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Introduction

There are several ways to construct new vector spaces from a family of vector spaces over the same field.
Two of the most important of these constructions are the direct sum and the vector space of all linear trans-
formations.

This course introduces a basic concept which has a major importance in many areas of sciences such as
applied mathematics, physics and engineering, called tensor product, that combines two vector spaces V' and
W into a new vector space V @ W.
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Chapter

Tensor products (Part 1)
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In this chapter, we will mainly be concerned with finite dimensional vector spaces over a field F of character-
istic zero. We will give the definition of the tensor product of vector spaces (resp. tensor product of linear
mappings). Also various properties of the tensor product are explained in this chapter.
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1.1 Linear and bilinear maps

DM A Linear Transformation (Linear mapping)

Let V, W be two vector spaces over the same field F. A function f: V — W is called a linear
transformation from V to W if the following hold for all vectors u,v in V' and for all scalars o € F.

(1) flut+v) = f(u)+ f(v) (additivity),
(2) f(au) = af(u) (homogeneity).

Note 1.1.2

The set of all F-linear transformation f : V' — W is a vectors space. If f, g are two linear maps and
a € I, the sum and scalar multiplication are defined by the following formulas.

(f +9)(v) = f(v) + g(v),

and
(af)(v) = af(v).
We denote the set of all such linear transformations, from V to W, by £(V, W) or Hom(V, W).

DSt MBIl Lincar Functional (or 1-form)

Let V be a vector space. Define
V* = L(V,F).

V* is called the dual space of V.

The elements of V* are called linear functional. So a linear functional ¢ on V is a linear transfor-
mation ¢ : V — F.

(IEINERR N Dual basis

Suppose that B = {v1,...,v,} is a basis for the finite dimensional vector space V. Define f; € V* by

1 ifi=3j

fi(vj):(sij:{o A

Then
B* = {f17f27"'3fn}

is a basis for V*, and it’s called the dual basis of B.

Proof. Let aq,...,a, be scalars such that
Z o fi = 0.
i=1

Then for all r € {1, ...,n}, we have

Z aifi(”r) =0.
=1
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i aiéij =0.
i=1

So a,. = 0. Therefore the set {f1,..., fn} is linearly independent. Clearly for all f € V*, we have

n

h=> h(v)f;.

i=1

Corollary 1.1.5

If V is a finite dimensional vector space, then dim V* = dim V.

DI NIl Bilinear maps

Let U, V and W be F-vectors spaces. A mapping f : V x W — U is called a bilinear mapping, if it
is linear in each variable. That means : for all u,uq,us € U, v,v1,v9 € V and a € F, we have

f(aul —I-UQ,’U) = af(ulav) + f(UQav),
f(u,avy +v2) = af(u,v1) + f(u,va).

Note 1.1.7

The set of all F-bilinear map f : U x V. — W is a vectors space. If f, g € L(V,W;U) are bilinear
maps and a € F, the sum and scalar multiplication are defined by the following formulas.

(f —l—g)(’U,’U}) = f(v,w) —|—g(v,w),

and
(af)(v,w) = af(v,w).
We denote the set of all F-bilinear maps from U x V into W by Bil(U x V, W) or L(U,V ; W).

[PSOTHER I A basis L(V, W F)

Let V and W be two F vector spaces. Take bases {v1,...,v,} for V and {wy,...,wy,} for W. Let
{fi,--+y fn} for V and {g1,...,gm} be their dual bases.

For all 1 <¢<nand 1< j <m, we define the mapping h;; : V x W — F by
hij(v,w) = fi(v)g;(w).

Then, the set
{hij|1<s<nand1<r<m}

form a basis for L(V, W;F).
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Proof. Clearly h;; is bilinear, and for all 1 < s <n and 1 <r <m,

hij(vm ws) =

1 if ¢=7r and j=s
0 otherwise

The set {h;; | 1 <14 < n is linearly independent and 1 < j < m} form a basis for L(V,W;F), and every ele-
ment h € L(V,W;TF), can be written as

h = Z h(’l)i, wj)hij.
2

Corollary 1.1.9

If dimV = n and dim W = m, then dim L(V, W;F) = nm.

