a profound shift toward Neural Networks (NN)
and Machine Learning (ML)-based control systems. Razmi (2018) and Wu (2020)
contributed early examples of NN controllers capable of modeling and predicting drone
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behavior [23] [33]. As computational capabilities expanded, Deep Reinforcement Learning
(DRL) methods, such as Deep Q-learning (DQN), were applied to ensure continuous
service availability in cellular-connected drones. Reviews by Xinran Wei et al. (2023)
emphasized the growing role of AI in quadrotor systems [18], while Mohammed Zaid et al.
(2024) identified ML and Reinforcement Learning (RL) as pivotal in the evolution of drone
mobility and control strategies [14].

To adapt dynamically to changing system behavior, researchers turned to Model Reference
Adaptive Control (MRAC) strategies. Villa et al. (2024) introduced a novel approach
combining MRAC with an adaptive Robust Integral of the Sign of the Error (RISE)
controller for cooperative load transportation [19]. Their experimental results
demonstrated improved agility and responsiveness in multi-drone collaborative tasks.

Within the context of drone communication and network integration, ML-based methods
are also being explored for optimal handover (HO) decisions in cellular networks [14].
Algorithms such as Double Deep Q-Network (D3QN) and hybrid TOPSIS-Q-learning aim
to reduce the frequency of handovers and enhance energy efficiency [14]. Parallel research
has investigated the use of Polynomial Recurrent Neural Networks (PRNNs) for adaptive
PID tuning, expanding the toolbox of intelligent control methods [34]. AI is also being
employed to optimize energy usage through payload management, and by improving
takeoff and landing procedures to extend operational endurance [14].

Beyond control strategies, drones are increasingly employed in mission-specific
applications, each presenting unique challenges and requirements. Examples include
medical logistics, wildfire boundary surveillance, data acquisition in Wireless Sensor
Networks (WSNs) using optimized flight paths, and search-and-rescue operations powered
by LiDAR and hyperspectral imaging guided by predictive modeling. These
application-driven studies underscore the importance of integrating advanced control, AI,
and sensing technologies for real-world operational success.

I.8 Conclusion

The swift progress of drone technology has transformed UAVs from rudimentary military
prototypes into highly sophisticated, multi-functional tools that now serve a wide range of
applications across military, commercial, and recreational sectors. This chapter provided a
comprehensive overview of drone technology, starting with a clear definition of UAVs and
an exploration of their core components, including airframes, propulsion systems, flight
controllers, sensors, and communication systems. The historical evolution of drones
highlighted key milestones, tracing their development from early 20th-century experiments
to modern AI-driven systems.
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This progression demonstrates how drones have transitioned from being military curiosities
to indispensable assets in industries such as agriculture, logistics, surveillance, and disaster
relief.

A detailed classification of drones by design, propulsion, and application illustrated their
versatility and adaptability to diverse tasks. Fixed-wing, rotary-wing, and hybrid drones
each present unique advantages tailored to specific operational needs.

Additionally, the use of electric and combustion propulsion systems addresses varying
requirements for endurance and payload capacity. The chapter also delved into advanced
control systems, ranging from classical Proportional-Integral-Derivative (PID) and
adaptive methods to cutting-edge AI-based approaches, such as reinforcement learning and
neural networks. These technological advancements enable drones to autonomously
perform complex tasks, even in dynamic and unpredictable environments.

Emerging trends, including swarm intelligence, beyond visual line of sight (BVLOS)
operations, and urban air mobility (UAM), underscore the growing potential of drones to
redefine modern industries. The integration of AI, sensor fusion, and advanced
communication technologies is continuously expanding the capabilities of UAVs, paving the
way for smarter, more efficient, and collaborative aerial systems.

Looking ahead, future research will focus on enhancing autonomy, robustness, and
scalability, while addressing ongoing challenges related to regulation and ethics. The
insights presented in this chapter lay the groundwork for understanding the transformative
role of drones in shaping the future of aerial operations and their increasingly significant
impact on society.
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II.1 Introduction

In recent years, the UAVs, particularly quadrotors, have gained significant attention, driven
by their expanding capabilities and versatility. These flying machines are now employed in a
wide range of applications, from aerial photography to complex inspection tasks, largely due
to their relatively low cost, ease of use, and ability to perform demanding operations [35]. As
vertical take-off and landing (VTOL) aircraft [35], quadcopters offer distinct advantages such
as compact size, lightweight design, mechanical simplicity, and the potential for autonomous
flight. These features have made them especially attractive to researchers and engineers [35].

Despite their growing popularity and impressive capabilities, quadrotors present
considerable challenges when it comes to their internal dynamics. They are highly dynamic
systems, influenced by a complex network of interacting forces and behaviors. Their
motion is characterized by nonlinear, coupled, and under-actuated dynamics, making the
task of controlling them both difficult and intricate.

Developing a control system that maintains a quadrotor’s stability and responsiveness
begins with an accurate mathematical model of its dynamics. Most control strategies for
quadrotors heavily depend on the availability of such a model [36]. The primary objective
is to construct a mathematical representation that enables engineers to predict the
vehicle’s behavior accurately, guiding the design of systems that keep the drone balanced
and responsive. These models are also critical for simulations and for testing control
strategies before they are deployed in real-world scenarios [36].

This chapter is dedicated to building that foundational model. The quadrotor is treated as
a rigid body with six degrees of freedom (6 DOF), allowing a detailed description of both
its position and orientation in space. The vehicle’s motion encompasses both translational
movement (through space) and rotational movement (changes in orientation).

The modeling process begins by establishing coordinate systems: one fixed to the Earth
(the inertial frame) and one attached to the quadrotor itself (the body frame) [37]. Using
principles from classical mechanics, the forces and torques acting on the quadrotor are then
described. The Newton-Euler method is commonly employed to derive the translational and
rotational equations of motion, although the Euler-Lagrange approach is sometimes used as
an alternative.

The model incorporates various forces acting on the drone, such as gravitational force,
which pulls the vehicle downward, and the thrust generated by the propellers, which
enables flight and maneuverability [37]. By adjusting the rotational speeds of individual
rotors, the quadrotor can achieve different movements and orientations. Additional factors,
including aerodynamic drag and motor-propeller behavior, are also considered to create a
more realistic model [37].
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II.2 Quadcopter Overview:

Unmanned Aerial Vehicles, and quadcopters in particular, have seen a significant rise in
popularity in recent years. This surge is largely driven by their versatility, relatively low cost,
and ease of operation. These flying machines, often referred to as quadrotors or QUAVs,
belong to a class of multirotor aircraft equipped with four individual rotors [13]. Their ability
to take off and land vertically places them in the category of Vertical Take-Off and Landing
(VTOL) vehicles [35].

Quadcopters have become essential platforms in fields such as aerial robotics, research,
surveillance, delivery systems, and entertainment. Their appeal stems from several key
features, including compact size, lightweight construction, mechanical simplicity, and a
high level of autonomy. In practical applications, they are capable of steady hovering,
precise maneuvering in confined spaces, and can be operated using relatively
straightforward hardware and software. These advantages make them especially attractive
to engineers and researchers alike.

Structurally, a quadcopter consists of a rigid frame with four rotors positioned at the ends of
a cross-shaped configuration [38]. The central section of the frame typically houses critical
electronics, such as the flight controller, which acts as the brain of the system. Frames are
commonly constructed from materials like carbon fiber or aluminum, providing a strong yet
lightweight design.

Each rotor comprises a propeller driven by an individual motor, most commonly a
brushless DC motor due to its efficiency and durability. The rotors are arranged in two
pairs: one pair spins clockwise (CW), and the other spins counter-clockwise (CCW)
[39]. This arrangement is crucial for balancing the torque generated by the spinning
propellers. Without such balance, the drone would experience uncontrollable rotation [39].
For instance, if rotors 1 and 3 spin clockwise, then rotors 2 and 4 must spin
counter-clockwise to maintain stability.

Other key components in a quadcopter system include:

• Electronic Speed Controllers (ESCs), which regulate the speed of each motor.
• Lithium Polymer (LiPo) batteries that supply power.
• Sensors and flight control boards that manage movement and orientation.

The movement of a quadcopter is controlled by adjusting the rotational speeds of the
four rotors. Here’s how different types of motion are achieved:

• Lift or Vertical Movement is created by increasing or decreasing the speed of all
four rotors at the same time [40].

• Roll Movement, which causes the drone to tilt side to side (along the X-axis), is
achieved by changing the speed difference between the left and right rotors [40].
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• Pitch Movement, which tilts the drone forward or backward (along the Y-axis),
comes from varying the speeds between the front and back rotors [40].

• Yaw Movement, which rotates the drone left or right (around the Z-axis), results
from adjusting the balance between the CW and CCW spinning rotors [40].

Even though quadcopters are fairly straightforward to construct and fly, their dynamics
and control behavior are quite intricate. The mathematical models that describe them are
nonlinear, coupled, and underactuated, indicating that they possess more degrees of freedom
than the number of control inputs available. As a result, achieving stable and precise control
becomes a demanding task.

II.2.1 Structure and Components

The structural design of a quadcopter is relatively simple but highly effective. The key
components include:

• Frame: The frame, usually constructed from lightweight and durable materials like
carbon fiber, ensures structural integrity without adding unnecessary weight. It serves
as the foundation for mounting essential components including the motors, rotors, and
sensors [38].

Total frame weight contributes to the system’s mass:

mtotal = mframe + mmotors + mbattery + · · · (II.1)

This total mass affects the gravitational force:
Fg = mtotal · g (II.2)

• Rotors and Motors: A quadcopter features four rotors, with two generally
spinning clockwise (CW) and the other two counterclockwise (CCW) [38]. This
opposite rotation pattern counteracts the torque generated by each rotor, which plays
a key role in maintaining balance and overall stability.

To cancel net yaw torque:

τCW = τCCW ⇒
∑

i∈CW
(kτω2

i ) =
∑

i∈CCW
(kτω2

i ) (II.3)

where ωi is the angular velocity of rotor i, and the torque coefficient is kτ .

• Motors: Brushless DC motors are widely used in quadcopters because they offer high
efficiency, dependable performance, and the ability to operate at high speeds [38].

Fi = kf · ω2
i (II.4)

where Fi is the thrust of rotor i, kf is a constant depending on the propeller and motor,
and ωi is the angular velocity of rotor i.
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• Electronic Speed Controllers (ESCs): These components regulate the speed of
each motor according to instructions from the flight controller, allowing the quadcopter
to generate the necessary thrust and execute movements such as pitch, roll, or yaw
[38].

ESCs control ωi through PWM (pulse width modulation) signals [41]. The motor speed
is a function of the input signal:

ωi = f(PWMi) (II.5)

where:
✓ ωi: Rotor angular speed
✓ PWMi: Pulse Width Modulation signal sent to motor i
✓ f(·): Represents the mapping between PWM input and actual speed (often

nonlinear)

ESCs receive PWM signals and convert them into appropriate motor voltages [41].
The function f is typically obtained through calibration, and it directly controls how
fast each rotor spins.

• Propellers: Propellers create lift, or thrust, depending on how fast they spin [4]. The
thrust generated by each rotor is directly proportional to the square of its rotational
speed, which can be expressed mathematically as:

T = kfω
2 (II.6)

τ = kτω2 (II.7)

Where:
✓ T is thrust and τ is the reactive torque.
✓ ω is the rotor angular velocity.
✓ kf , kτ are empirically derived coefficients.

• Flight Controller: Acting as the quadcopter’s central control unit, the flight
controller oversees all onboard sensors—including the IMU, GPS, and
barometer—and processes incoming flight data to adjust motor speeds and keep the
system stable [5]. It usually implements control algorithms like the PID
(Proportional-Integral-Derivative) controller for managing motion along each axis:

u(t) = Kpe(t) + Ki

∫
e(t) dt+ Kd

de(t)
dt

(II.8)

where:

✓ u(t): Control input (e.g., desired motor speed adjustment)
✓ e(t): Error between desired and actual state (e.g., angle, altitude)
✓ Kp, Ki, Kd: Proportional, Integral, and Derivative gains
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This equation allows the quadcopter to respond effectively to deviations in position or
orientation by applying precise motor adjustments, which enhances both stability and
responsiveness during flight [42].

• Battery: Lithium polymer (LiPo) batteries are commonly used in quadcopters because
of their high energy density [42], allowing for extended flight durations with minimal
need for frequent recharging.

The energy stored in a battery is given by:

E = V ·Q (II.9)

And the flight time can be estimated as:

Tflight = E
Pavg

= V ·Q
Pavg

(II.10)

where:

✓ E: Total energy stored in the battery (in joules or watt-hours)
✓ V : Battery voltage
✓ Q: Battery capacity (in ampere-hours or coulombs)
✓ Pavg: Average power consumption during flight
✓ tflight: Estimated flight time

These equations illustrate the direct relationship between a battery’s voltage and
capacity and the quadcopter’s flight time [42]. To maximize how long it can stay
airborne, efficient energy management and a lightweight build are essential.

II.2.2 Degrees of Freedom (DOF)

A quadcopter has 6 Degrees of Freedom (6DOF), This means the quadcopter can move or
rotate freely in three-dimensional space, both in terms of its position and its orientation [43].
These degrees of freedom (DOFs) are essential for accurate navigation and effective control.
The six DOFs include three translational and three rotational motions. Here’s a closer look
at each:

A. Translational Movements (Position)

These are movements along the three axes in space and refer to the change in the position
of the quadcopter’s center of mass (COM) [43].

• X-axis (Surge): Movement forward or backward (along the longitudinal axis of the
quadcopter).

• Y-axis (Sway): Movement left or right (along the lateral axis of the quadcopter).
• Z-axis (Heave): Movement upward or downward (along the vertical axis of the

quadcopter).
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To move in any of these directions, a quadcopter needs to vary the thrust generated by
its rotors. The equations for translational motion capture the forces acting along each axis,
accounting for both the thrust produced and the pull of gravity [43].
Equations of translational motion:

• In the X-axis (Surge):

Fx = m · ẍ (II.11)

• In the Y-axis (Sway):

Fy = m · ÿ (II.12)

• In the Z-axis (Heave):

Fz = m · z̈ = T −mg (II.13)

where:
✓ m is the mass of the quadcopter,
✓ ẍ, ÿ, z̈ are the accelerations along the X, Y, and Z axes,
✓ T is the total thrust,
✓ g is the acceleration due to gravity.

These movements are controlled by varying the angular velocities of the quadcopter’s four
rotors, changing the thrust at each rotor [36].

B. Rotational Movements (Attitude)

Rotational movements describe how a quadcopter’s orientation shifts around its center of
mass. These motions are key to managing the quadcopter’s attitude, meaning its angle or
tilt relative to the surrounding environment [36].

• Roll (ϕ): Rotation around the X-axis causes the quadcopter to tilt sideways, either
to the left or right, which is referred to as roll. The roll axis usually runs along the
quadcopter’s front-to-back direction [36].

• Pitch (θ): Rotation around the Y-axis results in the quadcopter tilting either forward
or backward, a motion known as pitch. The pitch axis generally runs along the
quadcopter’s left-to-right direction [36].

• Yaw (ψ): Rotation around the Z-axis causes the quadcopter to spin about its vertical
axis, producing a motion known as yaw [36].

To manage these rotations, a quadcopter varies the rotational speeds of its individual rotors,
generating torques around the X, Y, and Z axes. These torques arise from the differences in
how fast the rotors spin and the directions in which they rotate [36].
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Equations of rotational motion:

• In the Roll (ϕ) direction:

τx = l · kf (ω2
2 − ω2

4) (II.14)

• In the Pitch (θ) direction:

τy = l · kf (ω2
3 − ω2

1) (II.15)

• In the Yaw (ψ) direction:

τz = km(ω2
1 − ω2

2 + ω2
3 − ω2

4) (II.16)

where:
✓ l is the distance from the center of the quadcopter to each rotor (typically the length

of the arms),
✓ Kf is the thrust coefficient,
✓ km is the torque coefficient,
✓ ω1, ω2, ω3, ω4 are the angular velocities of rotors 1, 2, 3, and 4.

These torque-producing effects are necessary to control the attitude (orientation) of the
quadcopter, enabling it to perform actions like rolling, pitching, or yawing.

II.2.3 Coordinate Systems

In quadcopter dynamics, coordinate systems help define the position, velocity, and
orientation of the quadcopter within two main frames: the inertial world frame (fixed to
the Earth) and the body frame (fixed to the quadcopter itself) [44]. These systems are
crucial for accurately modeling and controlling the quadcopter’s motion.

A. Inertial (Earth) Frame

The inertial frame, also known as the Earth frame, is a stationary coordinate system
that remains fixed relative to the quadcopter’s motion [13]. It is typically aligned with the
Earth’s surface and serves as a global reference for tracking position and velocity. In this
frame:

• The X-axis points forward along the longitudinal axis of the quadcopter.

• The Y-axis points to the right along the lateral axis.

• The Z-axis points upward in the vertical direction (opposite to gravity).

This coordinate system is mainly used to measure the quadcopter’s position, velocity, and
the forces acting on it from external influences like gravity, wind, and other environmental
conditions [13].
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B. Body (Quadcopter) Frame

The body frame refers to a moving coordinate system that is attached directly to the
quadcopter and remains fixed relative to its center of mass (COM) [44]. This frame rotates
along with the quadcopter as it changes orientation in space. In this frame:

• The X-axis is directed forward, parallel to the front of the quadcopter.

• The Y-axis is directed to the right, perpendicular to the X-axis.

• The Z-axis is directed downward, opposite the direction of thrust produced by the
propellers.

The body frame is used to express the rotational movements of the quadcopter, such as roll,
pitch, and yaw, and the forces and torques generated by the rotors.

C. Coordinate Transformation

As the quadcopter rotates through space, the relationship between the inertial frame and
the body frame continuously changes [45]. To accurately represent this, a coordinate
transformation is used to convert quantities from one frame to the other.

Rotation Matrix
A rotation matrix R is employed to convert position and velocity vectors from the body
frame to the inertial frame [45]. This matrix is usually constructed using the Euler
angles—roll ϕ, pitch θ, and yaw ψ—which define the quadcopter’s orientation with respect
to the inertial frame.
The rotation matrix R in Active Rotation is defined as:

Rxyz =


cos θ cosψ cos θ sinψ − sin θ

sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ cosϕ cos θ
cosϕ sin θ cosψ − sinϕ sinψ cosϕ sin θ sinψ + sinϕ cosψ cosϕ cos θ

 (II.17)

where:
✓ ϕ is the roll angle (rotation about the X-axis),
✓ θ is the pitch angle (rotation about the Y-axis),
✓ ψ is the yaw angle (rotation about the Z-axis),
✓ C and S represent cosine and sine functions, respectively.

This matrix allows you to rotate a vector from the body frame to the inertial frame.

Transformation of Position
If rB = [xB, yB, zB]T is a position vector in the body frame, the corresponding position
rE = [xE, yE, zE]T in the inertial frame is given by:

rE = R · rB (II.18)

where R is the rotation matrix that converts from the body frame to the inertial frame.
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Transformation of Velocity
The velocity in the body frame vB = [vx, vy, vz]T can be related to the velocity in the inertial
frame vE =

[
v

′
x, v

′
y, v

′
z

]T
using the same rotation matrix [46]:

vE = R · vB (II.19)

Transformation of Angular Velocity
The angular velocity vector ω (comprising roll, pitch, and yaw rates) in the body frame
can also be transformed into the inertial frame. The angular velocity vector ωB = [p, q, r]T

is related to the angular velocity in the inertial frame ωE =
[
p

′
, q

′
, r

′
]T

by the following
equation [42]:

ωE = R · ωB (II.20)

where:
✓ p is the roll rate (rate of change of roll angle),
✓ q is the pitch rate (rate of change of pitch angle),
✓ r is the yaw rate (rate of change of yaw angle).

This relationship is crucial for the control of the quadcopter’s orientation in space.

II.3 Quadcopter Mathematical Modeling

Mathematical modeling plays a key role in understanding and analyzing the complex
behavior of quadcopters [37]. By offering a detailed and accurate representation of the
vehicle’s motion and the forces acting upon it, modeling allows engineers and researchers to
develop robust and efficient control systems [37]. This section explores the fundamental
elements of quadcopter modeling, with a focus on Kinematics, Dynamics, and Forces and
Torques. Each of these aspects is essential for describing how a quadcopter moves and
operates within three-dimensional space.

II.3.1 Kinematics

Kinematics focuses on the geometric aspects of motion, without taking into account the
forces that generate it. In the case of a quadcopter, this involves describing its position,
orientation, and velocities within both the inertial and body-fixed coordinate frames [46].
The purpose of kinematic modeling is to understand how the quadcopter moves and how its
different components are related to each other throughout its motion.

A. Coordinate Frames

• Inertial Frame (Earth Frame): This frame remains fixed relative to the Earth [40]
and is commonly used as a global reference. It serves as the foundation for measuring
the quadcopter’s absolute position and orientation [46].
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• Body Frame: This moving coordinate system, fixed to the quadcopter, makes it easier
to describe its dynamics. The origin is located at the quadcopter’s center of mass, and
the axes are aligned with its structural layout [46].

B. Position and Orientation

The quadcopter’s state in 3D space is typically expressed through:

• A position vector p = [x y z]T indicating the quadcopter’s location in the inertial
frame.

• Three orientation angles - roll (ϕ), pitch (θ), and yaw (ψ) - which describe its rotation
around the x, y, and z axes, respectively. These angles collectively define the attitude
of the quadcopter.

C. Rotation Matrix (Rxyz)

To convert between coordinate systems, particularly from the body frame to the inertial
frame, a rotation matrix Rxyz, as defined in equation (II.17), is used. This matrix is derived
from a sequence of three rotations that correspond to yaw, pitch, and roll.
This transformation is essential for both control and simulation, as it links the quadcopter’s
internal control signals (expressed in the body frame) to its actual motion in the external
environment (inertial frame) [42].

D. Velocity Relationships

In addition to position and orientation, it’s necessary to track how quickly these variables
change:

• Linear velocity (ṗ) tells us how the position changes over time.
• Angular velocity (ωB) describes how the quadcopter’s orientation changes.

ωB =


p
q
r

 =


1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cos θ cosϕ



ϕ̇

θ̇

ψ̇

 (II.21)

This matrix [42] helps relate angular velocities in the body frame to the rate of change of
Euler angles, allowing for precise control of orientation.

II.3.2 Dynamics

Dynamics focuses on the forces and torques that drive the quadcopter’s motion. By modeling
these dynamics, we can predict how the vehicle will react to control commands, external
disturbances, and environmental factors such as gravity and air resistance [6].

36



CHAPTER II : DRONE MATHEMATICAL MODELING : QUADCOPTER

A. Newton-Euler Formalism

This approach uses Newton’s second law for translational motion and Euler’s equations for
rotational motion [45].

Translational Dynamics

mp̈ = Fg + RxyzFT + Fd (II.22)

This equation shows how the quadcopter’s mass and acceleration are affected by gravitational
force, thrust from the rotors (transformed to the inertial frame), and aerodynamic drag. It
explains vertical lift and general motion through space [47].

Rotational Dynamics

Iω̇ + ω × (Iω) = τ (II.23)

This equation explains how the quadcopter rotates in response to applied torques and its
moment of inertia [47]. Each rotational axis —roll, pitch, and yaw— has a corresponding
equation that governs its motion:

τϕ = Ixṗ + (Iz − Iy)qr (II.24)

τθ = Iyq̇ + (Ix − Iz)pr (II.25)

τψ = Izṙ + (Iy − Ix)pq (II.26)

These equations capture gyroscopic coupling between axes and highlight the nonlinear nature
of the system.

B. Euler-Lagrange Formalism

The Euler-Lagrange method, based on energy principles, offers a powerful way to
symbolically derive the dynamics of complex systems [41]. It serves as an alternative to the
Newton-Euler method for obtaining the same equations of motion, using the relation
L = T − V [48].
In this formulation, the kinetic energy T includes both linear and rotational motion, while
the potential energy V is mainly attributed to gravity. The generalized coordinates qi are
used to represent the system’s position and orientation states [48].

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (II.27)

This formalism is advantageous when analyzing multi-body systems or when extending
models to include more complex interactions.
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II.3.3 Forces and Torques

Controlling a quadcopter involves adjusting the speed of each rotor, which in turn alters the
thrust and torques they produce [46]. By modifying these forces, the quadcopter can move
in various directions and rotate around its different axes.

A. Thrust Force

Fi = kfω
2
i (II.28)

Each rotor’s thrust is a function of its angular velocity squared [41]. The total thrust acting
on the quadcopter is the sum of the thrusts from all four rotors:

T =
4∑

i=1
Fi = kf (ω2

1 + ω2
2 + ω2

3 + ω2
4) (II.29)

This thrust opposes gravity and allows vertical motion or hovering.

B. Torques from Rotors

Different combinations of rotor speeds produce torque about the x, y, and z axes, leading to
roll, pitch, and yaw movements respectively [41].

τϕ = l · kf (ω2
4 − ω2

2) (II.30)

τθ = l · kf (ω2
3 − ω2

1) (II.31)

τψ = km(ω2
1 − ω2

2 + ω2
3 − ω2

4) (II.32)

Where:
✓ l: Arm length from the center to each rotor.
✓ kf : Thrust coefficient.
✓ km: Moment (drag) coefficient.

These equations demonstrate how fine-tuned control of motor speeds results in targeted
changes in attitude and translational movement [46]. A detailed and accurate representation
of these interactions is essential for developing control systems that ensure the quadcopter
remains both stable and responsive.

All of these components combine to create a complete and nonlinear mathematical model
of the quadcopter. This model forms the basis for simulation environments, controller
development, and performance evaluation in practical applications.

II.4 Aerodynamic Modeling

Accurate aerodynamic modeling is essential for understanding how a quadcopter interacts
with the surrounding air during flight [49].
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Beyond the immediate effects of rotor thrust, aerodynamic forces and moments significantly
influence the vehicle’s stability, control, and overall dynamics, particularly during high-
speed maneuvers or when exposed to external disturbances such as wind gusts. While
simpler models may assume the quadcopter operates in a vacuum, incorporating aerodynamic
effects offers a more realistic view of its behavior[46][49], which is critical for designing
reliable controllers and optimizing performance. This section explores the key aerodynamic
phenomena that affect quadcopter operation.

II.4.1 Drag Forces

The main aerodynamic force acting on a quadcopter during translational motion is
aerodynamic drag. This force resists the relative movement between the quadcopter and
the surrounding air, increasing with velocity and significantly affecting both flight
dynamics and energy usage. Mathematically, the translational drag force Fd is given by:

Fd = −kdṗ (II.33)

Where kd is a positive-definite matrix that contains the drag coefficients for each principal
axis (x, y, and z), while ṗ represents the linear velocity vector of the quadcopter’s center
of mass in the inertial frame [49]. The negative sign shows that drag acts in the opposite
direction of motion.

For the range of flight speeds typically encountered in quadcopter operations, it’s often
acceptable to model drag as being directly proportional to velocity [49]. However, as flight
speed increases, a quadratic model becomes more accurate, capturing the nonlinear
behavior of air resistance [46]. Drag forces introduce damping into the system, which can
help by reducing oscillations and contributing to stability, or complicate control by
introducing disturbances, especially during rapid maneuvers [50]. Being able to understand
and estimate drag forces accurately is crucial for following precise flight paths and
optimizing energy use [41].

II.4.2 Rotor Aerodynamics

Beyond translational drag, the spinning rotors interact with the surrounding air in complex
ways that affect the overall forces and torques produced by the quadcopter [47]. These
rotor-related aerodynamic effects can be broken down into several key components:

• Induced Drag: When the rotors generate lift, they also create a downward airflow
known as downwash, which leads to induced drag [51]. This effect, explained by
momentum theory [52], reflects an inherent energy cost that comes from thrust.

• Profile Drag: Profile drag results from friction and the pressure differences around
the rotor blades as they spin through the air [51]. This type of drag increases with
the square of the blade’s rotational velocity and becomes more pronounced at higher
angular speeds.
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• Blade Flapping: At high forward speeds, asymmetries in airflow across the rotor disc
can cause the blades to flap upward and downward [51]. This leads to variations in lift
distribution, affecting the stability and controllability of the vehicle, especially during
rapid translational motion.

For many control and estimation tasks, simplified aerodynamic models often group rotor-
related effects into empirical drag coefficients.
Still, when it comes to high-fidelity simulations or the development of advanced
autonomous systems, more detailed modeling techniques are used [49]. Approaches like
Blade Element Momentum Theory (BEMT) or full Computational Fluid Dynamics (CFD)
simulations offer a deeper look into rotor airflow behavior [53]. These methods help
capture complex phenomena such as vortex ring states or rotor-ground interactions, which
can significantly influence both safety and flight performance.
As summary, the rotor aerodynamics introduces key nonlinearities and interdependencies
into the system’s behavior, making it essential to account for them carefully during both the
modeling process and control system design.

II.5 Control Inputs and State Variables
When controlling quadcopters, it’s important to clearly define how the actions taken by
the actuators (motors and propellers) influence the system’s behavior [54] To approach this
in a structured way, two key components must be identified: the control inputs, which
are the variables the controller adjusts [54], and the state variables, which describe the
system’s current condition at any moment. A solid grasp of both is essential for analyzing
the system, designing effective control strategies, planning trajectories, and implementing
feedback mechanisms [55].

II.5.1 Control Inputs

As a dynamic system, the quadcopter operates within a six degrees-of-freedom (6-DOF)
space but relies on only four primary control inputs. These inputs consist of the total thrust
and three separate moments (torques) applied around the main body axes.
The control input vector is expressed as:

u =


u1

u2

u3

u4

 =


T
τϕ

τθ

τψ

 (II.34)

where:
✓ T is the total vertical thrust from the four rotors,
✓ τϕ represents the roll moment (rotation around the body’s x-axis),
✓ τθ represents the pitch moment (rotation around the body’s y-axis),
✓ τψ represents the yaw moment (rotation around the body’s z-axis).
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These control inputs are functions of the individual rotor angular speeds ωi [53]. The
mapping from motor speeds to control inputs is often described using a control allocation
or mixing matrix, which accounts for the quadcopter’s geometry and motor configuration
[53].

In particular, the thrust T is proportional to the sum of the squares of the rotor speeds, while
the torques τϕ, τθ, τψ arise from differences in those speeds [54]. A precise mapping between
these control inputs and the rotor angular velocities ensures that high-level flight commands
are accurately translated into motor-level actions. Each input depends nonlinearly on the
individual rotor speeds ω1, ω2, ω3, ω4 [56], and this relationship is commonly expressed as:


T
τϕ

τθ

τψ

 =


kf kf kf kf

0 lkf 0 −lkf

−lkf 0 lkf 0
km km km km




ω2

1

ω2
2

ω2
3

ω2
4

 (II.35)

where:
✓ kf is the thrust coefficient,
✓ km is the moment (torque) coefficient,
✓ l is the distance from the quadcopter’s center to each rotor.

This matrix relationship, commonly known as the [57], plays a key role in control allocation.
It enables the translation of desired forces and torques into specific commands for each motor,
ensuring the quadcopter responds accurately to control inputs.

II.5.2 State Variables

The full dynamical state of the quadcopter at any given moment is represented by a state
vector. This vector includes all the key translational and rotational kinematic variables
needed to describe how the system evolves with time [58].
The state vector x is formulated as [58]:

x = [x y z ϕ θ ψ ẋ ẏ ż p q r]T (II.36)

with each component explained as follows:

• (x,y, z): Position coordinates of the quadcopter’s center of mass in the inertial (world-
fixed) frame,

• (ϕ, θ, ψ): Roll, pitch, and yaw angles describing the orientation of the body frame
relative to the inertial frame,

• (ẋ, ẏ, ż): Linear velocity components in the inertial frame,

• (p,q, r): Angular velocity components about the body-fixed x, y, and z axes,
respectively.
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Euler angles provide a compact and intuitive means of representing orientation, making
them a practical choice in many quadcopter applications [59]. However, this form of
parametrization introduces the possibility of singularities, commonly referred to as gimbal
lock, particularly when the pitch angle approaches ±90 degrees [59]. Despite this

limitation, Euler angles remain effective for moderate flight maneuvers typically
encountered during standard quadcopter operation [59]. Their straightforward nature
supports efficient control and estimation. In more complex scenarios, especially those

involving aggressive maneuvers or fully three-dimensional trajectory tracking, advanced
control frameworks may adopt alternative orientation representations such as quaternions
or rotation matrices [59]. These alternatives avoid singularities and allow for smoother and
more reliable rotational control. The complete 12-dimensional state space of the

quadcopter offers a robust foundation for implementing advanced control strategies [59].
These may include feedback linearization, nonlinear control methods, model predictive
control (MPC), or robust optimal control approaches, each leveraging the system’s full
dynamics to improve performance and maintain stability.

II.6 State-Space Representation

An essential and foundational step in designing modern control systems for aerial vehicles
such as quadcopters involves reformulating their inherently nonlinear dynamics into a
state-space model [58]. This formalism serves several critical purposes. First, it provides a
rigorous mathematical description of the system’s behavior by capturing the evolution of
internal states and the generation of outputs through first-order differential equations [58].
Second, the state-space representation facilitates the systematic implementation of a broad

range of control strategies [56]. Classical linear methods, including proportional - integral -
derivative (PID) control, pole placement, and linear quadratic regulators (LQR), depend
heavily on linear state-space formulations [56]. Moreover, this modeling approach

establishes the foundation for advanced control techniques such as nonlinear control,
optimal control, robust control, and model predictive control (MPC) [56]. These
methodologies are particularly important when the control objective involves ensuring
stability, robustness, and high performance in the presence of external disturbances, system
uncertainties, or operational constraints [49]. Therefore, constructing an accurate and

reliable state-space model is not merely a theoretical requirement but a practical necessity
for achieving dependable, high-performance quadcopter operation across a wide range of
mission scenarios [49].
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II.6.1 General Nonlinear State-Space Formulation

At its core, the motion of a quadcopter is governed by a system of coupled, nonlinear
differential equations. These equations are derived by applying the principles of rigid-body
dynamics using the Newton-Euler framework, which simultaneously accounts for both
translational and rotational motion [56].

To systematically organize and analyze these complex dynamics, a nonlinear state-space
representation is typically adopted [54]. This form offers a structured mathematical
framework through which the behavior of the quadcopter can be rigorously modeled and
controlled.
The general nonlinear state-space model is written as:

ẋ = f(x,u)

y = g(x,u)
(II.37)

where:
• x ∈ Rn is the state vector, aggregating all quantities necessary to fully describe the

system’s current condition at any time t, we find x in equation (II.36).
• u ∈ Rm is the control input vector, containing all externally applied inputs, typically

the collective thrust and body torques.
• y ∈ Rp is the output vector, representing the measurable quantities of interest (e.g.,

position, attitude angles).
• f : Rn × Rm → Rn is the state transition function, capturing how the system’s

states evolve over time.
• g : Rn × Rm → Rp is the output function, relating the internal state and inputs to

the outputs.

A. Structure of the Nonlinear Functions f(x,u) and g(x,u)

The function f(x, u) typically involves:
• Translational Dynamics: Describing the acceleration of the center of mass based

on applied thrust forces, gravitational effects, and aerodynamic drag [54].
• Rotational Dynamics: Describing the evolution of the orientation based on body

torques, rotational inertia, and gyroscopic effects [54].
These equations are highly nonlinear due to [54]:

✓ Trigonometric relations in rotation matrices,
✓ Coupling between translational and rotational motions,
✓ Dependence of aerodynamic forces on velocity and orientation.

The function g(x, u) depends on the type of sensors available. For instance:
✓ If GPS and IMU data are used, outputs could include (x, y, z) and (ϕ, θ, ψ).
✓ If only inertial measurements are available, outputs could be limited to

acceleration and angular rates.
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B. Advantages of the Nonlinear State-Space Representation

• Complete Description: It models the full system dynamics without simplifying
assumptions about small angles or low velocities [56].

• Foundational for Nonlinear Control: Techniques such as feedback linearization,
sliding mode control, and nonlinear observers directly operate on these full-order
models [56].

• Essential for High-Fidelity Simulation: Simulating the real-world behavior of
quadcopters under aggressive maneuvers, environmental disturbances, and actuator
saturation requires the original nonlinear form [56].

However, while powerful, nonlinear models are computationally demanding and analytically
complex, which motivates the need for local linearization when designing controllers for
specific flight conditions, like hovering.

II.6.2 Linearized State-Space Model (Hover Condition)

In practical applications, directly handling the nonlinear dynamics of a quadcopter often
proves to be computationally intensive and analytically intractable for control design [57].
To address this challenge, a widely adopted engineering approach involves linearizing the
nonlinear equations of motion around a specific operating point [57]. This is typically the
hover condition, in which the quadcopter maintains a stationary and level orientation in
space. Linearization around this equilibrium enables the use of well-established linear control
techniques while preserving sufficient fidelity for many control and estimation tasks [57].
The hover condition is defined by:

✓ Small attitude angles: ϕ, θ, ψ ≈ 0 (measured in radians),
✓ Negligible linear velocities: ẋ, ẏ, ż ≈ 0,
✓ Zero angular rates: p, q, r ≈ 0,
✓ Constant thrust balancing gravitational force: T ≈ mg.

Under these simplifying assumptions, the nonlinearities introduced by trigonometric
functions such as sin(θ) and cos(ϕ), along with the coupling effects between translational
and rotational dynamics, can be approximated using first-order Taylor series expansions
[60]. This process results in a linear time-invariant (LTI) model, which significantly
streamlines both the analytical treatment of the system and the design of control strategies
[49].

The resulting linearized state-space model is represented as follows:

ẋ = Ax+Bu

y = Cx+Du
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A. Structure and Physical Interpretation of A, B, C, D Matrices

• A Matrix (System Matrix):

The matrix A captures how the current states of the system influence their own rates
of change [54]. For a quadcopter:

✓ The position states (x, y, z) are directly influenced by their corresponding
velocities (ẋ, ẏ, ż).

✓ The rotational angles (ϕ, θ, ψ) are influenced by angular rates (p, q, r).
✓ Gravity introduces couplings between attitude angles and translational

accelerations. For instance, a small roll angle ϕ creates a lateral force
proportional to gϕ, moving the quadcopter sideways.

• B Matrix (Input Matrix):

The B matrix describes how the control inputs - collective thrust and body torques -
affect the state [54], derivatives:

✓ The collective thrust input directly affects the vertical acceleration ż.
✓ Roll, pitch, and yaw torques affect the angular accelerations p, q, and r based on

the quadcopter’s moments of inertia Ix, Iy, and Iz.

• C Matrix (Output Matrix):

The matrix C maps the internal states to the measurable outputs. In most basic
designs, it is assumed that all the states are directly measurable (full-state feedback),
thus C becomes an identity matrix [54].

• D Matrix (Feedthrough Matrix):

Typically, D is a zero matrix because there is no direct, instantaneous effect of the
control input on the output without passing through system dynamics [54].

B. State Space Matrices for an X-Configuration Quadcopter

Let us assume the quadcopter is symmetric, with mass m, gravitational acceleration g, and
inertia matrix:

I = diag(Ix, Iy, Iz) (II.38)

The linearized dynamics around hover lead to approximate matrices of the form:

• A Matrix:

A =


03×3

03×3

03×3

03×3

I3×3

03×3

03×3

03×3

03×3

G
03×3

03×3

03×3

03×3

03×3

03×3

 (II.39)
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where G accounts for gravitational coupling effects between roll and pitch angles and
linear accelerations.