1.2 Linearization of bilinear mappings

DA IRl Conditions (T1) and (T2)

Let V and W be finite dimensional F-vector spaces. We say that V' and W satisfies the condition (T1)
and (T2), if there exist a F-vector space Uy and a bilinear mapping o € L(V, W;U,) for which such

that
(T1) U is generated by the image o(V x W) of o.
(T2) For any B € L(V,W;U), there exists a F-linear mapping F : U, — U such that B = F o o:

VxW —2- U

o
B v

U

DI B2l Universality Property: condition (T)

Let V and W be finite dimensional F-vector spaces. We say that V and W satisfies the condition
(T), if there exist a F-vector space Uy and a bilinear mapping o € L(V,W;Uy) such that for any
B e L(V,W;U), there exists one and only F-linear mapping F' : U, — U for witch B = F o o:

VxW —2- U

| F
B v

U

Remark 1.2.3. Let V be a vector space and S be a subset of V. The intersection of all subspaces of

V' containing S is also a subspace containing S and is the smallest among them. This space is called
the subspace generated (or spanned) by S and is denoted by span(.S). It is easy to see that span(S) is

o




the set of all finite linear combination of elements of S. When span(S) = V', V is said to be generated

by S and S is called a set of generators (or a generating set) of V|

Lemma 1.2.4

( TLAT1) < (T)

Proof. Suppose that (Up, o) satisfies (T1 and (T2). The existence of F' follows from (T2).

Suppose that F' and F” are linear mappings Uy —> U such that

B=Fooc=Foo.

Since F' and F” are linear mappings that coincide on the generating set (V' x W) of Uy, we have F = F’,

which shows that (U, o) satisfies (T).

Conversely, suppose that (U, o) satisfies (T). Clearly we have (T2). Let U} be the subspace of Uy generated
by o(V x W). Since the image of is contained in Uj, o can be considered as a mapping of V x W into U,

which we denote by o;.

Applying (T2) to o1, we have a linear mapping F such that oy = Foo

VxW —2> U

\ :F
o1 v

Us
Let 4 be the inclusion mapping of U} into U. Then
o=1001

We have
VxW —2- U,

o e
|

Uo

Therefore
o= (ioF)oo

Clearly
c=Idoo

By the uniqueness of the linear mapping F', we get from (1.1) and (1.2)

j0F =1d

Hence ¢ is surjective, and so
Uy = Uy.
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S Linearization of bilinear mappings

Let V and W be finite dimensional F-vector spaces.

(1) There exist a F-vector space Uy and a bilinear mapping o : V- x W —> Uy which satisfy the
condition (T) .

(2) The pair (Up, o) is unique in the following sense: If the pairs (Uy, o) and (U, o’) consisting of a
F-vector space and a F-bilinear mapping satisfy condition (T'), then there exists a unique linear
isomorphism Fy : Uy —> U{ such that o/ = F o o:

VxW

Uo 0 U,

Proof. (1) Assume that dimV = n and dim W = m. By using Lemma 1.2.4, we will prove that any vector
space Uy of dimension nm satisfies the conditions (TT) and (T2) for an appropriate o. Take

By ={v1,...,v,} abasisfor V

Bw = {wi,...,w,} abasisfor W
S={u; |1<i<n and 1<j<m} abasisfor Up.

Define the bilinear mapping o : V x W — Uj as follows:
O'(Ui, U]j) = Ujj
That means for all

n m
v = E a;v; and w = E Biwy,
i=1 j=1

we have

o(v,w) = Z a; B
4,7

By construction of o, it’s clear that o € L(V, W;Uy) and span(o(V x W)) = Up. So the condition (T1)
is satisfied. It remain to show that the condition (T2) is also satisfied.