G =


0 g 0
−g 0 0
0 0 0

 (II.40)

• B Matrix:

which Bm =



0
1
m

0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0


and Bf =



0
0
0
0
0
0

0
0
0
1
Ix

0
0

0
0
0
0
1
Iy

0

0
0
0
0
0
1
Iz


(II.41)

Here, Bf relates the thrust and torque inputs to the linear and angular accelerations,
including the inverse mass of inertia in Bm, with B =

[
Bm Bf

]T
[54].

• C Matrix:
C = I12 = eye(12) (II.42)

• D Matrix: D = 012×4 (II.43)

C. Mathematical Derivation Approach

To obtain these matrices rigorously, the following steps are performed:

• Define the full nonlinear dynamics (from Newton-Euler equations).
• Select the equilibrium point — usually, a stationary hover at a constant altitude.
• Compute Jacobians:

✓ A = ∂f
∂x

∣∣∣
x0,u0

✓ B = ∂f
∂u

∣∣∣
x0,u0

✓ C = ∂g
∂x

∣∣∣
x0,u0

✓ D = ∂g
∂u

∣∣∣
x0,u0

This Jacobian linearization preserves the local behavior near the hover point and is an
essential bridge toward model-based controller design.

D. Importance of Linearization for Controller Design

Linearization plays a central role in quadcopter control design, especially in advanced
academic and engineering contexts where analytical precision and system reliability are
crucial [49]. By approximating the nonlinear dynamics near an operating point such as
hover, a linear time-invariant (LTI) model can be derived, enabling the application of
classical control methods [49].
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• Simplification of Complex Dynamics:

The original nonlinear dynamics of a quadcopter are intrinsically coupled and exhibit
multi-input multi-output (MIMO) behavior, influenced by nonlinear forces including
gravity, aerodynamic drag, and gyroscopic effects [54]. Designing controllers directly
for these nonlinear equations poses significant mathematical and computational
challenges. To address this, the system is often linearized around a specific operating
point, such as the hover condition [55]. This process simplifies the dynamic model
while preserving the key characteristics required for effective control system design.

• Enabling Classical and Modern Control Techniques:

Linear systems theory provides a well-established framework with powerful analytical
and design tools, all of which depend on the availability of a linear model [58]. Once
the system has been linearized, a range of control techniques can be applied, including:

✓ Pole Placement: Assigning closed-loop eigenvalues to ensure desired system
stability and dynamic response [56].

✓ Linear Quadratic Regulator (LQR): Designing an optimal controller by
balancing control performance with actuation energy [56].

✓ Model Predictive Control (MPC): Utilizing the linear dynamics to predict
future behavior and optimize control sequences over a horizon [49].

✓ Observer Design: Estimating unmeasured states, such as velocities or
disturbances, using Kalman filters or Luenberger observers [55].

Without linearization, these control methods would be inapplicable in their standard
form or would necessitate advanced nonlinear extensions, which are typically more
complex to implement, analyze, and fine-tune.

• Facilitating Stability Analysis:

Stability is a fundamental requirement for quadcopter operation. The linearized system
allows for the use of eigenvalue and eigenvector analysis [59]:

✓ The location of poles in the complex plane directly reveals whether the system
is stable, marginally stable, or unstable.

✓ Dominant poles indicate the speed and damping of the system’s response.

This analytic capability is crucial for both theoretical validation and practical tuning
of the controller.

• Control-Oriented Modeling:

In practical engineering, controller design typically follows an iterative cycle of
modeling, simulation, and experimental verification. Linearized models act as
efficient initial approximations, offering simplicity and clarity for early-stage analysis
and controller prototyping [61].
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• Designing for Robustness and Performance:

Linearization facilitates the assessment of robustness margins, including gain margin,
phase margin, and sensitivity functions. These metrics are vital for verifying that
the quadcopter remains stable and responsive in the presence of model inaccuracies,
external disturbances such as wind, and sensor noise, all while continuing to meet its
mission requirements [61].

• Extending to Advanced Control Frameworks:

Once a linear model is established, it becomes straightforward to extend toward more
sophisticated approaches such as [59]:

✓ Gain scheduling: Designing multiple linear controllers around different
operating points and switching between them as the operating conditions
change [59].

✓ Nonlinear control via linearization: Using linear techniques locally, while
recognizing the need for global nonlinear controllers over larger maneuvering
envelopes [59].

Thus, linearization serves not only as a practical control design tool but also as a bridge
between basic control theory and advanced aerospace control methodologies.

II.6.3 Interpretation and Utility

Recasting quadcopter dynamics into the state-space formulation, especially in its
linearized form, is a fundamental step in both analyzing and controlling aerial vehicles.
This representation serves as a vital link between the complex, nonlinear behavior of
quadrotor systems and the structured frameworks of modern control theory. A clear grasp
of the state-space approach is essential for applying robust and optimal control techniques
effectively [62].

A. Interpretation of the State-Space Matrices

Each matrix in the state-space model carries a clear physical and mathematical significance:

• System Matrix A: The state matrix A captures the system’s internal dynamics,
showing how states change over time without any input. It reflects inherent couplings,
like how small roll angles cause lateral movement due to gravity, illustrating how tilting
results in horizontal motion [63].

• Input Matrix B: Captures how external control actions (thrust and body torques)
influence the rate of change of the states. It shows, for instance, how an increase
in thrust leads to vertical acceleration, or how a torque around the roll axis induces
angular acceleration [63].
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• Output Matrix C: Identifies the portions of the internal state that can be measured
through available sensors. In full-state feedback configurations, such as those utilizing
high-precision IMU and GPS systems, C is often set as the identity matrix. In other
cases, it may represent a mapping that captures only selected states, such as positions
and yaw angles, corresponding to the outputs being monitored [63].

• Feedthrough Matrix D: Represents how inputs influence outputs instantly, without
involving system dynamics. In typical quadcopters, D is usually a zero matrix, as
motor speed changes affect states over time [63].

B. Utility in Control System Design

The benefits of using the state-space model in quadcopter control design are multi-faceted:

• Structured Mathematical Framework:

State-space models enable a structured treatment of quadcopter dynamics through
linear algebraic techniques. This framework is essential for developing state-feedback
controllers, optimal estimators, or system observers [63].

• Facilitation of Advanced Controllers:

Methods like Linear Quadratic Regulator (LQR), Backstepping Control, and
Model Predictive Control (MPC), fundamentally depend on the state-space
representation of the system [64]. These approaches are designed to ensure stability,
maintain desired performance, and provide robustness against both model
uncertainties and external disturbances.

• Design of Observers:

In practical scenarios, not all states can be directly measured. For instance, angular
rates are typically sensed, while velocities often require estimation. State observers such
as Luenberger observers or Kalman filters use the A and C matrices to reconstruct the
full state vector from available measurements [62].

• Stability and Performance Analysis:

The eigenvalues of the A matrix, which represent the poles of the system, provide
direct insight into its stability properties [63]. When all eigenvalues have negative real
parts, the linearized model around the hover condition is considered stable [63].

C. Limitations and Practical Considerations

Despite its advantages, the linear state-space model has inherent limitations:
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• Valid Only Locally: The linearized model provides an accurate description of the
system dynamics only in the vicinity of the chosen operating point, typically hover.
When the system experiences large deviations from this point, the linear approximation
becomes less valid, leading to substantial modeling errors [63].

• Neglect of Actuator Dynamics: Not all states can be directly measured in practice.
For example, angular rates can be sensed, but velocities may need to be estimated. By
adding state observers such as Luenberger observers or Kalman filters, the A and C

matrices are used to reconstruct the full state vector from measured outputs [63].

• Environmental Effects: Factors like wind disturbances, ground effects, and
aerodynamic couplings are typically excluded from basic linear models. To manage
these influences, separate mechanisms such as disturbance observers or robust control
strategies are often incorporated [63]. Nevertheles, the state-space framework
continues to serve as the cornerstone for nearly all quadcopter control architectures,
ranging from basic PID implementations in undergraduate projects to advanced
nonlinear and adaptive strategies explored in academic research [63].

A deep understanding of the state-space model, including its structure, interpretation, and
practical limitations, equips engineers and researchers with a powerful toolkit. This
understanding provides the mathematical basis for designing controllers that guarantee the
stability, responsiveness, and robustness of quadcopter platforms.

II.7 Actuator Modeling for Quadcopter System

A comprehensive quadcopter model must account not only for the rigid-body dynamics of
the vehicle but also for the behavior of its actuators [65]. Motors and propellers are
essential components that directly determine the quadcopter’s ability to produce thrust
and torques [65]. As a result, accurate actuator modeling is vital for achieving precise
control, maintaining stability, and ensuring reliable trajectory tracking, especially in
aggressive or high-precision flight. Although the vehicle’s overall behavior is shaped by its
inertial properties and aerodynamics, it is the actuators that ultimately generate the
necessary forces and moments. Ignoring actuator dynamics can compromise controller
performance, reduce stability, or even result in a loss of control [65].

II.7.1 Motor and Propeller Dynamics

The dynamics of the actuators -motors and propellers- represent a critical connection
between the control commands generated by the flight controller and the resulting forces
and moments exerted on the quadcopter [57]. For high-performance scenarios, including
aggressive maneuvers, accurate trajectory tracking, or effective disturbance rejection,
accurately understanding and modeling these dynamics is essential [53].
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A. Motor Dynamics

Each quadcopter rotor is driven by a Brushless DC motor(BLDC), chosen for its high
efficiency, low mass, and superior power-to-weight ratio [59]. The motor dynamics
characterize how rapidly the motor’s rotational speed responds to variations in control
input (e.g., voltage or PWM command) [62].

A widely accepted simplified model for a BLDC motor is a first-order differential equation:

τm
dωm

dt
+ ωm = kmum (II.44)

where:
✓ ωm(t) [rad/s] is the instantaneous motor angular velocity,
✓ um(t) is the control input signal (normalized PWM, voltage, or current command),
✓ τm [s] is the motor’s time constant, reflecting the electrical and mechanical inertias,
✓ km is a static motor gain relating steady-state input to speed.

B. Physical Interpretation

• Time Constant τm: Indicates how fast the motor reacts to a command change. A
small τm means fast response; a large τm implies sluggish behavior [62].

• Motor Lag: Real motors cannot instantaneously achieve the desired speed due to
their inductance, inertia, and friction [62].

• Steady-State Behavior: At steady state (ω̇m = 0), the motor speed satisfies:

ωm = kmum (II.45)

meaning the speed is proportional to the input, scaled by km.

C. Higher-Order Effects (if needed)

In more precise models (used in high-end research or industrial UAVs), additional elements
could be incorporated:

• Motor inductance and back-EMF leading to a second-order system,
• Torque saturation at high speeds,
• Temperature effects reducing motor efficiency.

However, for most controller design tasks, the first-order model offers a very practical trade-
off between simplicity and accuracy [62].

D. Propeller Thrust and Torque Characteristics

The propeller, mechanically coupled to the motor, converts rotational motion into thrust
and reactive torque through aerodynamic forces. The relationship between motor speed and
these forces is inherently nonlinear, but can be effectively approximated as [53]:
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Ti = kTω
2
m,i

Qi = kQω
2
m,i

(II.46)

where:

✓ Ti [N] is the thrust produced by propeller i,

✓ Qi [Nm] is the aerodynamic torque (drag) opposing motor rotation,

✓ kT
[
N ·s2

rad2

]
is the thrust coefficient,

✓ kQ
[
N ·m · s2

rad2

]
is the torque coefficient,

✓ ωm,i is the motor speed for rotor i.

E. Combined Actuator Behavior
When motor dynamics and propeller aerodynamics are considered together:

• Motor Lag → Delayed Force Production:

A command to increase thrust will not produce an immediate increase in force; there
will be a transient phase governed by τm.

• Nonlinear Mapping:

The relation between control input um and output forces/moments is not linear but
quadratic in ωm, and subject to a first-order dynamic delay.

• Importance for Control Design:

✓ Ignoring motor lag can lead to overshoots, poor tracking, or even instability.
✓ Assuming linear force production could mislead the controller about actuator

authority.
✓ Advanced controllers may explicitly compensate for actuator dynamics (e.g., by

inverse dynamics, feedforward terms, or observer-based estimation).

The actuator modeling through motor and propeller dynamics is vital for guaranteeing that
the designed controllers operate reliably and safely. It captures real-world constraints and
nonlinearities that remain hidden in idealized rigid-body models [63].

II.7.2 Actuator Constraints and Saturation

In practical quadcopter operations, actuators are not ideal. They encounter multiple
physical, electrical, and mechanical limitations that must be thoroughly addressed
in both modeling and control design. Recognizing actuator constraints is critical for
designing controllers that are both realistic and robust [59].
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A. Types of Actuator Constraints

• Maximum and Minimum Motor Speeds

Each motor has an operational range: ωmin ≤ ωm ≤ ωmax.

✓ ωmin the minimum speed needed to produce enough thrust to keep the quadcopter
airborne (may not be exactly zero due to friction and dead zone effects).

✓ ωmax the maximum safe speed before mechanical failure, excessive heating, or
power system limits are reached.

Implication for Control:

✓ Commands resulting in ωm > ωmax must be saturated (clamped) to ωmax.
✓ Operating close to ωmax reduces actuator authority and can cause control

performance loss (known as "control surface saturation").

• Input Saturation (PWM Signal Limits)

The control input um sent to Electronic Speed Controllers (ESCs) typically ranges
between standard PWM values [66]: 1000 µs ≤ um ≤ 2000 µs or, equivalently, in
normalized form: 0 ≤ um ≤ 1

✓ 1000 µs corresponds to minimum throttle (motor idle or cutoff),
✓ 2000 µs corresponds to maximum throttle.

Implication for Control:

✓ Commands outside this range are clipped.
✓ Controllers must be designed to operate well within actuator limits to prevent

"clipping-induced" nonlinearities.

• Rate Limits (Motor Acceleration Limits) Motors cannot adjust their rotational
speed instantaneously because of their rotational inertia and electrical dynamics [62].
The motor time constant τm constrains how rapidly the motor speed can follow the
desired input. This results in rate constraints: |ω̇m| ≤ ω̇max, where ω̇max is defined
by the motor’s torque capacity and system voltage [62].

• Asymmetry and Dead Zones

✓ Some motors may have slight manufacturing asymmetries: different motors
respond slightly differently to the same control input [53].

✓ Dead zones exist where small PWM changes around the minimum input do not
produce any motor movement [53].

Implication for Control:

✓ Calibration procedures are required.
✓ Dead-zone compensators or adaptive control techniques may be necessary.
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B. Consequences of Ignoring Actuator Constraints

If actuator constraints are ignored in controller design:

• Saturation Instability: When a control signal saturates, the effective closed-loop
dynamics change — potentially leading to loss of stability [63].

• Poor Tracking: Desired accelerations or trajectories may not be achievable, leading
to significant tracking errors [63].

• Windup Effects: In PID-based controllers, large integrator terms can accumulate
if actuators saturate, causing severe overshoots when saturation ceases [63]. (This is
known as integrator windup.)

• Reduced Robustness: Control systems may become highly sensitive to disturbances
near actuator limits [63].

B. Methods to Handle Actuator Constraints

To safely handle actuator limitations, several techniques are employed:

• Command Saturation: Explicitly limit control signals before sending them to
actuators.

• Anti-Windup Mechanisms: Modify integrator behavior in PID controllers when
saturation occurs to prevent instability.

• Model Predictive Control (MPC): MPC can explicitly incorporate actuator
constraints during online optimization.

• Gain Scheduling: Adjust controller gains dynamically as the available actuator
authority changes.

• Saturation-Aware Design: Design the baseline controller considering maximum
available thrust/torque.

II.7.3 Integration into the Overall Model

In realistic quadcopter modeling, especially for precise or aggressive flight control, it is
insufficient to assume that the motor thrusts and torques are immediately available upon
command. Instead, motors and propellers introduce additional dynamics and limitations
that must be incorporated into the global system model [62]. This section explains how
actuator modeling modifies the full quadcopter dynamics and what implications this has
for control system design. Properly accounting for these effects ensures that the control
strategies remain feasible and effective under real-world conditions [62].
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A. From Ideal to Realistic Control Inputs

• Idealized assumption (basic rigid body model):

✓ Inputs u are assumed to be immediate and direct thrust and torque values.

• Realistic assumption (including actuator dynamics):

✓ Inputs um are PWM signals (electrical control signals to motors).

✓ These inputs pass through the motor dynamics (modeled as first-order systems)
and then through propeller models (producing thrust and torque quadratically
from motor speed).

In essence, the control input is no longer directly the physical force or torque but is mediated
by actuator dynamics.

B. Extending the State-Space Model

• To account for this, the state vector must be expanded.
• Basic state vector (rigid body only) is mentioned on equation (II.36)
• Extended state vector (including actuators):

xextended = [x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, p, q, r, ω1, ω2, ω3, ω4]T (II.47)

where:
✓ ωi are the rotational speeds of the motors (rad/s),
✓ The additional states introduce motor dynamics into the system.

Important note:
This higher-dimensional system has a direct impact on controller and observer design,
raising both the complexity of the system and the associated computational burden [67].

C. Modified Dynamics Equations

Each motor dynamic is described by a first-order linear differential equation:

τm · ωi + ωi = km · um,i for i = 1, 2, 3, 4 (II.48)

✓ τm = motor time constant (accounts for mechanical and electrical inertia).
✓ km = motor gain (relates input command to steady-state motor speed).
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Then, thrust and torque generated by each propeller are functions of motor speed:

Ti = kT · ω2
i

Qi = kQω
2
i

(II.49)

Thus, the total forces and torques applied to the quadcopter body are nonlinear functions
of motor speeds, which themselves are dynamically evolving based on the inputs [67].
Impact on system matrices:

• The A matrix (system dynamics) becomes larger and includes motor dynamics.

• The B matrix (input influence) no longer directly maps the control inputs to forces
and torques but instead to motor accelerations.

D. Control Design Considerations

Including actuator dynamics forces the control designer to rethink controller structure:

• Lag Compensation: Controllers must anticipate and correct for motor response lag,
particularly in aggressive maneuvers [63].

• Feedforward Terms: Adding feedforward control based on predicted actuator
behavior can improve performance [63].

• Observer Design: If motor speeds are not directly measured, a state observer (e.g.,
Kalman Filter) must estimate them, making the observer more complex [63].

• Gain Scheduling: Control gains may need adjustment depending on motor operating
points (especially when motors saturate or behave nonlinearly at high speeds) [63].

• Stability Margins: Actuator dynamics introduce additional phase delay, reducing
gain and phase margins, which must be considered in control stability analysis [63].

• Selecting an Appropriate Control Strategy: With many control techniques
available, choosing the right one is crucial. Some methods offer greater freedom and
robustness in managing quadcopter dynamics—particularly those grounded in a
comprehensive mathematical model that accounts for all system equations. For
example, the Backstepping method, in combination with Lyapunov-based stability
analysis, systematically computes tracking errors and iteratively traces them back
through the system’s dynamics. Such model-based approaches allow for custom
controller development tailored to the unique behavior of the quadcopter, especially
under nonlinear and time-varying conditions [54].
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II.8 Conclusion

This chapter laid a rigorous and structured foundation for modeling and analyzing the
dynamics of a quadcopter drone, setting the stage for the development and evaluation of
advanced control systems in the chapters to follow. It began by outlining the quadcopter’s
mechanical architecture and operational principles, highlighting the challenges that arise
from its nonlinear, under-actuated, and tightly coupled dynamics.

The quadcopter was modeled as a six-degree-of-freedom (6DOF) rigid body, and its kinematic
and dynamic equations were carefully derived using both Newton-Euler and Euler-Lagrange
methods. These mathematical formulations capture the essential physical influences on the
system, including translational and rotational dynamics, gravitational forces, rotor-induced
thrust, and aerodynamic effects such as drag and rotor interactions.

A detailed discussion of coordinate transformations between inertial and body-fixed frames
was also provided to accurately represent the drone’s position and orientation in three-
dimensional space. By presenting both the full nonlinear state-space model and its linearized
version around the hover condition, the analysis offers two valuable perspectives: one that
fully reflects the complexity of the system and another that simplifies the design of practical
controllers while retaining key behaviors.

Furthermore, actuator dynamics were examined with attention to real-world constraints
such as motor lag, thrust generation delays, saturation limits, and rate constraints. These
practical factors are often neglected in idealized models but are vital for achieving reliable
performance in actual flight conditions. Addressing these limitations highlights the
importance of adopting robust, adaptive, and often nonlinear control approaches.

In summary, the models and insights developed in this chapter provide a solid theoretical
backbone for the control strategies that will follow. They not only deepen our understanding
of quadcopter behavior but also prepare us to tackle the challenges of stable and responsive
autonomous flight. Building on this foundation, the next chapter will introduce advanced
nonlinear control techniques, with a particular focus on the Backstepping method. This
approach, grounded in Lyapunov-based stability analysis, allows complex control tasks to
be broken down into smaller, manageable steps. Its structured use of the mathematical
model makes it especially well-suited for handling the quadcopter’s nonlinearities, ultimately
leading to more intuitive and effective control design.
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CHAPTER III : ADVANCED OPTIMIZATION STRATEGIES FOR
QUADCOPTER TRAJECTORY TRACKING UNDER WIND DISTURBANCE

III.1 Introduction

The rapid advancement of the UAV technology has driven its widespread adoption across a
wide range of applications, including surveillance, delivery, agriculture, and
search-and-rescue missions [68][69]. A critical factor in UAV performance is their ability to
maintain precise trajectory tracking under dynamic environmental conditions, especially
when confronted with wind disturbances [70]. This chapter provides a comprehensive
analysis of advanced control strategies aimed at improving drone trajectory tracking
performance under challenging windy conditions. The focus is specifically on quadcopter
systems with an X4 configuration (four rotors arranged in an X formation), which have
become the most common platform for both research and commercial applications due to
their mechanical simplicity and excellent maneuverability.
Traditional control methods, such as Proportional-Integral-Derivative (PID) controllers,
have revealed limitations in handling the nonlinear dynamics and external disturbances
inherent to UAV operations [71][72]. To address these challenges, researchers have
developed more sophisticated control strategies [73], including backstepping control, which
offers systematic design procedures along with Lyapunov-based stability guarantees [74].
However, even backstepping controllers can encounter difficulties when dealing with
uncertainties, model inaccuracies, and time-varying parameters that frequently arise in
real-world scenarios [74][75].
This chapter explores the integration of optimization algorithms with backstepping control
to further enhance performance. Specifically, we investigate four approaches:

• Standard Backstepping Control (used as the baseline).

• Grey Wolf Optimizer (GWO)-Enhanced Backstepping Control [76].

• Garra-Rufa Optimization (GRO)-Enhanced Backstepping Control

• Pelican Optimization Algorithm (POA)-Enhanced Backstepping Control [77].

Through detailed mathematical modeling, simulation results, and comparative analysis, we
demonstrate how these optimization-enhanced control strategies achieve significant
improvements in trajectory tracking accuracy and robustness under wind disturbances.

III.2 Quadrotor Dynamics and Modeling

The accurate mathematical modeling of quadrotor dynamics is fundamental to designing
effective control strategies, particularly under environmental disturbances such as wind
[78][79]. This section provides a detailed derivation of the six degrees of freedom (6-DOF)
quadrotor model, including both translational and rotational dynamics, and presents the
state-space representation that will serve as the foundation for the control design.
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III.2.1 Mathematical Model of 6-DOF

A quadrotor represents an underactuated system characterized by four independent control
inputs, namely the thrust forces produced by its rotors, while possessing six dynamic degrees
of freedom: three translational (x, y, z) and three rotational, specifically roll (ϕ), pitch (θ),
and yaw (ψ) [80].
For this study, we adopt the commonly used X-configuration, where rotors M1 and M3
rotate clockwise, while M2 and M4 rotate counterclockwise, creating counteracting torques
for balanced control [81].
The system is analyzed in two coordinate frames:

• Earth-Fixed (Inertial) Frame (EF): A global reference frame denoted by (X, Y, Z),
typically aligned with the North-East-Down (NED) convention [82].

• Body-Fixed Frame (BF): A local frame attached to the quadrotor’s center of gravity,
denoted by (xb, yb, zb) where zb points downward through the fuselage [82].

The orientation of the quadrotor relative to the earth frame is described using Euler angles:

• Roll (ϕ): rotation about the body-fixed xb-axis

• Pitch (θ): rotation about the body-fixed yb-axis

• Yaw (ψ): rotation about the body-fixed zb-axis

To transform between the two frames, the rotation matrix R(ϕ, θ, ψ) is used [80]:

R =


CosψCosθ CosψSinϕSinθ −CosϕSinψ SinϕSinψ + CosϕCosψSinθ
CosθSinψ SinϕSinψSinθ + CosϕCosψ CosϕSinψSinθ −CosψSinϕ
−Sinθ CosθSinϕ CosϕCosθ

 (III.1)

Figure III.1: Euler-Newton approach on Quadcopter [83].

The full nonlinear dynamics are derived using the Euler-Newton approach (Figure III.1 ),
resulting in the following set of coupled equations [80][84]:
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(III.2)

III.2.2 Mathematical Dynamic Representation

For systematic control design, especially when applying backstepping methods, it is
advantageous to express the dynamics of the quadrotor in state-space form. We define the
12-dimensional state vector [85][86]:

x = [x1,x2, . . . ,x12]T =
[
ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, z, ż, y, ẏ, x, ẋ

]T
(III.3)

The corresponding state-space equations are the following [80][87]:

ẋ1 = x2

ẋ2 = a1x4x6 + b1u2

ẋ3 = x4

ẋ4 = a2x2x6 + b2u3

ẋ5 = x6

ẋ6 = a3x2x4 + b3u4

ẋ7 = x8

ẋ8 = cos (x1) cos(x2)
m

U1 − g
ẋ9 = x10

ẋ10 = Uy
m
U1

ẋ11 = x12

ẋ12 = Ux
m
U1

(III.4)

where:
✓ a1 = Iy−Iz

Ix
, a2 = Iz−Ix

Iy
, a3 = Ix−Iy

Iz

✓ b1 = d
Ix
, b2 = d

Iy
, b3 = d

Iz
(With d representing the control moment arm)

✓ Ux = cos (x1) cos (x3) cos (x5) + sin (x1) sin (x5)
✓ Uy = cos (x1) sin (x3) sin (x5)− sin (x1) cos (x5)

This formulation explicitly separates the rotational and translational subsystems, providing
a clear structure for the subsequent design of hierarchical control laws.
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III.3 Backstepping Control Design

Backstepping control is a powerful nonlinear control technique that has gained prominence
in UAV applications due to its ability to handle complex, cascaded dynamics inherent in
quadcopters [88]. Unlike linear control methods (e.g., PID), which often rely on local
linearization, backstepping preserves the nonlinear structure of the system, enabling global
stability guarantees [89]. This section introduces the methodology and its application to
quadcopter control, with a focus on:

• Theoretical foundations (principles, stability guarantees)

• Step-by-step design for attitude/position subsystems

• Practical considerations for implementation

We chose the backstepping because the Quadcopters are underactuated (6 DOF controlled
by 4 rotors) and highly nonlinear due to:

• Coupling between rotational and translational dynamics

• Actuator saturation (limited rotor thrust)

• External disturbances (e.g., wind gusts)

Backstepping addresses these challenges by:

• Decomposing the system into manageable subsystems (attitude → position)

• Recursively stabilizing each subsystem using Lyapunov functions

• Preserving nonlinearities instead of approximating them

III.3.1 Principles of Backstepping Control

The backstepping control method offers a structured approach for managing nonlinear
systems, particularly those with high-order dynamics such as a quadcopter. At its core,
backstepping divides the overall system into a sequence of smaller, interconnected virtual
subsystems. For each of these, intermediate control laws, known as virtual inputs, are
designed to guide the system’s behavior. By systematically organizing and stabilizing these
subsystems, the designer can ensure that stability is maintained across the entire control
framework, resulting in reliable system performance [90].

• Virtual Control Variables: These variables serve as intermediate control signals
or reference states introduced within the control architecture. For example, a roll
angle error is converted into a desired roll rate, which then acts as the reference for
calculating the necessary torque input. This layered approach simplifies the overall
control task by breaking down complex relationships into a sequence of manageable
steps [89].
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• Lyapunov Stability: A Lyapunov function V is constructed for each subsystem
to formally demonstrate that the subsystem’s error dynamics remain stable, which
requires satisfying the condition V̇ ≤ 0. By ensuring the stability of each inner control
loop, the design progressively builds stability outward toward the higher-level loops,
following a principle sometimes called back-propagated stability [90].

• Recursive Design: The design proceeds step by step, starting from the innermost
dynamic loop [90]:

✓ Step 1: Stabilize the most immediate subsystem, such as the roll dynamics.

✓ Step 2: Use the virtual control law derived from Step 1 as a reference input for
the next subsystem, for example, the roll rate dynamics.

✓ Continue this recursive process until the final actual control input, such as the
rotor torques or thrust, is computed.

Mathematical Formulation

Consider a general n-order nonlinear system described by [90]: ẋ1 = f1 (x1) + g1 (x1) x2

ẋ2 = f2 (x1,x2) + g2 (x1,x2) u
(III.5)

The backstepping procedure follows these key steps:

1. Treat x2 as a virtual input for the ẋ1 subsystem.
2. Design x2 = α(x1) to stabilize x1, for instance by selecting α (x1) = −k1x1, where k1

is a positive design gain.
3. Define the error z = x2 − α(x1), and derive a control law that stabilizes ż.
4. Compute the actual control input u such that the combined Lyapunov derivative

satisfies V̇ = V̇1 + V̇2 ≤ 0, guaranteeing global system stability.

Transition to Quadcopter Application

When applying these principles to the quadcopter’s six degrees of freedom (6-DOF)
dynamics, as outlined in Section 3.2, the control design is arranged in a hierarchical
manner.

• Inner Loop (Attitude Control): The first stage is dedicated to stabilizing the roll,
pitch, and yaw angles. This is achieved by designing virtual control inputs, such as
desired angular rates, that effectively manage the quadcopter’s rotational behavior [91].

• Outer Loop (Position Control): Once the attitude is stabilized, the outer loop
takes over to regulate the translational motion. This ensures that the quadcopter
accurately follows the desired (x, y, z) trajectories in space [91].
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This structured control architecture proves especially valuable because the inner loop can
quickly counteract disturbances [91], including wind effects or modeling inaccuracies, before
these disturbances affect the outer position loop. As a result, the entire system maintains
robust and reliable performance, even under environmental uncertainties or limitations in
the actuators.

III.3.2 Backstepping Control Formulation for Quadcopters

To apply backstepping control effectively to a quadcopter, we first decompose its complex
dynamics into two major control layers [92]:

• Attitude Control, which governs Roll, Pitch, and Yaw.
• Position Control, which manages the translational motion along the X, Y, and Z

axes.

Each layer is stabilized using a recursive approach, ensuring that tracking errors at each
stage progressively shrink to zero [92]. This layered strategy not only simplifies the control
design (Figure III.2 ) but also strengthens the system’s resilience to disturbances and model
uncertainties [92].

Figure III.2: 6-DOF Quadcopter Schema, including the backstepping controller.

Step 1: Attitude Control (Focusing on Roll Angle Example)

Let’s start with the roll dynamics, which serve as a representative case for the general
method. The roll behavior can be modeled by the following system of equations [92]:

 ẋ1 = x2

ẋ2 = a1x4x6 + b1u2
(III.6)

where:
✓ x1 = ϕ represents the roll angle.
✓ x2 = ϕ̇ represents the roll rate.
✓ u2 is the control input acting on Roll.
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The terms a1 and b1 are constants derived from the system’s physical parameters, while
x4 and x6 correspond to other states such as pitch and yaw rates, reflecting the coupling
between the different rotational axes [92].

Design Steps:

1. Define Tracking Error: We first quantify how far the system is from the desired roll
behavior:

ε1 = x1d − x1 (III.7)

where x1d represents the target roll angle. This error becomes the starting point for
designing a stabilizing controller.

2. First Lyapunov Function: To formally ensure stability, we define a Lyapunov
function:

V1 = 1
2ε

2
1 (III.8)

This function measures the "energy" or deviation in the system due to the roll angle
error. Taking its derivative gives:

V̇1 = ε1ε̇1 = ε1(ẋ1d − x2) (III.9)

To stabilize this subsystem, we need to design a control law that keeps V̇1 non-positive,
meaning the error does not grow over time.

3. Virtual Control Law for x2: We introduce a virtual control input to guide the roll
rate:

x2d = ẋ1d + k1ε1 (III.10)

where k1 > 0 is a gain chosen to correct the roll angle error. This virtual input
effectively tells the system how the roll rate should behave to bring the roll angle error
back to zero.

4. Define New Error for Roll Rate: Next, we define the difference between the actual
roll rate and the desired (virtual) roll rate:

ε2 = x2d − x2 (III.11)

This second error allows us to construct a more refined control law that handles both
the angle and rate dynamics.

5. Augmented Lyapunov Function: We extend our Lyapunov function to capture
both tracking errors:

V2 = V1 + 1
2ε

2
2 (III.12)
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The derivative becomes [90]:

V̇2 = V̇1 + ε2ε̇2 = ε1ε̇1 + ε2ε̇2 = ε1 (ẋ1d − x2) + ε2 (ẋ2d − ẋ2)

= ε1 (ẋ1d − (ẋ2 − ε2)) + ε2(ẋ2d − (a1x4x6 + b1u2))

= ε1 (ẋ1 − ẋ2d) + ε1ε2 + ε2(ẋ2d − a1x4x6 − b1u2)

= ε1(−k1ε1) + ε2 (ε1 + (ẋ2d − a1x4x6 − b1u2))

So:
V̇2 = −k1ε

2
1 + ε2(ε1 + ẋ2d − a1x4x6 − b1u2) (III.13)

Here, we see that part of the system’s dynamics is now explicitly linked to the actual
control input u2.

6. Derive the Final Control Law for Roll: To make sure the full system stabilizes,
we solve for u2 in a way that ensures V̇2 ≤ 0:

u2 = 1
b1 [ε1 − k1x2 − a1x4x6 + k2ε2] (III.14)

with k2 > 0 as an additional gain tuning the response to the roll rate error. This final
expression gives us the actual torque command that should be applied to the roll axis
to correct both angle and rate deviations [90].

By following this stepwise backstepping procedure, we ensure that the errors in both roll
angle and roll rate converge to zero:

V̇2 = −k1ε
2
1 − k2ε2 ≤ 0 (III.15)

This guarantees that the system’s energy decreases over time, leading to stable behavior.
The same recursive design is then applied to the pitch and yaw subsystems, as well as to the
outer position control loops (x, y, z) [90].
The strength of backstepping lies in its ability to handle the nonlinear and coupled nature of
the quadcopter’s dynamics by layering virtual and real controls systematically. This layered
stabilization makes the overall system more robust, even in the presence of disturbances or
modeling uncertainties [90].

Step 2: Pitch and Yaw Control

Building on the earlier backstepping approach, we extend the control design to cover the
remaining rotational angles (pitch θ and yaw ψ) as well as the translational positions along
the X, Y, and Z axes [90]. By using the system equations provided in equation (3) and
applying the same recursive stabilization principles, we derive the following control laws
for each subsystem. These expressions ensure that tracking errors across all rotational and
positional channels converge properly [90].
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• Pitch Control (u3):

u3 = 1
b2

[ε3 − k3x4 − a2x2x6 + k4ε4] (III.16)

• Yaw Control (u4):
u4 = 1

b3
[ε5 − k5x6 − a3x2x4 + k6ε6] (III.17)

Step 3: Position Control (Altitude "Z" and "X","Y" Motion)

At this stage of the backstepping design, we shift our attention from stabilizing the
quadcopter’s attitude (its rotational orientation) to managing its position in
three-dimensional space. This involves two main aspects: Altitude control Z and horizontal
motion control along the X and Y directions [90].

• Altitude Control (u1):

u1 = m

cos (x1) cos (x2)
[−ε7 + g − k7x8 − k8ε8] (III.18)

• X-Position Control (Ux):

Ux = m

u1
[−ε11 − k11x12 − k12ε12] (III.19)

• Y-Position Control (Uy):

Uy = m

u1
[−ε9 − k9x10 − k10ε10] (III.20)

So, in the result we obtain the complete set of backstepping control laws:


Roll control Angle ϕ : u2 = 1
b1 [ε1 − k1x2 − a1x4x6 + k2ε2]

Pitch control Angle θ : u3 = 1
b2 [ε3 − k3x4 − a2x2x6 + k4ε4]

Y aw control Angle ψ : u4 = 1
b3 [ε5 − k5x6 − a3x2x4 + k6ε6]

Altitude ”Z” Control : u1 = m
cos (x1) cos(x2) [−ε7 + g − k7x8 − k8ε8]

X − Position Control : Ux = m
U1

[−ε11 − k11x12 − k12ε12]
Y − Position Control : Uy = m

U1
[−ε9 − k9x10 − k10ε10]

(III.21)

The control gains K1–K12 need to be carefully selected to ensure system stability and
satisfactory performance. This is where optimization algorithms can significantly enhance
the controller’s performance.
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III.4 Grey Wolf Optimizer (GWO)-Enhanced Backstepping
Control

Combining backstepping control with the Grey Wolf Optimizer (GWO) offers a
practical and adaptive solution for improving the performance of nonlinear systems such as
quadcopters [80]. While backstepping provides a structured method for stabilizing
subsystems, its reliance on precise gain tuning can limit effectiveness. GWO addresses this
by automatically optimizing control gains, leading to improved tracking performance,
stronger disturbance rejection, and greater robustness under dynamic conditions [80].

III.4.1 Grey Wolf Optimization Algorithm

The Grey Wolf Optimizer (GWO) is a well-known metaheuristic algorithm that draws
inspiration from the social organization and hunting behavior of grey wolves in nature
(Figure III.3 ) [93]. This optimization technique has gained significant attention due to its
simplicity, flexibility, and ability to handle complex, nonlinear search spaces effectively [94].
In the GWO algorithm, the population of candidate solutions is structured to reflect the
hierarchical nature of a wolf pack. Specifically, individuals in the population are ranked into
four distinct roles [93]:

• Alpha (α): Represents the best solution found so far and leads the decision-making
process.

• Beta (β): The second-best candidate, supporting the alpha and providing additional
guidance.

• Delta (δ): The third-ranked solution, assisting both alpha and beta in influencing the
pack.

• Omega (ω): The remaining individuals, which follow the lead of the top three and
explore the search space.

Figure III.3: Grey Wolf Behaviour to hunting a prey
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The optimization process mimics the wolves’ hunting mechanism, which unfolds in three key
stages:

1. Encircling the prey:

In this phase, the wolves estimate the location of the prey (representing the optimal
solution) and adjust their positions accordingly. The mathematical model captures
this dynamic through the following relations [93]:

−→
D =

∣∣∣−→C−→Xp(t)−
−→
X (t)

∣∣∣ (III.22)

−→
X (t+ 1) = −→Xp(t)−

−→
A.
−→
D (III.23)

Here, −→A and −→C are adaptive coefficient vectors, defined by [92]:
−→
A = 2.−→a .−→r1 −−→a (III.24)
−→
C = 2.−→r2 (III.25)

where −→r1 and −→r2 are random vectors in the range [0,1], and −→a decreases linearly over
time, shifting the balance from exploration to exploitation [93].

2. Hunting:

Once the prey’s estimated location is roughly identified, the three top-ranking wolves
(alpha, beta, and delta) take the lead in guiding the hunting process [93]. The
remaining wolves adjust their positions by following the influence and directional
cues provided by these leaders [93]:

−→
X1 = −→Xα −

−→
A1.

∣∣∣−→C1.
−→
Xα −

−→
X
∣∣∣ (III.26)

−→
X2 = −→Xβ −

−→
A2.

∣∣∣−→C2.
−→
Xβ −

−→
X
∣∣∣ (III.27)

−→
X3 = −→Xδ −

−→
A3.