Let B:V x W — U be a bilinear mapping. Define the function F': Uy — U by
F(u) = F(Z%‘juz‘j) = ZVijB(vi7wj).
.9 i,j
We have for all i, j

Fo a(vi,wj) = F(UU) = B(vi,wj).

Hence
B=Foo.

Therefore (Uy, o) has the condition (T2).
(2) Assume that (Up, o) and (U, 0’) have the property mentioned in (1).

VxW —2 U

|

Uo
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Since ¢’ is a bilinear mapping: V x W — U}, applying (T) to (Uy, o), we have a linear mapping
Fy : Uy — U} such that
Fyoo =o' (1.3)

Similarly, there is a linear mapping Gy : U} —> Uy such that
Goood' =0 (1.4)
VxW —2— U
e
Us
Hence, we have the following commutative diagram:

VxW

/ F \
U i Uy
0 e 0

From (1.3) and (1.5), we get
c=GpoFyoo (1.5)

Clearly,
o =1Idy, oo. (1.6)

By the uniqueness in the condition (T) we obtain from (1.5) and (1.6),
GO o FO = IdUO

Similarly, we can show that
FO o GO = IdUé

Therefore Fj is an isomorphism.

Corollary 1.2.6

Let By = {v1,...,v,} and By = {w1,...,wp} be respectively basis for V and W.
Let {f1,..., fn} and {g1,...,gm} are respectively the dual basis of By and By
Consider Uy = L(V, W F).

Forall1<i¢<mn,and 1< j <m,let hy; : V x W —> F be the bilinear form given by

hij(v,w) = fi(v)g;(w)

The set
{hij |1<i<i, 1<j<m}

form a basis for Up.

Then Uy = L(V, W) is a vector space of dimension nm satisfies the conditions (TT) and (T2), where
the bilinear mapping o : V. x W — L(V, W;F) is given by

o(us,v5) = hyj.
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1.3 Tensor products of two vector spaces

We are now ready to define the tensor product of F-vector spaces.

DI I Tensor product

Let V and W be F-vector spaces. The pair (Uy, o) consisting of a F-vector space Uy and a bilinear
mapping o : V x W — Uy, satisfying the property (T), the existence of which is assured by Theorem
1.2.5 is called a tensor product of V and W.
We write

U=V W and o(u,w)=vQw.

The mapping o is called the canonical mapping of a tensor product V @ W.

Example 1.3.2

Let n,mm € N, V =F"* and W = F™ Then V @ W = F™" is a tensor product of V' and W whose
canonical bilinear mapping ¢ is given by:

o F" x F" — F™™

((za)iey, (5)7n) —  (Tays)i<i<n,1<i<m.

~—

Remark 1.3.3.

In the following, we sometimes say that a vector space Uy is a tensor V and W. Implicitly
this means that there exists a bilinear mapping o : V. x W — Uy satistying the property (T)).

The property (T) can be restated as follows: a tensor product Uy of V and W is generated by
{u@w|veV and weW}

That means, every vector u € V ® W can be written as

u=Y 7 (vi ®wy)

,J
for some vectors v; € V, w; € W and scalars v;; € F.

The uniqueness property (2) of Theorem 1.2.5 can be restated as follows: if Uy and U] are tensor
products of V and W, then there exists a unique linear isomorphism F : Uy —> U] such that F
associates v ® w in Uy to v @ w in Uy for all v € V and w € W.

Remark 1.3.4.

In the proof of existence in Theorem 1.2.5, we used bases for V and W Therefore, it might
be difficult to understand the meaning of the tensor product.

Thus, we give another construction of a tensor product (Uy, o) free from bases:
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Let V* and W* be the dual spaces of V and W respectively and let Uy be defined by
Up = L(V*, W TF).
For fixed v € V and w € W, the mapping B : V* x W* — T defined by
B,w)(f;9) = f(v)g(w)

is bilinear (cf. Exercise 1.7.6). So it is an element of Uy.
Consider the following map: ¢ : V x W — Uj defined by

o(v,w) = By w)
which is also bilinear (cf. Exercise 1.7.6)..
Then we can show that (U, o) satisfies conditions (T1) and (T2). Take

By ={v1,...,v,} abasisfor V

Bw = {w1,...,w,} abasisfor W

and let B, = {f1,...,fn}, Biy = {91,...,9m} be receptively the dual basis of V* and W*. We
construct a basis
S={us|1<r<n and 1<s<m}
for Uy, where
1 if ¢=7r and j=s

urs(f,9) = {

0 otherwise

Clearly
Urs = B(’UT JWs)

from which we obtain condition (T1).