∣∣∣−→C3.
−→
Xδ −

−→
X
∣∣∣ (III.28)

The average of these guided positions forms the updated candidate [92]:

−→
X (t+ 1) =

−→
X1 +−→X2 +−→X3

3 (III.29)

3. Searching for prey (exploration phase):

To prevent the search process from getting stuck in local optima, the wolves must
strike a careful balance between following the lead wolves and independently exploring
new areas. When the magnitude of A is greater than 1 (∥A∥ > 1), the wolves are
encouraged to move away from the prey or from each other, effectively broadening
their search [93]. This exploration phase increases diversity within the population and
allows the algorithm to scan the wider solution space for better answers [94].
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4. Attacking the prey (exploitation):

As the wolves begin to close in on the prey, the level of exploration gradually
decreases, and the wolves shift their focus toward fine-tuning their positions [94].
This occurs when the magnitude of A drops below 1 (∥A∥ < 1), signaling a
transition to exploitation [93]. During this phase, the search concentrates on refining
the best-known solutions and ensuring convergence toward the global optimum [94].

As a summary of the Grey Wolf Optimizer (GWO) algorithm, we present its key steps in
the form of the pseudo-code provided below [80]:

Initialize the grey wolf population −→Xi, i = 1, 2, . . . , n
Initialize parameters α, A, and C
Calculate the fitness of each search agent
Xα ← best search agent
Xβ ← second best search agent
Xδ ← third best search agent
while t < Max number of iterations do

for each search agent do
Update the position of the current search agent using Xα, Xβ, and Xδ

end for
Update parameters A and C
Recalculate fitness of all agents
Update Xα, Xβ, and Xδ

t← t+ 1
end while
return Xα

III.4.2 GWO for Backstepping Gain Optimization

The Grey Wolf Optimizer (GWO) is applied to fine-tune the backstepping control gains
k1 through k12, with the goal of achieving the best possible controller performance [95].
This optimization process unfolds through a series of well-structured steps that combine
systematic search with adaptive learning as follow:

Initialization

At the outset, the search space for each gain is carefully defined, specifying the upper and
lower bounds within which the algorithm can explore [95]. A population of candidate
solutions, representing different combinations of gain values, is then initialized randomly
across this search space. The number of iterations and the size of the population are set as
key parameters to control the optimization run [95].
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Fitness Function Design

The fitness of each candidate gain set is evaluated using a performance-driven objective
function [96]. This function measures how effectively the controller balances multiple goals,
such as minimizing the tracking error, reducing control effort, and achieving fast settling
times. The fitness function is typically expressed as [96]:

J = w1

∫
e2(t)dt+ w2

∫
u2(t)dt+ w3ts (III.30)

where:
✓ e(t) represents the tracking error, reflecting how closely the system follows the desired

trajectory;
✓ u(t) is the control effort, indicating how much input energy the controller uses;
✓ ts denotes the settling time, measuring how quickly the system reaches a steady state;
✓ w1, w2, w3 are weighting factors that balance the importance of each term depending

on the design priorities.

Optimization Process

Throughout the optimization process, the algorithm continuously identifies the
top-performing solutions, known as the alpha, beta, and delta wolves, which guide the
search direction for the rest of the population [80]. By iteratively updating each wolf’s
position in the search space, the population gradually converges toward a set of gains that
optimally balance performance trade-offs [80].

Implementation

Once the optimization is complete, the identified gains are implemented within the
backstepping controller, significantly enhancing its ability to handle complex dynamic
conditions [94]. If desired, the system can also include an online adaptation mechanism,
allowing the controller to adjust gains in real time when facing varying operating
environments [80].

III.4.3 Advantages of GWO-Backstepping

The integration of the Grey Wolf Optimizer (GWO) with the backstepping control
framework brings a range of important advantages that strengthen the system’s
performance and usability, offering several advantages:

1. Improved tracking accuracy: Achieved because the optimized gains
systematically reduce the tracking errors between the system’s actual response and
the desired reference signals. This leads to more precise trajectory following and
better overall system behavior [80].
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2. Enhanced robustness: The approach provides enhanced robustness, giving the
controller stronger disturbance rejection capabilities. Thanks to the optimization
process, the controller is better equipped to handle uncertainties in the system model
and external disturbances such as wind or payload changes [80].

3. Automatic tuning: Another key benefit is automatic tuning, which removes the
need for time-consuming and often tedious manual gain selection. The GWO algorithm
explores the solution space efficiently, identifying the best gain settings without relying
on trial-and-error approaches from the designer [93].

4. Adaptability: In addition, the method offers adaptability, as it can be extended
to include online adaptation mechanisms. This means the controller can adjust its
parameters in real time, ensuring consistent performance even as the system’s dynamics
or environment evolve [93].

5. Computational efficiency: The approach is known for its computational efficiency.
The GWO algorithm typically converges relatively quickly compared to other
metaheuristic methods, making it suitable for practical engineering applications
where computational resources or time are limited [96].

Together, these advantages position the GWO-enhanced backstepping controller as a
powerful and versatile solution for complex control problems, offering both strong
theoretical foundations and practical effectiveness.

III.5 Garra Rufa Optimization (GRO)-Enhanced Backstepping
Control

III.5.1 Garra Rufa Optimization Algorithm

The Garra Rufa Optimization (GRO) algorithm draws inspiration from the feeding
behavior of doctor fish (Figure III.4 ), small aquatic creatures known for their cooperative
yet competitive dynamics [97]. This optimization method introduces several unique
features that set it apart from other metaheuristic approaches [97]:

• Population initialization: The algorithm begins by distributing the fish (candidate
solutions) randomly throughout the search space, ensuring a diverse set of starting
points [98].

• Movement strategy: Each fish updates its position by combining influences from
both the best-known solution and randomly selected neighbors. Mathematically, this
is expressed as [98]:

xnew
i = xi + rand · (xbest − xi) + rand · (xrand − xi) (III.31)

where xbest represents the leader’s position, xrand is a randomly chosen fish, and rand
is a random number between 0 and 1.
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• Feeding behavior: The algorithm intensifies its local search in promising regions,
mimicking the way doctor fish cluster around nutrient-rich areas [98].

• Social hierarchy: Leader fish play a guiding role, directing the movement and
behavior of the rest of the population toward more optimal solutions [98].

Figure III.4: Garra-Rufa hunting Behaviour (feeding behavior of Doctor fiches)

III.5.2 GRO for Backstepping Gain Optimization

The GRO algorithm is employed to fine-tune the gains used in the backstepping controller,
aiming to achieve an optimal balance between performance, robustness, and efficiency [92].
The optimization process follows these steps:

• Parameter setup: Define the search boundaries for each backstepping gain and set
the population size along with the maximum number of iterations allowed [92].

• Fitness function: The quality of each candidate solution is evaluated using a multi-
objective fitness function:

J = w1 · RMSE + w2 ·max |e(t)|+ w3 · energy consumption (III.32)

where RMSE is the root mean square tracking error, max |e(t)| represents the maximum
error magnitude, and the last term accounts for the total energy used by the control
system. The weighting factors w1, w2, w3 balance the importance of each criterion.

• Optimization steps:

1. Initialize the fish population randomly within the defined search space [92].

2. Evaluate the fitness of each fish using the defined performance criteria [92].

3. Update each fish’s position according to the GRO movement equations,
incorporating both leader guidance and peer influence [92].

4. Apply intensified local search through the feeding behavior mechanism to refine
promising solutions [92].

5. Repeat the process until the stopping conditions are satisfied.
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III.5.3 Performance of GRO-Backstepping

The GRO-enhanced backstepping controller offers several notable performance advantages:
1. Rapid convergence: It identifies good-quality solutions quickly, improving the

controller’s overall efficiency.
2. Effective disturbance rejection: The controller can effectively manage external

disturbances, such as sudden wind gusts, maintaining stable system behavior [92].
3. Smooth control inputs: By generating smoother control signals, the controller helps

reduce mechanical stress on actuators, extending their operational life [92].
4. Robust performance: It consistently maintains system stability even when operating

conditions vary, demonstrating strong resilience and adaptability [92].

III.6 Pelican Optimization Algorithm (POA)-Enhanced
Backstepping Control

Before diving into the details of the Pelican Optimization Algorithm, it is important to
understand why this algorithm is paired with the backstepping control approach. The
integration aims to enhance the controller’s performance by optimizing its parameters
through a nature-inspired search strategy. Similar to how pelicans skillfully locate and
capture prey in dynamic environments, the POA offers a balanced mechanism for
navigating complex solution landscapes [90].

III.6.1 Pelican Optimization Algorithm

The Pelican Optimization Algorithm (POA) draws inspiration from the distinctive hunting
strategies of pelicans [99]. Designed to balance exploration and exploitation, the POA is
divided into two main phases that mirror the pelicans’ natural search and capture behavior
[99].

A. Exploration Phase (Moving Towards Prey)

In this phase, pelicans search for the prey’s location and adjust their positions to move closer.
Mathematically, this is expressed as [99]:

xnew1
i,j = xi,j + rand · (pj − I · xi,j) (III.33)

Where:
✓ pj represents the prey’s position in dimension j

✓ I is a randomly selected integer (either 1 or 2)
✓ rand is a random number between 0 and 1

This formulation helps the pelicans (candidate solutions) explore the search space broadly,
preventing premature convergence and promoting the discovery of promising areas.
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B. Exploitation Phase (Winging on the Water Surface)

Once the pelicans are close to the prey, they switch to fine-tuned movements that resemble
winging on the water surface to scoop up fish [99]. This phase is described by:

xnew1
i,j = xi,j +R ·

(
1− t

T

)
· (2 · rand− 1) · xi,j (III.34)

Where:
• R is a constant (commonly set to 0.2)
• t is the current iteration
• T is the maximum number of iterations

Here, the position updates become more localized and refined, focusing on exploiting the
most promising solutions identified during the exploration phase [90]. If the new position
results in an improved fitness value, it is accepted; otherwise, the previous is retained [90].
By combining these two phases, the POA offers a flexible and efficient search mechanism,
making it well-suited for optimization tasks where both global exploration and local
exploitation are crucial.

III.6.2 POA for Backstepping Gain Optimization

The Pelican Optimization Algorithm (POA) is applied to systematically fine-tune the
backstepping control gains, ensuring optimal controller performance across various system
conditions [90].

A. Initialization

The process begins by defining a population of pelicans, where each pelican represents a
candidate solution with randomly assigned gain values. The algorithm’s key parameters,
such as the constant R and the maximum number of iterations, are also set during this stage
[90].

B. Fitness Evaluation

For each pelican (i.e., gain configuration), the system is simulated, and its performance is
assessed using a carefully designed multi-objective fitness function [100]:

J = α1 · ISE + α2 · IAE + α3 · ITAE + α4 · control effort (III.35)

where:
• ISE is the integral of squared error [100].
• IAE is the integral of absolute error
• ITAE is the integral of time-weighted absolute error [100].
• The control effort term penalizes excessive actuation

The weighting factors α1, α2, α3, α4 allow prioritization of the different objectives depending
on the design goals.
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C. Optimization Process

The POA optimization unfolds in two key phases:
• The exploration phase guides the pelicans to search broadly across the solution space
• The exploitation phase fine-tunes their positions by focusing on promising regions

After each iteration, the algorithm updates the best solutions based on fitness improvements.
This cycle is repeated until the stopping criterion is met, typically defined by convergence
or a maximum number of iterations, as the algorithm explains below [90]:

Algorithm: Pelican Optimization Algorithm (POA)

Initialize the pelican population Xi (i = 1, 2, . . . , n)
Initialize parameters for exploration and convergence
Calculate the fitness of each pelican
Identify the top-performing pelicans as leaders
while t < Max number of iterations do

# Step 1: Exploration and Encircling
for each pelican (agent) do

if exploration phase then
Move the pelican to explore the search space broadly

else
Adjust the pelican’s position to converge towards the leader positions,
simulating group coordination.

end if
end for
# Step 2: Updating Leaders
Calculate the fitness of each pelican
Reevaluate and update the leader positions based on the best solutions found
in this iteration
Gradually shift parameters to transition from exploration to convergence
t = t+ 1

end while
return the best solution found

D. Implementation

Once the optimal gain set is identified, it is implemented directly into the backstepping
controller. Additionally, the POA framework can be periodically reapplied in real time
to adapt the gains dynamically, ensuring the controller remains effective even under time-
varying system conditions.
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Figure III.5: Pelican Optimization Algorithm from Pelicans’ Behaviour

III.6.3 Advantages of POA-Backstepping

The Pelican Optimization Algorithm (POA), when integrated into the backstepping control
framework, offers a set of notable advantages over alternative metaheuristic methods such as
the Grey Wolf Optimizer (GWO) [90]. By leveraging its distinctive two-phase strategy, the
POA is able to navigate the optimization landscape with both breadth and precision. This
results in performance improvements that are evident not only in the speed of convergence
but also in the accuracy and robustness of the controller [90]. Below, we summarize the key
advantages provided by the POA-enhanced backstepping approach:

• Better exploration-exploitation balance: The POA’s two-phase mechanism
ensures a more effective balance between global search and local refinement,
improving the overall efficiency of the optimization process [90].

• Faster convergence: By efficiently navigating the parameter space, the POA reaches
optimal solutions with fewer iterations compared to GWO-based designs [90].

• Higher precision: The optimized controller achieves notably lower tracking errors,
enhancing the accuracy of system responses [90].

• Improved disturbance rejection: The POA-based controller demonstrates strong
robustness against environmental uncertainties, particularly in rejecting wind
disturbances [90].

• Adaptability: The method maintains reliable performance across a wide range of
operating conditions, making it well-suited for systems requiring flexible and resilient
control.
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III.7 Simulation Results and Comparative Analysis

This section critically evaluates the effectiveness of the proposed methods for trajectory
tracking in X-4 drone systems. The quadcopter’s dynamics are modeled and simulated
using MATLAB 2021a. To establish a solid baseline for comparison, a conventional
backstepping controller is first implemented to track two distinct trajectory paths [101].
The performance of this basic backstepping controller is then compared against that of the
Grey Wolf Optimizer (GWO)-, Pelican Optimization Algorithm (POA)-, and Garra-Rufa
Optimization (GRO)-enhanced backstepping controllers. This comparative analysis aims to
clearly highlight the impact of integrating these bio-inspired optimization methods such as
POA on the overall performance of the control strategy [102]. In the second phase of the
evaluation, the same trajectory paths, control methods, and optimization algorithms are
used, but a wind disturbance is introduced at the 30-second mark. This experimental setup
allows for a comprehensive assessment of the drone’s dynamic response and the relative
effectiveness of the standard backstepping controller and its enhanced versions in
mitigating the effects of external environmental disturbances.

III.7.1 Simulation Setup
The designed controllers were thoroughly evaluated using simulations conducted in
MATLAB/Simulink. To comprehensively evaluate controller performance, two scenarios
were tested, one with disturbance and one without, each incorporating two challenging
trajectory paths [103]:

• A cylindrical path, representing a three-dimensional circle motion
• A helical path, resembling a spring-shaped trajectory

These trajectories were chosen to test both the precision of the controllers and their ability
to handle complex motion patterns [103]. To conduct this test, a simulation model was
developed, as illustrated in the corresponding Figure III.6, implementing a backstepping
controller integrated with an X-4 quadcopter system.

Figure III.6: Simulation Block Diagram of an X-4 Quadcopter Controlled by Backstepping)

The quadrotor system was modeled with the following parameters [80][90][92]:
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Table III.1: Quadcopter parameters

Type Parameters Units
X, Y moment of inertia Ixx, Iyy 2.2 × 10−2 kg.m2

Z moment of inertia Izz 4.39 × 10−2 kg.m2

Distance to center l 2.25 × 10−1 m
Acceleration Gravity g 9.81 m/s2

Quad Mass m 1.8 kg
Drag factor d 1
Grey Wolf Optimization Parameters Max of wolves 25

Max Iterations 115
Garra Rufa Optimization parameters Max of Fishes 100

groups 2
Iteration’s 100

Pelican Optimization Algorithm Parameters Max of Pelicans 50
Iteration’s 100
Upper Bounds 50
Lower Bounds 1

Sampling time 1st Path Ts 0.1s
Sampling time 2nd Path Ts 0.2s
Wind disturbance W 5 m/s

t 30s

III.7.2 Performance Metrics
The performance of each controller was evaluated using several key metrics:

• Mean Square Error (MSE): Measures the average deviation between the desired
and actual trajectories over time [104].

• Maximum tracking error: Captures the largest instantaneous deviation during the
trajectory [104].

• Settling time: Quantifies the time taken for the system to stabilize within an
acceptable error band after disturbances

III.7.3 Analysis of Backstepping Controller Performance with Algorithms

This study compares the performance of the standard backstepping controller with the GWO-
, GRO- and POA-optimized backstepping controller across two trajectory paths. In both
paths, the quadcopter moves clockwise on the X, Y and Z planes around the origin (0, 0, 0).

A- First Scenario: Trajectory Tracking Assessment

In the first scenario we will try to control the quadcopter tracking trajectory with
backstepping controller and the three algorithms without any disturbance, so Figure III.7a
& Figure III.7b present the two reference trajectories that the quadcopter, governed by the
backstepping controller, is required to follow.
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(a) First Trajectory Path (b) Second Trajectory Path

Figure III.7: Two challenging trace trajectory paths

In the first path which follows a cylindrical path across the X, Y, and Z axes, the standard
backstepping controller was able to track the desired path, although it exhibited minor errors
along the Z-axis and slight deviations on the X and Y axes during the initial few seconds.
In the second path, which involves a helical path, similar patterns were observed as shown
in Figure III.8 (a & b) for both paths. For additional details, Annex II provides the full
position and orientation trajectories.

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.8: Quadcopter Tracking Path using Backstepping Controller

A-1 Backstepping with GWO:

As demonstrated in Figure III.8a & Figure III.8b, the backstepping controller is able to
follow the track, though it exhibits minor errors along the Z-axis and during the initial few
seconds on the X and Y axes.
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In contrast, when the GWO-enhanced controller was applied, it showed in Figure III.9 (a & b)
that there were significant improvements in performance tracking on both paths. Specifically,
it reduced errors along the Z-axis and further minimized deviations on the X and Y axes
compared to the backstepping controller. Annex II and Figure III.10 also provides the full
position and angle trajectories with explanation zoom as additional details.

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.9: GWO-Enhanced Backstepping Controlling a Quadcopter

Figure III.10: Orientation angles Phi-Theta-Psi of GWO-Enhanced Backstepping

A-2 Backstepping with GRO:

Figure III.8a & Figure III.8b, shown the success of the backstepping controller in following
the tracks but has minor errors along the Z-axis and slight deviations during the initial
seconds on the X and Y axes.
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The application of the GRO-enhanced controller led to a significant improvement in
tracking performance. This controller on both paths minimizes the errors along the Z-axis
and further reduces deviations on the X and Y axes compared to the backstepping
controller (Figure III.11 (a & b)). Annex II and Figure III.12 includes a detailed
explanation of the algorithm and its impact on both positions and orientations.

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.11: GRO-Enhanced Backstepping Controlling a Quadcopter

Figure III.12: Orientation angles Phi-Theta-Psi of GRO-Enhanced Backstepping

A-3 Backstepping with POA:

Based on the analysis of the results obtained with the backstepping controller, it can be
observed that the system is able to follow the desired track but displays minor errors along
the Z-axis and slight deviations during the initial seconds on the X and Y axes.
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Otherwise, the use of the POA-enhanced controller results in a substantial improvement
in tracking performance on both paths (Figure III.13a & Figure III.13b). It completely
eliminates errors along the Z-axis and reduces deviations on the X and Y axes to such a
minimal level that these errors become almost imperceptible all this found in Figure III.14
and Annex II.