For every B € L(V,W;U), define a linear mapping F : Uy — U by

F(Z'yrsurs) = ZPY’I"SB(,UT’,LUS)'
r,s T,8

Hence B = F oo.
VxW —25 U,

XlF

U
which implies condition (T2).

Using the bilinearity of the canonical mapping o, we can prove the following properties :

Proposition 1.3.5 [ISIIIalsETgyaYel ez

For a, a,b € F, v,v1,v5 € V and w, w1, ws € W, we have
(1) (a1 +bv) @w = a(vy @w) + blva @ w).

(ii) v ® (awy +bwz) = alv@wr) + b(v® ws).
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Proposition 1.3.6 [ESERI A N%4

Let By = {v1,...,v,} be a basis for V, and By = {w1,...,wy,} a basis for W. Then the nm vectors
{viww; | 1<i<n and 1<j<m}
form a basis for V ® W. In particular,

dim(V @ W) =dimV x dim W.

Corollary 1.3.7

Let v € V and w € W be nonzero vectors. Then v ® w # 0.

Proof. If we take in the previous proposition v; = v and w; = w , we get v ® w is a vector in the basis of
V @ W. Therefore v ® w # 0. O

Proposition 1.3.8

Every vector u € V ® W can be written as

U:Z(ei®fj)

i

for some vectors e; € V, f; € W .

Proof. Let u € V ® W. Since
{fviww; | 1<i<n and 1<j<m}

form a basis of V ® W, the vector u can be written as

u=y yjlui@uw) =y (W®Z%jwy’) => (Z:%‘juz‘@wj)-

2 i J

Proposition 1.3.9

Let &1 = {v1,...,v.} CV and S; = {wy,...,w.} CW and

T
U= E Vi @ Wj.
i=1

Then

(1) If the & is linearly independent, the vectors wy, ..., w, are uniquely determined. Namely, if

T T
!
E vi®wi:§ v; ® w;
i=1 =i
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then w} = w; for all 3.

(2) If the S, is linearly independent, the vectors vy, ..., v, are uniquely determined. Namely, if

T T

/
E vi®w¢=§ v; ® wy,
i=1 i=1

then v] = vj for all 4.

Proof. Assume that dimV =n and dim W = m.

(1) If S = {v1,...,v.} C V is linearly independent, then we can choose a basis for V of the form B; =
{v1,.. ,Upy Vpy1, .., Un}. Let Bo ={f1,..., fm} a basis for W. Suppose that

ivi@)wi:ivi@w;. (1.7)
=1 =1

Then ,
Zvi ® (w; —w}) = 0. (1.8)
i=1

Since w; — w, is a vector in W, it’s can be expressed as linear combination in its basis:
m
/
wp —w) =Y i f;
j=1

Hence form (1.8), we get

zr:vi ® (iaijfj) =0.
i=1 j=1

So
(s m
ZZOLU (Ui ® fj) =0.
i=1 j=1
Since {v; ® f;}4; is a basis for V @ W, this implies a;; = 0 for all 7, j. Then by (1.7), we obtain w; = w)
for all 4.

(2) Use the same ideas as in the first item.

Ecelolo il RN BCHNVIN Bilinecar —> Linear

As F-vector spaces, we have the following isomorphic

LV, W;U) = LV ® W,U).

Proof. Consider the following mapping: ¢ : L(V @ W,U) — L(V,W;U) defined by ¢(F) = F o o:

VxW 25 VeW

o I
U
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where o is the canonical mapping of a tensor product V @ W.

First, we show that F' is linear. Clearly for all Fy, F» € L(V @ W,U) and o € F,
V(L +aFy) =co(F) +aFy) =00 F) +a(ooFy).

Then
V() + aFy) = Y(F1) 4 arp(Fh)

Using the property (T), for all B € L(V,W;U), there exists a unique F € L(V @ W, U) such that
B=Foo=1y(F),

VxW 25> VeW

XlF

U

Hence, the property (T) confirm that ¢ is bijective, hence we have the following isomorphic of F-vector
spaces:
LV, W, U)Z LV QW,U).

(@) [ETAN BRI Dual space of the tensor product

We have the following isomorphic :
VeWw) = (V*eW").
The element F' of (V ® W)* corresponding to f ® g € V* ® W* is given by

Flo@w) = f(v)g(w).

Proof. Using the Proposition 1.3.10, we obtain
LVRWF) = L(V,W;F)
Let
VoW —Y LV,W:F) —s (V@ W)*
P(fi ®g5) = hij

where h;;(v,w) = f;(v) g;(w), and
t(hij) = Fij

where Fj;(v; ® w;) = fi(v) gj(w). Since ¢ and t are isomorphisms, their composition F' = ¢ o ¢ is also an
isomorphism,and hence
VoW =(VeW)".

Clearly, for all f ® g € V* ® W*, we have

F(feg)lvow) = f(v)g(w).
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Proposition 1.3.12 RENSIEWVI N

Let V' be a vector space over a field F. By the correspondence (@ ® v «<—> av ), where o € F and
veV,
FeV = V.

Proof. Let 0 : F x V.—> V the bilinear map defined by

o(a xv) = av.
Using Theorem 1.2.5 (2), to prove that F® V' = V, we will show that the pair (V, o) satisfies the property
(T1) and (T2). Since o(F x V) =V, the pair (V, o) satisfies (T1) . Let BL(FF, V;F) be a bilinear mapping.

Define the mapping F' : V — U by
F(v) = B(1,v).

Then B is linear and for all («,v) € V', we have
(Foo)(a,v) = F(aw) = B(1, (aw) = aB(1,v) = B(a,v).

That means FFoo =B
IFXV—U>V

L

U
Hence the pair (V, o) satisfies the property (T2).

Consequently
FeV = V.

By Theorem 1.2.5 (2), the isomorphism Fy : F ® V — V is given by

Fo(a®v) = av.

Tl Il Commutativity of the tensor product

By the correspondence (v @ w «—> W v ),

Vew = WeV.

Proof. By the property (T) for the tensor product V @ W , the bilinear B: V x W — W ® V defined by
B(v,w) = w ® v, induces a linear mapping F: V® W — W ® V such that Therefore

Foow)=wgu.
Similarly, we can find a linear mapping G : W ® V. — V ® W such that

Gwev)=vQw.

VxWwW
VoW ;:'_::'_'_::'_C;_::'_'_::'_'_t WeV
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Clearly
FoG=1Id and GoF =1Id.

Then F' is an isomorphism, and so
VeWw = WeV.

1.4 Tensor products of more than two vector spaces

Dl ate I Multilinear mapping

Let Vi,V5,...,V, and U be F-vector spaces. A mapping f : Vi x Vo x ---V,, — U is called a
multilinear mapping (or n-multilinear mapping) if it is linear in each variable.

More precisely:
For for each k =1,2,...,n, and for all (vq,...,v,) € Vi X Vo X ---x--- xV,,v. €V and «, 8 €T,

f(vlv"'vruiflv a/l}k-i-ﬁ/l};c, Uk-+1,...,11n):Ckf(’l)l,...,’l)k;,l, Uk, vk+17"'7vn)

+ﬂf(vla ey Ug—1, ’U;c, Vk+1y-+-,Un )

DT il I -2l [\ultilinear form

In the previous definition, when U = F, the function f is called multilinear form (or n-multilinear
form)

Example 1.4.3

Let foralli=1,...,n, f; € V* and define f: V}; x Vo x ---V,, — F by

floi, .. vn) = fi(vi) fa(va) -+ fr(vn).