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.13: POA-Enhanced Backstepping Controlling a Quadcopter

Figure III.14: Orientation angles Phi-Theta-Psi of POA-Enhanced Backstepping

The optimized backstepping controllers—GWO, GRO, and POA—show clear improvements
over the basic version (Figure III.15 (a & b)). While the standard controller can follow the
path, it shows small Z-axis errors and brief X-Y deviations at the start. GWO reduces these
errors noticeably, especially in height tracking. GRO improves further, removing Z-axis
errors entirely and cutting X-Y drift. POA delivers the best performance, with near-perfect
tracking across all axes. Additional explanatory figures are provided in Annex II.
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(a) First Trajectory Path (b) Second Trajectory Path

Figure III.15: Comparative of Optimized Backstepping Control Strategies

B- Second Scenario: Trajectory Tracking Assessment, in Windy Environment
In this scenario, we assess the impact of wind disturbances with a step value of 5 m/s on the
two trajectory paths analyzed in the first scenario. The wind is introduced at the 30-second
mark to evaluate the robustness of each optimizer under challenging external conditions.
For the first 30 seconds, the standard backstepping controller initially performs effectively,
showing only minor tracking errors, particularly around the wave troughs. Once the wind
disturbance is introduced, its performance deteriorates significantly. The controller struggles
to maintain alignment with the reference trajectory, leading to noticeable deviations and a
clear decline in tracking accuracy in both of the paths under the influence of the external
disturbance (Figure III.16 (a & b)).

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.16: Quadcopter Trajectory with Backstepping Controller against Wind

B-1 Backstepping with GWO under Wind Disturbance:
While the backstepping controller struggles under wind, the GWO-enhanced controller
demonstrates clear improvements, minimizing tracking deviations across all axes and
maintaining steady performance throughout the disturbance period.
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This enhanced resilience is evident when compared to the unoptimized controller,
highlighting the benefits of integrating GWO for robust trajectory tracking in disturbed
environments (Figure III.17 (a & b)).

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.17: GWO-Enhanced Backstepping Control of a Quadcopter in Windy Conditions

B-2 Backstepping with GRO under Wind Disturbance:
Applying the GRO-enhanced controller under the same windy conditions yields even stronger
performance. It not only maintains accurate tracking along the Z-axis but also significantly
reduces deviations on the X and Y axes, outperforming the standard backstepping. The
GRO-enhanced controller’s robustness under wind demonstrates its effectiveness in precise
trajectory alignment despite external disruptions (Figure III.18 (a & b)).

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.18: GRO-Enhanced Backstepping Control of a Quadcopter in Windy Conditions
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B-3 Backstepping with POA under Wind Disturbance:
The POA-enhanced controller demonstrates the highest level of resilience among all tested
methods. When subjected to wind disturbances, it completely eliminates errors along the Z-
axis and reduces deviations on the X and Y axes to levels that are nearly imperceptible, even
under challenging environmental conditions. Its ability to maintain near-perfect tracking
despite strong external disturbances establishes the POA-enhanced controller as the most
robust and reliable solution across both trajectory paths (Figure III.19 (a & b)).

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.19: POA-Enhanced Backstepping Control of a Quadcopter in Windy Conditions

Taken together (Figure III.20 (a & b)), the results from the second scenario demonstrate that
while each optimization method improves the backstepping controller’s performance under
wind, the POA-enhanced controller stands out as the most effective and precise solution.

(a) First Trajectory Path (b) Second Trajectory Path

Figure III.20: Comparative Analyses of GWO-GRO-POA-Optimized Backstepping Control
Strategies in Windy conditions
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III.7.4 Complex Paths Evaluation of POA-Enhanced Backstepping

After confirming the strong performance of the POA-enhanced backstepping controller in
reducing tracking errors and significantly improving the standard backstepping method, we
now evaluated its capabilities under even more demanding conditions. In this phase, the
controller was tested on particularly challenging trajectory paths within a windy
environment. The tests included a conical path and a second elliptical path designed to
replicate an atomic pattern trajectory. By combining these complex motion paths with the
added challenge of wind disturbances, we sought to thoroughly examine the controller’s
robustness, adaptability, and precision under intensified operational scenarios
(Figure III.21a & III.21b). The POA demonstrated remarkable effectiveness by
consistently minimizing or eliminating tracking errors on all axes. Even in demanding
situations, it closely followed the reference trajectories, showcasing its strong ability to
manage complex movements and external disturbances.

(a) Conical Trajectory Path (b) Elliptical Trajectory Path

Figure III.21: New Challenges in Quadcopter Control Using POA-Enhanced Backstepping

III.8 Conclusion

This chapter examined advanced control strategies aimed at improving quadcopter
trajectory tracking in the presence of wind disturbances. Specifically, it focused on
enhancing backstepping control through the integration of nature-inspired optimization
techniques—namely, the Grey Wolf Optimizer (GWO), Garra-Rufa Optimization (GRO),
and the Pelican Optimization Algorithm (POA). These approaches were employed to
overcome limitations typically associated with classical control schemes such as PID
controllers, particularly under dynamic and uncertain conditions.
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The study yielded several important insights. All three optimized controllers
consistently outperformed the standard backstepping method, with noticeable gains in
tracking accuracy. Among them, the POA-based controller stood out, delivering highly
precise trajectory tracking and significantly reducing positional and orientation deviations.
In terms of robustness, the enhanced controllers demonstrated strong resistance to external
disturbances, particularly wind gusts. POA again proved the most effective, maintaining
system stability and accuracy even under more demanding scenarios. This resilience
highlights its potential for use in real-world environments where external factors can
unpredictably affect UAV performance.

Another noteworthy outcome lies in the improved efficiency and adaptability of the
control system. By automating the tuning of backstepping gains, the optimization
algorithms reduced manual intervention while enabling the controllers to adjust more
effectively to changing flight conditions. POA, in particular, achieved an effective balance
between exploration and exploitation, leading to faster convergence and greater control
precision.

Integrating backstepping with bio-inspired optimization has proven to be a powerful
strategy for enhancing quadcopter control. Among the tested methods, POA-enhanced
backstepping emerged as the most promising solution, offering a high degree of reliability
and precision even in challenging operating environments.

Future studies could focus on real-time implementation of these optimized strategies
and assess their scalability across various unmanned aerial systems. Additionally, further
exploration could involve applying these algorithms to alternative modeling frameworks,
such as state-space representations, to evaluate their effectiveness in energy-efficient control
and dynamic response optimization.
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IV.1 Introduction

The evolution of UAVs, particularly multirotor platforms such as quadcopters, has
significantly expanded the horizons of automation across various domains. Applications
now range from logistics and environmental monitoring to infrastructure inspection and
surveillance [105]. These aerial systems are increasingly expected to operate autonomously,
execute complex maneuvers, and sustain prolonged flight durations, all while navigating
dynamic and often unpredictable environments [106]. A key challenge in this context is
ensuring that UAVs remain both precise and responsive in their motion, while also
operating with high energy efficiency [105].
Among the various UAV configurations, the six-degree-of-freedom (6-DOF) quadcopter
presents a particularly complex control problem. It must simultaneously regulate its
position and orientation, responding in real time to both environmental disturbances and
mission-specific demands [105]. This complexity arises from its nonlinear dynamics and the
strong coupling between translational and rotational motion. Traditional control methods,
such as the Proportional-Integral-Derivative (PID) controller and the Linear Quadratic
Regulator (LQR) [106], have been widely employed due to their simplicity and
well-established theoretical foundations [107]. However, their effectiveness diminishes under
nonlinear or time-varying conditions unless supported by adaptive control mechanisms.
In response to these limitations, this chapter presents a simulation-based investigation of two
optimization-enhanced control strategies aimed at achieving energy-efficient path following
for 6-DOF quadcopters. The first approach utilizes an adaptive LQR controller in which the
weighting matrix Q, and consequently the feedback gain K, are dynamically adjusted using
the Grey Wolf Optimizer (GWO) algorithm [107]. This method retains the foundational
strengths of LQR while introducing the adaptability necessary to respond to variations
in system dynamics and external disturbances [108]. The second strategy builds on the
same LQR framework but introduces a two-stage enhancement using feedforward neural
networks (FNNs). Initially, an FNN is employed to adapt the Q matrix, leveraging the
neural network’s capacity to search and optimize across large parameter spaces [109][110].
This provides a basis for comparison with the GWO-based approach. Subsequently, a second
FNN is introduced to adapt the R matrix, with the objective of fine-tuning the thrust and
torque distributions to further minimize energy consumption [109].
The chapter begins with a comprehensive overview of the quadcopter’s mathematical model,
encompassing both its nonlinear dynamics and the linearized state-space representation used
in controller design. Based on this model, the proposed control strategies are formulated and
evaluated within a unified simulation framework. The results, presented in the concluding
sections, offer a comparative assessment of traditional and intelligently tuned controllers,
demonstrating their potential to meet the growing demands of autonomous, energy-efficient
aerial systems.
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IV.2 Mathematical Model and Control Design

To design an effective control strategy for a quadcopter, it is essential to begin with an
accurate mathematical representation of its dynamics.
In this study, the quadcopter is modeled as a rigid body operating in three-dimensional
space, exhibiting six degrees of freedom. These include three translational motions along
the x, y, and z axes, and three rotational motions -roll (ϕ), pitch (θ), and yaw (ψ)- about
the corresponding axes [110]. The motion of the vehicle is described using the Newton-Euler
equations, which establish the relationship between the forces and torques acting on the
system and the resulting linear and angular accelerations [111].
The primary control inputs are the thrust forces produced by the individual rotors and the
torques generated by adjusting their relative speeds [111]. The system outputs typically
include the quadcopter’s position, orientation, and angular velocities. These dynamics are
inherently nonlinear and exhibit significant coupling, particularly when factors such as
aerodynamic drag, payload variations, and proximity to the ground are considered [111].
For control design purposes, particularly in model-based methods like the Linear Quadratic
Regulator (LQR), it is standard practice to simplify the nonlinear model by linearizing it
around a fixed operating point, typically a hover condition [111]. This linearization yields a
state-space model that is more tractable and suitable for real-time control implementation.

IV.2.1 State Variables and Control Inputs

The state vector x ∈ R12 includes [111]:

[
x, z, y, ẋ, ẏ, ż, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇

]T
The control input vector u ∈ R4 is defined as:

u = [T, τϕ, τθ, τψ, ]

where:

• T is the total thrust from all rotors

• τϕτθτψ are torques about the roll, pitch, and yaw axes, respectively

The output vector y includes position and orientation variables used for feedback.

IV.2.2 Linearized State-Space Representation

The dynamic model is expressed in the following standard state-space form:

ẋ = Ax+Bu

y = Cx+Du
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The state-space representation used for controller design is constructed by linearizing the
nonlinear dynamic equations around a steady-state operating point [112]. From this
process, the system matrices A,B,C, and D are derived based on the fundamental
dynamic relationships previously established in Equations II.39 through II.43.
Specifically, the matrix A defines the internal dynamics of the system by describing how
the state variables evolve over time in the absence of inputs. The matrix B characterizes
how control inputs influence the state variables, effectively linking the actuator commands
to changes in the system’s behavior. The matrix C maps the internal states to measurable
output variables, enabling observation and feedback. Finally, the matrix D accounts for
any direct influence of the inputs on the outputs, although in most practical cases
involving quadcopters, this matrix is zero due to the absence of such direct feedthrough.

IV.2.3 Matrix Definitions
The matrices used in simulation are defined as follows:

Matrix A: System Dynamics

A =



0 0 0 0 0 0 0 0 0 0 9.8 0
0 0 0 0 0 0 0 0 0 −9.8 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0



Matrix B: Input Mapping

B =



0 0.0555 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

10.000 0 0 0
0 10.000 0 0
0 0 6.6667 0


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Matrix C: Output Mapping

C =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



Matrix D: Feedthrough (Zero)

D =
[
04×12

]
The linearized state-space model serves as the foundation for the control design strategies
developed in this study [113]. The associated matrices represent an idealized hover
condition, based on small-angle approximations and the assumption of constant rotor
thrust at equilibrium. Although these assumptions simplify the dynamics, the resulting
model retains the key characteristics necessary for effective controller synthesis [111]. Its
validity is confirmed through simulation by comparing its behavior with that of the full
nonlinear model, demonstrating that it captures the essential dynamic responses of the
quadcopter under typical operating conditions [111].

IV.3 Linear Quadratic Regulator (LQR) Control

This section focuses on the application of the Linear Quadratic Regulator (LQR) to the
linearized 6-DOF quadcopter model. LQR is a state-feedback control technique that aims
to determine the optimal control inputs required to minimize deviations from a desired state
trajectory, while simultaneously reducing overall energy expenditure [114]. It is particularly
well suited for systems in which the full state vector is measurable or observable, offering a
well-balanced trade-off between tracking performance and control effort [113].
As an optimal control strategy, LQR stabilizes dynamic systems by minimizing a quadratic
cost function that penalizes both deviations in state variables and excessive control actions
[114]. This formulation leads to smooth and efficient control inputs, making LQR a robust
and computationally efficient choice for real-time applications such as quadcopter flight
control [111].
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IV.3.1 Optimal Control Objective

The objective of the Linear Quadratic Regulator (LQR) controller is to regulate the state
of a dynamic system, such as a quadcopter, in an optimal and efficient manner. In this
context, "optimal" refers to minimizing a predefined cost function that captures the trade-off
between tracking performance and energy consumption [114]. This balance is particularly
important in aerial systems, where aggressive control actions can achieve high-precision
maneuvering but often result in excessive energy usage [111]. Conversely, overly conservative
control strategies may conserve energy but lead to degraded tracking accuracy and potential
instability [115]. The LQR framework addresses this challenge by formulating a control law
that ensures both responsive behavior and energy-aware operation [115].
The performance index or cost function to be minimized by LQR is defined as [111]:

J =
∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (IV.1)

Where:

• x ∈ Rn is the state vector, including positions, velocities, and angles of the quadcopter

• u ∈ Rm is the control input vector (thrust and torques)

• Q is a positive semi-definite matrix that penalizes state error

• R is a positive definite matrix that penalizes large control inputs

The cost function used in the LQR framework evaluates performance by integrating a
weighted sum of the state deviations and the control efforts over time, with the goal of
minimizing this cumulative measure [111]. It consists of two key components:

• State penalty term: x(t)TQx(t) This term penalizes deviations of the system’s state
from its desired trajectory. The weighting matrix Q assigns importance to each state
variable, allowing the designer to emphasize certain performance aspects [115]. For
example, if maintaining altitude is more critical than controlling the yaw angle, the
corresponding diagonal element in Q related to altitude would be assigned a higher
value.

• Control penalty term: u(t)TRu(t) This term penalizes the use of control inputs,
effectively limiting the intensity of actuator commands. The matrix R specifies the
relative cost of applying control actions such as motor thrusts or torques [115]. Larger
values in R discourage aggressive maneuvers, promoting energy efficiency and reducing
the mechanical strain on the propulsion system [110].

Together, these terms guide the controller to strike an optimal balance between accurate
trajectory tracking and prudent use of energy and actuation.
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IV.3.2 Control Law and Gain Calculation

Once the control objective has been formally defined through the cost function J , the next
step involves determining a control law that minimizes this objective function [116]. Within
the Linear Quadratic Regulator (LQR) framework, the resulting control strategy takes the
form of a state-feedback law. In this approach, the control input u(t) is calculated as a
linear function of the system’s current state, effectively feeding back the state variables to
determine the appropriate control action [116]. This can be expressed as:

u(t) = −Kx(t) (IV.2)

Here:

• x(t) is the current state vector of the system

• K is the state feedback gain matrix, which determines how much influence each
state variable has on the control input

Here, K is the optimal gain matrix that weights each state variable according to its
contribution to the overall control objective [116]. The negative sign indicates that the
controller acts to reduce deviations from the desired state [116]. This formulation ensures
that the control inputs are not only responsive to the system’s dynamics but also
optimized with respect to performance and energy efficiency.

A. Computing the Feedback Gain K

To find the optimal gain matrix K, one must solve the Algebraic Riccati Equation
(ARE):

ATP + PA− PBR−1BTP +Q = 0 (IV.3)

Where:

• A and B are the state and input matrices from the system’s linearized model

• Q and R are the weighting matrices from the cost function

• P is the unique positive semi-definite solution of the Riccati equation

P can be interpreted as a cost-to-go matrix, representing the cumulative future cost starting
from a given state. Once the matrix P is determined -typically through numerical methods
such as MATLAB’s care function- the corresponding gain matrix K can be calculated using
the expression:

K = R−1BTP (IV.4)
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This formulation highlights that the optimal control gain is influenced not only by the
intrinsic dynamics and structure of the system, characterized by the matrices A and B, but
also by the specific trade-offs selected by the designer [116]. In particular, the weighting
matrices Q and R reflect the relative importance assigned to performance objectives versus
control effort, thereby shaping the final control law accordingly [116].

IV.3.3 B. Interpretation for Quadcopter Systems

In the case of a 6-DOF quadcopter, the feedback gain matrix K is designed to map deviations
in position, velocity, and orientation to the appropriate control inputs, specifically thrust and
rotational torques [117]. For example, assigning a relatively high gain to the vertical velocity
component can lead to quicker stabilization in altitude. Conversely, tuning moderate gains
for angular velocity components helps to mitigate overshoot and dampen oscillatory behavior
in the drone’s orientation [117].
By implementing the feedback control law u(t) = −Kx(t), the controller dynamically
modifies the thrust and torque commands in response to the quadcopter’s real-time state
[117]. This mechanism enables the drone to follow the desired trajectory accurately while
minimizing unnecessary energy consumption and excessive actuator activity.

IV.3.4 Benefits of LQR in Quadcopter Control

The Linear Quadratic Regulator (LQR) presents a range of compelling advantages when
utilized for controlling quadcopters, particularly in scenarios where the system dynamics
are linearized around a specific operating point, such as hovering [117]. Although rooted in
classical control theory, the LQR framework remains highly relevant for contemporary
unmanned aerial systems (UAS) due to its well-defined mathematical formulation and
compatibility with real-time implementation. This section highlights the principal benefits
of LQR, emphasizing its effectiveness in enhancing trajectory tracking accuracy, promoting
energy-efficient control actions, and contributing to overall flight stability.

A. Balanced Trade-off Between Performance and Energy Use

A fundamental advantage of the Linear Quadratic Regulator (LQR) lies in its capacity to
formalize the trade-off between control precision and actuator effort through a well-defined
cost function [118]. This capability is particularly important in quadcopter applications,
where achieving agile and responsive maneuvers often comes at the expense of increased
energy consumption and reduced battery longevity [118]. The flexibility of the LQR design
allows for careful tuning of the weighting matrices Q and R, enabling the controller to
accommodate a variety of flight scenarios. For instance, the control strategy can be adjusted
to prioritize high performance during critical phases of flight, or to favor energy conservation
during extended missions, depending on the operational objectives.
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B. Smooth and Stable Control Actions

In contrast to gain-scheduled or heuristic control approaches, the Linear Quadratic
Regulator (LQR) provides mathematically optimal control signals based on a rigorous
formulation. This optimality results in smoother transitions, reduced oscillatory behavior,
and minimal overshoot in system response [118]. These characteristics are particularly
valuable in quadcopter control, as such systems are inherently unstable and require
continuous corrective action to maintain stable flight. The improved stability and precision
offered by LQR not only enhance overall flight accuracy but also contribute to a more
stable platform for sensitive payloads, including cameras, environmental sensors, and
delivery packages.

C. Fast Real-Time Computation

After the gain matrix K has been computed offline, the implementation of the control law
u(t) = −Kx(t) becomes computationally efficient. This efficiency makes the Linear
Quadratic Regulator (LQR) particularly well-suited for embedded systems that operate
with limited processing capabilities. The feedback control requires only a matrix-vector
multiplication, a relatively simple operation that can be performed quickly even on
low-power microcontrollers. As a result, LQR enables the execution of high-frequency
control loops, typically in the range of 200 to 500 Hz, which are essential for maintaining
stable and responsive flight in quadcopter systems.

D. Robustness to Small Disturbances

While the Linear Quadratic Regulator (LQR) is inherently formulated for linear systems,
it demonstrates robust performance in the vicinity of the operating point, especially when
external disturbances are limited and system parameters remain within nominal ranges [117].
In practical applications, this robustness enables the controller to effectively handle minor
perturbations, such as wind gusts or sensor noise, without relying on complex adaptive or
nonlinear compensation strategies [118]. This capability contributes to the reliability and
simplicity of LQR-based control in real-world quadcopter operations.

E. Tuning Flexibility and Design Intuition

The LQR framework allows the designer to directly influence controller behavior through
the structure of Q and R. For instance:

• Increasing the weight on position errors (in Q) sharpens trajectory tracking
• Increasing the weight on control inputs (in R) results in more conservative, energy-

efficient flight
This flexibility gives the user full control over how the UAV behaves without changing the
underlying structure of the controller.
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F. Strong Theoretical Foundation

The Linear Quadratic Regulator (LQR) is supported by decades of rigorous research in
control theory and engineering practice [119]. Its properties related to stability,
convergence, and optimality are well-established, offering a solid theoretical foundation
that inspires confidence during both the validation and deployment phases [119].
Furthermore, LQR serves as a cornerstone for the development of more advanced control
strategies, including Linear Quadratic Gaussian (LQG) control and Model Predictive
Control (MPC). This foundational role makes LQR an excellent starting point for
enhancing system performance and exploring more sophisticated control architectures.
When implemented in a quadcopter system, the Linear Quadratic Regulator (LQR) offers
several notable advantages [119]:

• It improves trajectory tracking while minimizing overshoot
• It promotes energy efficiency by reducing unnecessary control actions
• It ensures a stable and responsive flight behavior
• And it remains computationally lightweight and analytically tractable

These characteristics position LQR as a highly practical and effective control strategy for a
wide range of quadcopter applications, including autonomous navigation, aerial surveillance,
and payload delivery. Its structured and tunable design [119], combined with its suitability
for energy-limited platforms, makes it particularly valuable for modern unmanned aerial
systems operating in dynamic and constrained environments [119].

IV.4 Neural Network Integration in Quadcopter Control

Neural networks possess a remarkable capacity to model and adapt to complex, nonlinear,
and time-varying systems [120]. This section examines how artificial neural networks (ANNs)
can complement and enhance traditional control methods such as the Linear Quadratic
Regulator (LQR), with the aim of improving both energy efficiency and trajectory accuracy
in quadcopter systems.
Modern UAVs, including quadcopters, often operate in environments where precise
mathematical models are either overly complex or fail to capture important real-world
variations [110]. These variations may include wind disturbances, changes in payload, and
nonlinear aerodynamic effects, which challenge conventional control approaches [111]. To
overcome these challenges, artificial intelligence techniques - particularly neural networks-
are increasingly incorporated into control frameworks to enhance system adaptability and
robustness [111]. Inspired by the structure of the human brain, a neural network consists of
interconnected layers of processing units known as neurons [120]. Through a process of
learning from data, these networks can approximate complex nonlinear functions, making
them especially suitable for applications where explicit modeling is difficult or impractical
[120].
In control systems, neural networks can fulfill a variety of roles, including [110]:
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• Modeling the underlying system dynamics
• Estimating states that are difficult or impossible to measure directly
• Learning effective control policies
• Optimizing controller parameters for improved performance

Among the different types of neural networks, Feedforward Neural Networks (FNNs) are
commonly employed due to their relative simplicity, strong generalization capabilities, and
low computational demands during inference [111]. In the present work, FNNs are integrated
into the quadcopter control architecture with two primary objectives: first, to enable adaptive
tuning of the LQR controller, and second, to intelligently adjust the trajectory mapping
through a movement matrix. These enhancements and their implementation details are
presented in the following subsections.

IV.4.1 Adaptive Control with Feedforward Neural Networks (FNNs)

In this study, Feedforward Neural Networks (FNNs) are employed to dynamically adapt
the LQR gain structure and refine the mapping between desired trajectories and control
inputs in real time [111]. This integration aims to enhance overall system performance while
promoting greater energy efficiency during quadcopter operation.

A. Adaptive Gain Tuning

The first Feedforward Neural Network (FNN) is designed to dynamically adjust the LQR
controller’s weighting matrix Q, and thereby indirectly influence the feedback gain matrix
K, based on real-time flight conditions [111]. Unlike conventional approaches that depend
on fixed, pre-tuned parameters, this neural module continuously analyzes both current and
historical flight data to determine appropriate adjustments to the cost function. As a result,
the controller can adaptively modify its trade-off between trajectory precision and energy
efficiency, enabling more responsive and context-aware behavior throughout various phases
of flight.
Inputs:

• State vector x(t)
• Reference signal xref
• Tracking error e(t)
• Estimated disturbances or flight phase indicators

Outputs:
• Updated matrices Q(t)
• Automatedly and directly the gain matrix K(t) will be tuned

The Feedforward Neural Network (FNN) is trained offline using a diverse set of simulated
scenarios that capture a range of disturbance intensities and mission phases [121].
Once deployed, the network operates in real time, using sensor feedback and mission context
to infer the optimal control characteristics. This enables the system to respond intelligently
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to changing flight conditions without requiring manual retuning or external intervention.

B. Trajectory Adjustment via Movement Matrix Editing

A second Feedforward Neural Network (FNN) is designed to adapt the weighting matrix R,
which directly influences the distribution of control effort across the quadcopter’s actuators
[111]. Specifically, R is implemented as a 4×4 diagonal matrix, with each entry corresponding
to the control cost associated with thrust and the rotational torques around the roll (τx) pitch
(τy), and yaw (τz) axes [111]. By adjusting this matrix in real time, the FNN enables the
controller to modulate how aggressively it responds to trajectory errors, effectively tuning
the balance between control intensity and energy expenditure [121]. This adaptive behavior
is particularly valuable under conditions involving model mismatch or external disturbances
(if exist), as it allows the system to reinterpret desired trajectories more flexibly through a
feedforward mechanism that complements the primary feedback control.
Function:

u(t) = M(t) · (xref − x(t))

Inputs:
• Desired trajectory the main Matrix M ∈ R4×14

• Current state
• Mission context (e.g., hovering, cruising, turning)

Output:
• Updated matrix M(t)

This neural adjustment ensures more precise tracking, even in conditions where the physical
model alone is insufficient to capture the true system behavior.

IV.4.2 Advantages of Neural-Augmented LQR Control

By integrating neural network-based adaptation with the classical Linear Quadratic
Regulator (LQR), the proposed hybrid control strategy offers several key advantages [122]:

• Enhanced adaptability: The system can adjust in real time to varying flight phases
and environmental disturbances[122].

• Improved energy efficiency: By dynamically tuning cost function weights and
trajectory mappings, the controller avoids unnecessary control actions[122].

• Reduced modeling complexity: The neural components help compensate for
unmodeled dynamics, reducing the need for repeated derivation of precise
mathematical models[122].

• Stable and smooth response: Neural modules are designed to operate continuously
and seamlessly, without compromising system stability[122].
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This hybrid approach preserves the analytical rigor and stability guarantees of traditional
LQR while incorporating the flexibility and learning capability of neural networks[123]. As
a result, it forms a robust and intelligent control framework, well-suited for energy-conscious
and performance-critical quadcopter applications.

IV.5 Simulation and Results

This section presents and interprets the simulation results obtained using the proposed
control strategies applied to a 6-DOF quadcopter model. The analysis begins with the
implementation of a standard Linear Quadratic Regulator (LQR), which serves as a
baseline controller. Gradually, more advanced improvements are introduced, including
optimization techniques based on metaheuristics and adaptive neural network components.
This work draws inspiration from the findings of Chun-Wei, who showed that modifying
the trajectory shape within an LQR framework can significantly reduce energy
consumption, lowering it from 38 units to approximately 11.9 units, without degrading
control accuracy.Taking this result as a reference, the current study aims to achieve even
greater energy efficiency, beginning from the same initial value of 38 units. To accomplish
this, several enhancements are applied, as discussed in previous sections. These include
dynamic tuning of control gains, adaptive adjustment of cost function weights in real time,
and intelligent modification of the desired trajectory through feedforward correction.
In addition to energy optimization, this study also explores the practical task of guiding the
quadcopter through trajectories that outline specific surface areas. As a first step, the drone
is directed to reach a set of key positions that define a closed path forming a quadrilateral,
typically a square or a rectangle. The path is defined using only the lengths of two adjacent
sides. This aspect of the work not only facilitates analysis of energy consumption during
area coverage maneuvers, but also allows investigation of how surface-constrained trajectory
design affects both control performance and energy efficiency.

IV.5.1 Simulation

The simulation is based on a nonlinear dynamic model of a quadcopter system using the
linearized state-space form defined by:

ẋ = A · x+B · uy = C · x+D · u

This 6-DOF model employed in this study captures the complete motion of the quadcopter
in three-dimensional space, incorporating both translational and rotational dynamics. This
comprehensive model was developed and implemented using MATLAB/Simulink, as
illustrated in Figure IV.1. To achieve accurate trajectory tracking, the system was initially
controlled using a Linear Quadratic Regulator (LQR), serving as the foundational control
strategy for subsequent enhancements.
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Figure IV.1: Simulation Block Diagram of LQR controlling a Quadcopter

A. LQR Design Process

To implement a Linear Quadratic Regulator (LQR) for a quadcopter system, the nonlinear
6-DOF model is first linearized around a hovering condition [124]. This process yields a
linear state-space representation, which is stored in the file "Model.mat" for controller design
and analysis.

A.1 System States
The model considers a total of twelve state variables, capturing both the rotational and
translational dynamics of the quadcopter[125]. These include three rotational angles (roll,
pitch, and yaw), three positional coordinates (X, Y, and Z), three angular velocities (p, q,
and r), and three linear velocities (u, v, and w)[125].

A.2 Selection of Cost Matrices
In the LQR’s framework, the design of the cost matrices Q and R plays a pivotal role in
shaping the controller’s behavior. The matrix Q penalizes deviations in the state vector
from the desired trajectory, encouraging accurate tracking. In contrast, R penalizes the use
of control inputs, promoting energy-efficient behavior. To simplify the tuning process and
decouple the influence of individual states and inputs, both matrices are selected as diagonal
matrices[116].
For this particular system, Q is defined as a 12×12 diagonal matrix. The first six diagonal
entries correspond to penalties on roll (ϕ), pitch (θ), yaw (w), and the translational positions
along the X, Y, and Z axes. Specifically:

• Q(1, 1) addresses roll deviation
• Q(2, 2) targets pitch deviation
• Q(3, 3) penalizes yaw deviation
• Q(4, 4), Q(5, 5), andQ(6, 6) penalize position errors in the X, Y, and Z directions,

respectively
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The remaining six elements, which relate to angular and linear velocities, may be assigned
smaller weights or zeros, depending on the control objectives.
The R matrix is defined as a 4×4 diagonal matrix that regulates the control inputs: total
thrust and torques about the roll, pitch, and yaw axes. More precisely:

• R(1, 1) penalizes total thrust
• R(2, 2) regulates roll torque
• R(3, 3) adjusts pitch torque
• R(4, 4) governs yaw torque

By appropriately tuning Q and R, a balance can be achieved between aggressive control
performance and energy conservation.

A.3 Gain Matrix Computation
Once Q and R, are defined, the LQR algorithm is employed to compute the optimal feedback
gain matrix K [116]. This matrix is then integrated into the linearized system to close the
feedback loop and enforce the desired dynamic behavior.

A.4 Integration into the Nonlinear Model
After verifying the controller’s effectiveness in the linearized environment, the computed gain
matrix K is implemented in the full nonlinear 6-DOF quadcopter model to assess real-world
applicability [126].
In the Simulink environment, the K matrix is applied to the nonlinear model by placing it
ahead of the "6dof_system" block. The controller operates on a 12-dimensional state error
vector, representing the difference between the current and target states [127]. It calculates
the control input vector u using the relationship u = −Kx, where x is the state error vector.
The resulting outputs—total thrust and three torque commands—are fed directly into the
nonlinear dynamics block to control and stabilize the quadcopter [127].

A.5 Simulation and Validation
Throughout the simulation, desired reference trajectories (typically in terms of X, Y, and
Z positions) are provided as input setpoints. The LQR controller continuously updates the
control inputs to minimize the error between the actual and target states, thereby driving
all components of the state error vector toward zero. This transition from linear model
validation to nonlinear system simulation serves as a critical step in evaluating the robustness
and practical viability of the LQR controller in realistic operating conditions [127].

B. The reference trajectories Matrix

The reference trajectory for the quadcopter is designed to follow the edges of a square
surface. This test scenario is used to evaluate the system’s ability to handle sharp corners
and maintain stable flight while completing the loop. The simulation showed that the basic
LQR controller offers accurate trajectory tracking. However, due to frequent and sharp
directional changes required to follow the square corners, the total energy consumed by the
drone during this mission was measured at 38 units.
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C. Quadcopter parameters:

Key parameters such as total mass, arm length, thrust and drag coefficients, as well as
the moments of inertia about each principal axis, are essential for accurately modeling the
system and designing effective control algorithms. These values form the foundation for both
theoretical analysis and practical implementation. Table IV.1 provides a detailed summary
of the specific parameters adopted for the quadcopter utilized in this research.

Table IV.1: LQR-Quadcopter parameters

Type Parameters Units
X, Y moment of inertia Ixx, Iyy 10× 10−2 kg.m2

Z moment of inertia Izz 15× 10−2 kg.m2

Acceleration Gravity g 9.8 m/s2

Quad Mass m 1.8 kg
Grey Wolf Optimization Parameters Max of wolves 50

Max Iterations 100
Sampling time Ts 0.01s
Wind W 0 m/s
Body rate u, v, w 0

IV.5.2 Optimization-Based Tuning of the LQR Controller Using GWO

While the Linear Quadratic Regulator (LQR) controller, designed using manually selected Q
and R matrices, performs adequately under simplified linear dynamics, its effectiveness can
be significantly reduced when applied to the complete nonlinear model of the quadcopter.
This reduction in performance is primarily due to the inability of linear models to fully
capture the complex, nonlinear behavior inherent in real quadcopter systems. To address this
limitation and enhance both robustness and trajectory tracking capabilities, the Grey Wolf
Optimizer (GWO) algorithm is utilized to automatically adjust controller gains [128]. This
data-driven tuning process is informed by the nonlinear system’s actual response, allowing
for improved adaptability and more reliable control performance [129].

A. Concept Overview

The objective of this approach is to employ the Grey Wolf Optimizer (GWO) to
automatically tune the diagonal elements of the Q matrix within the LQR control
framework [130]. This method replaces conventional manual tuning with a systematic
optimization process that identifies the most suitable weighting values for each state
variable. The Q matrix is represented as a 12-dimensional vector Q = diag(q1, q2, . . . , q12),
where each element corresponds to key state features. These include attitude errors
(eϕ, eθ, eψ), position errors (ex, ey, ez), wind disturbances (p, q, r), and linear velocity
components (u, v, w). By framing the tuning process as a multi-objective optimization
problem, the GWO algorithm is tasked with minimizing a cost function that balances
trajectory tracking precision with control effort.
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Through this adaptive tuning strategy, the LQR controller becomes more responsive to
nonlinear dynamics, potential environmental disturbances, and varying mission demands.
The resulting optimizedQmatrix enhances the controller’s ability to deliver robust, accurate,
and energy-efficient performance in complex flight conditions.

A.1 Problem Formulation
The GWO algorithm searches for the optimal diagonal values of the Q matrix, where Q =
diag(q1, q2, . . . , q12). where each Qi is (eϕ, eθ, eψ, ex, ey, ez, p, q, r, u, v, w) is constrained within
a reasonable range to prevent instability or excessive control effort [130]. The goal is to
minimize a cost function J computed from the time-domain simulation of the nonlinear
system.

A.2 Cost Function Design
A multi-objective cost function is designed to penalize both tracking error and control effort:

J =
∫ T

0
(∥x(t)− xref(t)∥2 + λ∥u(t)∥2) dt (IV.5)

where:
• x(t) is the actual state,
• xref(t) is the reference trajectory,
• u(t) = −Kx(t) is the control input derived using the LQR gain K computed with a

candidate Q,
• λ is a weighting factor that balances tracking precision and energy efficiency.

Each candidate solution Q is passed into the LQR function to compute K, and the resulting
closed-loop system is simulated using the nonlinear 6-DOF model.

A.3 GWO Implementation Steps
This algorithm we have already used it in the chapter III so know we will be using it by
adjust the algorithm too parameters of our system.

1. Initialization: Generate an initial population of wolves, where each wolf is a candidate
Q matrix represented by a 12-dimensional vector [111].

2. Evaluation: For each candidate:

• Compute K = lqr(A,B,Q,R)
• Simulate the nonlinear model using this K
• Compute the cost J using the defined performance metric

3. Update: Use GWO’s social hierarchy and position updating mechanism (Alpha, Beta,
Delta) to guide the search towards lower-cost solutions [111].

4. Termination: Stop when a maximum number of iterations is reached or the
improvement falls below a threshold. The best Q matrix found is then used in the
final controller.
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A.4 Integration with Simulation
The optimization framework is developed and executed in MATLAB, where the Grey Wolf
Optimizer (GWO) algorithm is linked to a detailed Simulink model representing the
nonlinear dynamics of the quadcopter [128]. The cost function is implemented as a function
handle that allows each candidate Q matrix to be evaluated by running the corresponding
simulation in Simulink. This setup ensures a smooth and automated interaction between
the optimization process and the simulation environment. After identifying the optimal Q
matrix, the resulting LQR controller is tested in separate validation scenarios [131]. These
scenarios include reference trajectories and external disturbances not used during the
training phase, in order to evaluate the controller’s ability to generalize its performance
and maintain robustness under diverse and realistic flight conditions.

B. Result and Discussion

In this simulation, the reference trajectory was carefully adjusted by slightly reducing the
initial delay and extending the path beyond its final destination. These modifications enabled
the quadcopter to start its motion earlier and complete the overall trajectory in a smoother
manner. As a result, the controller’s ability to handle transition phases could be evaluated
more effectively. The trajectory used in this study is inspired by the approach proposed by
Chun-Wei, who modified the flight path to follow a square-like pattern. This method led to a
notable decrease in energy consumption, reducing it from 38 joules to approximately 11.9
joules, while maintaining accurate tracking. Building on this foundation, the present work
introduces the Grey Wolf Optimizer (GWO) to further improve energy efficiency. Specifically,
the GWO algorithm is applied to the optimized trajectory to adjust the diagonal values of
the control weighting matrix R, defined as R = diag(r1, r2, r3, r4) . The objective is to
reduce control effort and enhance energy savings without compromising performance.
The results indicate a significant enhancement in control efficiency when compared to the
baseline LQR controller, which relied on manually selected gain values. By employing the
GWO-optimized R matrix, the total energy consumption was reduced from 38 units to 9.3
units over a simulation period of 30 seconds as shown in Figure IV.2. This outcome not only
surpasses the previous benchmark of 11.9 units but also underscores the effectiveness of the
optimization process. The improvement reflects the optimizer’s ability to precisely adjust the
control weightings, thereby minimizing unnecessary energy expenditure while maintaining a
high level of responsiveness in the system.
In terms of performance, the system achieved a mean square error (MSE) of 9.72. This
value is within acceptable bounds for practical applications. The marginally increased MSE
can be attributed to the fixed nature of the optimized R matrix, which does not dynamically
adapt to changing system conditions or external disturbances in real time. The details of all
this result and each plot trajectory in Figure IV.2 are included in ANNEX II.
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Figure IV.2: General Plots of trajectories of GWO-LQR Enhancment

IV.5.3 Adaptive LQR Using Neural Networks Adjusting Position
To improve the adaptability of the LQR controller under varying operating conditions, a
Feedforward Neural Network (FNN) is integrated to dynamically adjust the diagonal
elements of the Q matrix. Instead of relying on manual tuning or offline metaheuristic
optimization methods such as the Grey Wolf Optimizer (GWO), the neural network is
trained to estimate appropriate values based on the current flight state or environmental
context [122]. This approach introduces an adaptive mechanism that enables the controller
to respond more effectively to changes in system dynamics and external disturbances.