Then f is n-multilinear form.

The set of all multilinear mappings of Vi x V5 x ---V,, into U is a F-vector space and it is is denoted
by L(Vi,..., Vi U).

DA IR Conditions (T1) and (T2)

Let Vi,...,V, be finite dimensional F-vector spaces.

We say that Vi,...,V,, satisfies the condition (T1) and (T2), if there exist a F-vector space Uy and
an n-multilinear mapping o € L(V4,...,V,;Up) for which

(T1) Uy is generated by the image o(Vy x Vo x -+ x V,,) of 0.
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(T2) Forany B € L(V4,...,V,;Up), there exists a F-linear mapping F' : U, —> U such that B = Foo:

VixVyx---xV, —<2> U

|
o
B v

U

S Nl Linearization of n-multilinear mappings

Let Vi,...,V, be finite dimensional F-vector spaces. There exist a F-vector space Uy and a multilinear
mapping o : V; X V5 X ...V, — Uy which satisfy the the conditions (T1) and (T2).

DS Mldle) BN Al Tensor product of more than two vector spaces

LetVy,...,V, be F-vector spaces. The pair (Uy, o) consisting of a F-vector space Uy and a multilinear
mapping o : Vi x Vo x ...V, —> Uy, satisfying the conditions (T1) and (T2), the existence of which
is assured by Theorem 1.4.6 is called a tensor product of Vi,...,V,.

We write
Uy=V1Ve®...V, and o(v1,...,0,) =01 Qua ®...0p,

The mapping o is called the canonical mapping of a tensor product V1 @ Vo ® ... ® V.

Proposition 1.4.8

The correspondence
V1 @ v ® vz <> (V1 ® v2) ® U3

gives an isomorphism
iV @Vs. = (V10V,) ®Vs.

Proof. Consider the multilinear mapping B : Vi X Vo x V3 — (V; ® V5) ® V3 given by
(1)1,1)2,’03) > (vl ® ’U2) & vs.

Apply (T2) for the tensor product Vi ® Vo ® V3, there is a linear mapping F' for which the following diagram
is commutative:
VixVoxVs —7 ViV, Vs

I

(VieaVs) Vs

Then
F(v1 @ va ®@v3) = (v1 @ v2) Q 3.

Fix v € V3, and consider the bilinear mapping B, : V1 x Vo — V1 ® V5, ® V3 given by

B, (v1,v2) = v1 @ v2 Q@ .
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Apply (T2) for the tensor product Vi ® Vs, there is a linear mapping F, for which the following diagram is
commutative:
Vi x Vs, T V1V,

I

VieV,eVs

Then
F,(v1 @ vg) = v1 Q@ ug @ v.

For v.v' € V3 and o € F, we have
Fory =F,+F, and F,, =akF,
Using these facts, we define a bilinear mapping w : (V1 @ Vo) x V3 — V; ® Vo ® V3 by
w(z,v) = F,(x)

Apply (T2) for the tensor product (V3 ® V5) ® V3, there is a linear mapping G for which the following diagram
is commutative:
(Vie@V) x Vs —— (V1) ® Vs

I
VieV,e Vs

Then
G((v1 ® v2) @ v3) = w(v1 @ v2,v3) = Fiyy (V1 @ v2) = V1 @ V2 @ V3.

Clearly
GoF=1Id and FoG=Id.

Hence F' is an isomorphism of vector spaces. Consequently

VielheVs. =(VieVz)e Vs

Proposition 1.4.9

The correspondence
V1 @ Vg Q V3 <—> Uy ®(1}2 ®1)3)

gives an isomorphism
MeheVs. 2V (Vo Vs).

(@) [ETA W MV Associativity of the tensor product

The correspondence
(v1 ® v2) ® 3 «—> V1 @ (v2 @ v3)

gives an isomorphism
V1eV)®@ V3. 2V ® (V2 ® Vs).
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RICOT eIl I M M ultilinearity of

Let v;,v; € V;, and o, B € F. For any i =1,...,n.

VIR Q1 ® (v +Bv) ®Vi1 @ QU =a(t1 Q- QU1 ®V; QU1 -+ @y )
+B(V1® - QUim1 QU ®Vit1 Q@ ® Uy ).

Proposition 1.4.12 ISESERie/aA R RN

Let B; = {egi), e 67(72.} be a basis for V;, where m; = dim V;. Then the m;ms - - - m,, vectors

eg)@eﬁ)@“'@@x), 1<j5<m; and 1<i<n

(@I ET AW RIEI Dimension of V1 ® ---® V,,

dm(V ®---®@V,) =dimV; dim Vs - - - dim V,.

1.5 Tensor products of linear mappings

S S Ul Tensor products of linear mappings : F} ® Fb

Let Fy : Vi — Wy and Fy : V3 — W3 be linear mappings. Then there exists a linear mapping
F:Vi® Ve, — Wi ® W5 such that for all v1 € V4 and vy € V5

F(’Ul ® ’Ug) = Fl(vl) ® FQ(UQ).

The mapping F is called the tensor product of F; and F, and is denoted by F1 ® F5.

Proof. Let o1 and o5 be the canonical mappings of Vi ® Vo and Wy ® Wy respectively.

Consider the bilinear mapping F' = Fy x Fy : Vi x Vo — W7 x W5 given by
(F1 X F2)(v1,v2) = (Fi(v1), F2(v2)).

Apply the property (T) for the tensor product Vi @ Va, there is a linear mapping F for which the following
diagram is commutative:

Vi x Va b Vi@ Vs
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Hence

F(’Ul ® ’UQ) = O'Q(F(Ul,’UQ)) = O'Q(Fl(’Ul),FQ(UQ)) = Fl(’Ul) ® FQ(UQ).

(RI7o o Tetinfe MW Al Properties of the tensor product of linear mappings

Let Vi, Vo, W1, Ws, Uy, Us be F-vector spaces and o € F. Consider the following six linear mappings of
vector spaces:

Fy H
Wi !

Vi

U,

1

Fy H
Wo 2

Va

U,

2

Then

(1) i ®(Fo+Gy) = F1 @ Fo + F1 ® Go,

(2) (Fi+G1)®@F,=F @ F,+ G Q® F,

(3) (aF1) @ Fo = F1 @ (aFy) = a (F1 ® Fy),

(4) (HioF1)® (Hyo Fy) = (H1 ® Hy) o (F1 ® F3).

Proof. The proofs of (1),(2),(3) and (4) are all similar, so we give here just the proof of the first equality.
Since both sides of the equality are linear mappings of the vector space Vi ® V5 into W ® Wha, it is enough
to show that they coincide on the generating set {v; ® vy | v1 € Vi,v9 € Vo} of Vi ® V. For all v; ® vg, we
have

(F1 @ (Fy+ G2)) (v1 @ v2) = Fy (1) @ (F2 4+ Ga) (v2)
=Fy (v1) @ (Fa (v2) + G2 (v2) ) (definition of the sum of mappings)
=Fi (v1) ® F3 (v2) + F1 (v1) ® G2 (v2)  (bilinearity of ®)
= (F1 ® F2) (v1 ® v2) + (F1 ® G2) (v1 ® v2)  (tensor product of mappings)
=(FA @ Fy+ F1 ®G2) (v1 ®vg) (definition of the sum of mappings).

—
Remark 1.5.3. The tensor product F; ® - -- ® F;, of n linear mappings F; : V; — W;, (i=1,..,n) is
defined similarly.

(1 QF,)(n1Q® - ®uy) =Fi(v1) ® Fa(v2) ® - @ Fi(v).

1.6 Tensor product of matrices: A ® B

Let Vi, Vo, W1, and W5 be F-vector spaces of dimension r, s, m, n respectively. Take

By, = {e1,...,er}
By, ={e},..., e}
Bw, = {f1, -, fm}
Bw, ={fi,---, fi.}
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be bases of Vi, Vo, W1, and W respectively.