A. Concept Overview
The core objective is to train the FNN to map a set of system state features or environmental
inputs to suitable values for the diagonal entries of the Q matrix, i.e., FNNQ,R : Features→
{q1, q2, . . . , q12}. In doing so, the LQR controller becomes capable of adjusting its weighting
strategy either in real time or across different simulation scenarios [122]. This adaptivity
aims to enhance tracking accuracy and overall robustness, particularly in situations involving
uncertain or dynamic operating environments.

A.1 Input Feature Selection
The input to the neural network is structured as a feature vector that captures the current
state of the quadcopter system as well as the specific demands of the mission [122]. These
features are carefully selected to provide the neural network with sufficient contextual
information, enabling it to adapt the cost Q matrix used in the controller in a meaningful
and effective manner. Key elements of the feature vector include the initial magnitudes of
position and attitude errors, which reflect the deviation of the system from its desired state
[122]. The mission context is also taken into account, particularly whether the quadcopter
is operating in a hovering state or executing high-speed or aggressive maneuvers.
Furthermore, characteristics of the reference trajectory, including its curvature and speed,
significantly influence the required level of controller aggressiveness and responsiveness
[122].
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Based on these considerations, the feature vector can be expressed as
f = [eϕ, eθ, eψ, ex, ey, ez, p, q, r, u, v, w], where u, v, w represent the trajectory speeds
corresponding to the errors in the linear velocities of the drone in the body frame.
Specifically, u is the velocity along the body X-axis, v is the velocity along the body
Y-axis, and w is the velocity along the body Z-axis. Similarly, p, q, r denote the angular
velocities about the body X-, Y-, and Z-axes, respectively, representing the rotational
motion errors of the drone.

A.2 Output Definition
The output of the neural network is structured as a vector containing the diagonal elements
of the Q matrix, which is subsequently used by the LQR controller to compute the optimal
gain matrix. Specifically, the network generates 12 elements corresponding to the weights
assigned to individual state variables, denoted as y = [q1, q2, . . . , q12]. Each element qi

reflects the relative importance of a particular state component, allowing the controller to
make informed trade-offs between tracking accuracy and control effort based on the current
context [122]. In the present implementation, the problem is simplified by focusing only
on the most influential elements of the Q matrix. Specifically, the neural network is tasked
with predicting values for q1 through q6, which correspond to attitude errors (roll, pitch, and
yaw) and position errors along the X, Y, and Z axes. The remaining elements of the matrix,
which relate to angular velocities and trajectory speed (error velocities), are held constant
throughout the simulations. This reduction in output dimensionality eases the complexity
of the training process while still allowing the neural network to exert meaningful control
over the quadcopter’s most critical dynamic behaviors.

A.3 Network Architecture
A typical architecture will have these parameters:

• neurons1 = 10; % Number of neurons in each hidden layer
• epochs1 = 300; % Maximum number of training epochs
• net1 = feedforwardnet(neurons1 neurons1); % Use type FeedForward
• net.trainFcn = ’trainlm’; % Levenberg-Marquardt backpropagation
• net1.trainParam.epochs = epochs1;
• net1.trainParam.goal = 1e-3;
• net1.trainParam.max.fail = 10;
• numSamples1 = 500;
• net1.divideParam.trainRatio = 0.7;
• net1.divideParam.valRatio = 0.15;
• net1.divideParam.testRatio = 0.15;
• inputs1 = zeros(12, numSamples); % 12 features: [attitude, position, angular

velocities, error velocities]
• targets1 = zeros(6, numSamples); % Only Q1-Q6 to be adjusted
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B. Results and Discussion

The subsequent sections detail the results obtained from incorporating a neural network
into the Linear Quadratic Regulator (LQR) control loop of the quadcopter, with particular
attention to the modification of the Q matrix. The discussion highlights the neural network’s
performance throughout the training process and examines the effects of its integration on
the system’s control efficiency and energy usage.

B.1 Neural Network Training Performance
The neural network demonstrated stable and consistent convergence throughout the
training process. In the primary model, training was conducted over 300 iterations,
ultimately reaching a final mean squared error (MSE) of 8.02. During this phase,
validation performance remained steady, as evidenced by 14 validation checks, which
indicate robust generalization capabilities without any noticeable signs of overfitting. The
training gradient converged to a value of 1.15, and the total training time was
approximately 4.1 seconds. These results suggest a relatively smooth optimization
trajectory across the loss landscape.
The coefficient of determination (R2) values for the key training targets were as follows:
R2
eϕ

= 0.82, R2
eθ

= 0.78, R2
eψ

= 0.85, R2
ex = 0.84, R2

ey = 0.84, and R2
ez = 0.86, others R2

are equal to 1 because there is no adjustment in the other 6 parameters on the Q Matrix.
The mean R2 across these four dominant features was calculated to be 0.9158, indicating
a high degree of fit between the predicted and true Q-matrix components, also Sensitivity
Analysis show that the most significant parameter effect is the error of ϕ then error on Z
(Figure IV.3a & Figure IV.3b).
Collectively, Q matrices affirm that the FNN effectively learned the underlying mapping
between the quadcopter’s state conditions and the corresponding optimal values for the
Q matrix tuning parameters. The convergence trends and error indicators support the
suitability for integration into the control loop, enabling real-time adaptation during flight.

(a) Sensitivity Analyses of Adjustique Q
Matrix

(b) R-Square of Globale and for each
parameter

Figure IV.3: The Analyses performnance of FNN-LQ
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B.2 Generalization and Output Trends
The trained neural network exhibited reliable generalization across a wide range of state
variables (Figure IV.4a & IV.4b). It adapted the cost function parameters in response
to varying flight conditions, demonstrating sensitivity to the system’s dynamic behavior.
Notably, larger deviations in attitude or position led to an increase in the respective qi values,
thereby enhancing the corrective action of the controller in those dimensions. Although the
network did not directly produce weight values for wind disturbances or velocity terms, their
inclusion as input variables allowed the model to infer appropriate adjustments. This enabled
the network to scale the cost function dynamically, resulting in context-aware parameter
tuning. Such adaptability contributed to maintaining stable performance even under the
influence of external disturbances or sudden changes in system behavior.

(a) 3D vision of Trajectories (b) 2D Vision Showing the Outline of a Square

Figure IV.4: Trajectory of Quadcopter FNN-LQ controled (3D and 2D)

B.3 Controller Performance and Energy Efficiency
Integrating the trained neural network into the LQR control structure produced notable
enhancements in both flight stability and energy efficiency. In a series of dynamic
simulations, the adaptive LQR controller consistently outperformed the conventional
fixed-parameter version in several key performance indicators. Most significantly, total
control energy consumption was reduced from 38 units to 5.9 units, reflecting a
substantial improvement in energy utilization, as demonstrated in Figure IV.5. This
improvement also underscores the system’s ability to effectively manage trajectory tracking
while performing surface inspection tasks, such as those involving square or rectangular
areas. Also, the adaptive controller achieved additional performance benefits, including:

• Improved accuracy in trajectory tracking.
• Smoother transitions between different flight modes.
• Decreased oscillations and overshoot in response to disturbances.
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Figure IV.5: Globale Trajectories Plot of FNN-LQ Enhancement

These findings demonstrate the practical value of employing a neural network for online
tuning of control parameters, particularly in scenarios that demand high responsiveness and
adaptability under uncertain or rapidly changing flight conditions.

IV.5.4 Adaptive LQR Using Neural Networks for Adjusting Torques

To further increase the adaptability of the Linear Quadratic Regulator (LQR) controller,
a second Feedforward Neural Network (FNN) is introduced. This network is designed to
dynamically adjust the elements of the R matrix, which directly influence the control effort
associated with the quadcopter’s torque inputs. Its integration builds upon the functionality
of the previously implemented neural network responsible for tuning the Q matrix, together
forming a more robust and energy-efficient control architecture.
While the initial neural network focuses on optimizing the penalties related to position
and orientation through modifications to the Q matrix, the second network, referred to
as FNN_R, is specifically tasked with adapting the torque-related components of the R
matrix. It generates weight values corresponding to the control inputs, including thrust
effort, roll torque (τx), pitch torque (τy), and yaw torque (τz).

A. Concept Overview

The primary objective of this second neural network is to provide real-time, context-aware
adjustment of torque penalties within the LQR framework. By tuning the R matrix according
to the quadcopter’s current state and operational objectives, the controller is better equipped
to regulate actuator demands. This dynamic adjustment not only supports the preservation
of system stability and responsiveness but also contributes to improved energy efficiency by
minimizing unnecessary control effort.
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In mathematical terms, the behavior of the second neural network can be described as
follows: FNNR : Features → {r1, r2, r3, r4}, where: r1: thrust effort weight, r2: roll torque
weight (τx), r3: pitch torque weight (τy) and r4: yaw torque weight (τz).

A.1 Input Feature Selection

To maintain consistency and ensure a shared contextual understanding between both neural
networks, the same input feature structure used in FNNq is employed for FNNR. The input
vector encompasses critical state information, including drone attitude, positional data, wind
disturbances, and velocity errors. This comprehensive set of inputs equips the network with
the necessary context to adapt the control effort weights effectively. By capturing both
environmental and dynamic system factors, the model supports real-time, intelligent tuning
of the R matrix, enhancing overall controller responsiveness and energy efficiency.

A.2 Output Definition

The neural network outputs four non-negative values that form the diagonal of the R matrix:
R = diag(r1, r2, r3, r4). These weights directly influence the actuator demand for thrust and
torques in the LQR cost function, allowing adaptive balancing between performance and
energy consumption.

A.3 Network Architecture

The architecture used for FNNR is lighter compared to the Q-adapting network, reflecting
its narrower output scope. Training was conducted using the same Levenberg-Marquardt
algorithm. The key training parameters were :

• neurons2 = 4; % Number of neurons in each hidden layer
• epochs2 = 200; % Maximum number of training epochs
• net2 = feedforwardnet(neurons1 neurons1); % Use type FeedForward
• net2.trainFcn = ’trainlm’; % Levenberg-Marquardt backpropagation
• net2.trainParam.epochs = epochs1;
• net2.trainParam.goal = 1e-7;
• net2.trainParam.max.fail = 10;
• numSamples2 = 600;
• net2.divideParam.trainRatio = 0.70;
• net2.divideParam.valRatio = 0.10;
• net2.divideParam.testRatio = 0.20;
• inputs = zeros(4, numSamples2); % 4 features: [Thrust, Torqueϕ, Torqueθ,
Torqueψ]

• targets = zeros(4, numSamples2);
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B. Results and Discussion

The following sections present the outcomes of incorporating the second Feedforward Neural
Network FNNR into the control architecture. Particular attention is directed toward the
network’s training characteristics and its influence on both energy efficiency and overall
control performance. The analysis aims to demonstrate how the adaptive tuning of the
control-related matrix by FNNR contributes to more effective thrust and torque regulation,
ultimately reducing energy expenditure while maintaining or improving trajectory accuracy.

B.1 Neural Network Training Performance

The second, more compact Feedforward Neural Network (FNN_R) completed its training
over 100 epochs, achieving a final mean squared error (MSE) of 3.48. Notably, the
training process exhibited no validation failures, indicating consistent generalization across
the training dataset. The total training time was approximately 5.2 seconds. The final
gradient value reached 0.462, which was lower than that observed in the Q-tuning
network, signifying stable and effective convergence. The training curve, presented in
Annex II, displays a steady decline in the loss function over the training epochs, reinforcing
the observation of stable learning behavior. Despite its relatively simple architecture, the
network demonstrated sufficient capacity to successfully learn the mapping required for
adjusting the four torque-related control weights.

(a) Sensitivity Analyses FNN-R Matrix (b) R-Square of Globale, each parameter

Figure IV.6: The Analyses performnance of FNN-LR

The mean (R2) associated with the predicted outputs of the R matrix on the test dataset
were determined as follows: R2

Thrust = 0.90, R2
Torqueϕ = 0.88, R2

Torqueθ = 0.88, and R2
Torqueψ =

0.89. These values demonstrate a strong alignment between the model’s outputs and the
corresponding target variables, suggesting that the regression model is capable of accurately
estimating the dynamic behaviors represented by thrust and the three rotational torque
components.
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Moreover, the average R2 value across these four critical outputs was calculated to be
0.8870, which reflects a high level of overall prediction reliability and stability. These
findings support the model’s effectiveness in reproducing the essential dynamics of the system
(Figure IV.6a & IV.6b).

B.2 Generalization and Output Trends

Post-training analysis revealed that FNN_R effectively adjusted the torque weighting
values in response to varying flight conditions. Specifically, in situations involving
significant angular deviation or rapid maneuvering, the network slightly reduced the torque
weights to enable faster and more agile control responses. Conversely, under stable or
hovering conditions, it increased the torque weights, thereby limiting control effort and
conserving energy. The incorporation of this work, with the FNN adjusting the Q matrix,
enabled the network to adjust its output judiciously. This adaptive behavior prevented
excessive actuator commands during flight scenarios, enhancing overall energy efficiency.
Also, this feature didn’t make a valuable change in trajectory tracking (Figure IV.7).

(a) 3D vision of Trajectories (b) 2D Vision Showing the Outline of a Square

Figure IV.7: Trajectory of Quadcopter FNN-LQR controled (3D and 2D)

B.3 Controller Performance and Energy Efficiency

Integrating both FNNQ and FNNR into the control framework produced the most energy-
efficient and responsive strategy among all tested configurations. Simulations showed a
substantial reduction in total control energy consumption, decreasing the 11.9 units (Chun-
Wei results) to only 3.8 units with the combined approach. This represents a marked
improvement over both the static LQR baseline and the partially adaptive controller.
In addition to enhanced energy efficiency (Figure IV.8 & IV.9), the dual-network controller
maintained high-performance standards in several key areas:

• Improved tracking accuracy relative to reference trajectories
• Rapid and smooth transitions between dynamic flight modes
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Figure IV.8: General Results of FNN-Enhanced LQR (Q, R Matrices)

Figure IV.9: Thrust and Energy Rate Results.

These results underscore the value of using neural networks to adaptively tune both Q and
R matrices in real time. This hybrid approach offers a more intelligent, robust control (Q
Matrix) solution and energy awareness (R Matrix) for quadcopter operations.
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The key performance indicators are summarized in the following table:

Table IV.2: Comparative Analysis of Three Methods for Quadcopter Control Tuning

Control
Strategy

Tuning
Method

Energy
(Joul) MSE Time Adaptability Remarks

GWO-Optimized
LQR (GWO-R)

Grey Wolf
Optimizer
(R matrix)

9.3 9.72 3.8 Low

Effective in reducing
energy; limited

flexibility for varying
flight conditions and
controlling trajectory.

Adaptive LQR
with First Neural

Network
(FNN-Q)

Neural
Network for

Q matrix
5.9 8.02 4.1 Moderate

Dynamically adjusts
state penalties;

improved energy use
and trajectory

tracking.

Fully Adaptive
LQR (FNN-Q +

FNN-R)

Neural
Networks for

Q and R
matrices

3.8 3.48 5.2 High

Best results in terms
of energy,

adaptability, and
smooth control

actions.

IV.6 Conclusion
This chapter has presented a comprehensive investigation into enhancing the energy efficiency
and trajectory tracking performance of a quadcopter system using the LQR framework with
intelligent tuning techniques. Starting from the foundational principles of LQR control
applied to a linearized 6DOF X4 model, demonstrating the advantages of classical optimal
control strategies in stabilizing flight dynamics and achieving balanced control efforts.
To address the inherent limitations of fixed-parameter controllers in complex, nonlinear,
and time-varying environments, two key extensions were explored. The first enhancement
involved optimization of the LQR weighting matrices using the Grey Wolf Optimizer
(GWO), which provided improved performance by refining the control gains of the R
matrix. This method successfully reduced energy consumption while maintaining
acceptable tracking accuracy. The second and more advanced approach integrated neural
network-based adaptation mechanisms to dynamically tune both the Q and R matrices. By
employing two dedicated Feedforward Neural Networks (FNNs), the control system gained
the ability to adjust in real time to varying flight conditions and operational contexts. This
dual adaptation led to the most favorable results across all evaluated metrics, significantly
improving energy efficiency and tracking precision, while also offering increased robustness
and responsiveness.
Simulation outcomes confirmed that the proposed intelligent control schemes not only
reduced energy expenditure from 38 units to as low as 3.8 units, but also enhanced flight
stability and control smoothness. These findings underscore the effectiveness of combining
classical control methods with artificial intelligence for advanced unmanned aerial system
applications. The proposed hybrid control architecture offers a promising foundation for
future developments in adaptive and energy-aware UAV control systems.
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GENERAL CONCLUSION

This thesis has contributed to the advancement of intelligent control strategies for
quadcopter UAVs by addressing some of the most pressing challenges in autonomous aerial
navigation - namely, accurate trajectory tracking, robustness to dynamic disturbances,
obstacle interaction, and efficient energy consumption. Through the development and
implementation of advanced nonlinear and hybrid control approaches, this work has
demonstrated that high-performance flight control can be achieved without compromising
adaptability or stability.

Central to this research was the design of an optimized Backstepping control
architecture, which was enhanced using metaheuristic algorithms such as the Grey Wolf
Optimizer (GWO), Garra Rufa Optimizer (GRO), and the Pelican Optimization Algorithm
(POA). These algorithms enabled automatic tuning of control gains, resulting in significant
improvements in tracking precision. The optimized controllers performed remarkably well
across a variety of simulated scenarios, including spiral and zigzag trajectories, complex
path transitions, and wind disturbances. Notably, the system exhibited a high degree of
stability and responsiveness, maintaining accurate trajectory adherence even in the
presence of external perturbations or environmental variability.

In addition to precision tracking, the research also addressed the need for intelligent
energy management. By dynamically adapting thrust in response to trajectory changes
and optimizing flight paths in real time, the proposed controllers succeeded in reducing
unnecessary energy expenditure. This capability is particularly relevant for extending the
operational time and range of lightweight drones, which are inherently limited by battery
capacity. The ability to maintain mission objectives while minimizing power usage represents
a significant step toward practical deployment in real-world conditions.

Another noteworthy aspect of this work is its ability to maintain control performance
in obstacle-laden environments. While obstacle avoidance was not the central focus, the
robustness of the control architecture ensured that trajectory deviations due to sudden
disturbances or redirections were minimal and self-correcting. The system consistently
realigned with the intended path while minimizing cumulative error, thereby ensuring
mission continuity even under non-ideal flight conditions.

The culmination of these efforts is a control system that is not only theoretically
robust but also practically viable. By integrating classical techniques with bio-inspired
optimization and adaptive learning elements, this thesis has shown that it is possible to
construct a UAV control framework that balances mathematical rigor with real-time
adaptability. The results demonstrate that the primary objectives, which achieving
accurate trajectory tracking, enabling intelligent energy use, and ensuring system
robustness.
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Looking forward, this work lays the foundation for several future directions, including
hardware implementation, real-world testing under varying environmental conditions, and
extension to cooperative UAV systems. Furthermore, the integration of these controllers with
real-time obstacle detection and avoidance mechanisms, possibly through onboard vision or
LiDAR systems, would further enhance the autonomy and resilience of the platform.

In summary, the results obtained confirm the thesis hypothesis: intelligent and
optimized control strategies can significantly improve the accuracy, efficiency, and
adaptability of quadcopter UAVs. This research therefore not only advances the state of
the art in UAV control but also contributes a viable step toward the realization of fully
autonomous, energy-aware, and mission-capable aerial systems.
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ANNEXES



ANNEX I : MATLAB BLOCKS COMPILATION:

Backstepping Controller Blocks:

• Altitude Control:
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• Laws Control:
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• Angels Control:
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• Drone Block:
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ANNEX II : MATLAB BLOCKS COMPILATION:

Results of Enhaned Backsteping:
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