Then by Proposition 1.3.6).
Bv,ov, = {e1®@¢el,e1®eh,...,e1 Qe ea@el,ea®@€h,...,ea @€k, ... e, @€},

and
BW1®W2 = {fl ®f{7f1®fév"'7fl ®f';n7f2®f{7f2®fé7ﬂf2®f7/n?7fm®f1lq,}7
are bases of V7 ® Vo and Wy ® Wy respectively.

Let A = (w;) and B = (f;;) be the matrices for Fy and F, with respect to the bases By, , Bv,, By, and Bw,,
Namely,

Fi(e;) = E aifi, Fp(e)) = E Bhrjfh-
=1 h=1
Thus, for all 7 and j, we have

(F1 X FQ) (67; X 6;)

F (61) ®Q Fy (6;)

NIE

i (i ® Ih) -

1h

1

The matrix of Fy ® F» with respect to the bases By, gv, and By, gw, is given as follows:

OZ11B OélgB s Oéer
allﬁll O411512 ale 04223 L. o B
r
aifar afea | =
amlB am2B e amrB

DS IR RE cnsor product of matrices (Kronecker product)

Let A = (a;;) and B = (f;;) be matrices. The matrix

0411B OélgB tee OélnB
OéQ]_B a2QB tee OégnB
B ameB - amaB

is called the tensor product (or Kronecker product) of A and B. It is denoted by A ® B. If A is an
m X n matrix and B is an m’ X n/ matrix, A ® B is an mm’ x nn’ matrix.

Example 1.6.2

(0 5) 5(0 5 0 5|0 10

1 2 0 5\ 6 7 6 7)) | 6 7|12 14
(3 4>®(6 7>_305 A(0 5 | 0 130 20
6 7 6 7 18 21]24 28

According to this definition, the matrix of F} ® Fy with respect to the bases above is the tensor product
of the matrices of F; and F5.
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RICOT LT[ M BGICIM Properties of the tensor product of matrices

Let A; be m x n matrices, B; be m’ x n/ matrices; let C; be an n x | matrix and Dy be an n/ x I’
matrix. Then we have

A1®(31+BQ)ZA1®B1+A1 ® Ba,

(A1 +A2)® B = A1 ® B1 + A2 ® By,

(@A1) @ B = A, ® (aB1) =a (4, ® B1) (ack),
(A1 ® B1)' = A} ® B,

A1C1 ® B1Dy = (A, ® By) (C1 ® Dy).

Corollary 1.6.4

If A and B are regular matrices, then A ® B is regular, and we have
(A B '=A"1t® B

This follows from the last formula in Proposition 1.6.3.

DI ate NG Unitary matrices

An invertible complex square matrix U is unitary if its conjugate transpose U* is also its inverse, that
is:
U* — U—l

NI IGI Schur's Triangularization Theorem

Given A a square n X n matrix with eigenvalues A1, ..., A, counting multiplicities, there exists a unitary
matrix U such that
Al x e %
0 )\2 Ce *
A=U| . ) .| U
0 0 - M\
Proposition 1.6.7
Let A be an n X n matrix whose eigenvalues are ai,...,a, and let B be an m X m matrix whose
eigenvalues are f1,. .., Bm. Then the eigenvalues of A ® B are o585, (i =1,...,n,j=1,...,m).

Proof. Using Schur’s Triangularization Theorem. There exist unitary matrices S and 7" such that

a]_ * e *
S_IAS B az e *
0 0 Qo
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and
ﬁl * *
0 ﬂ2 *

T'BT =
0 0 - Bm
By Corollary 1.6.4, the matrix S ® T is invertible and

SRT) M A®B)(S®T)= (ST H)A®B)(S®T)
=(S7'AS)® (T~ 'BT)

a; ok * b1 x *
0 Qo * 0 ﬁg *
= . ® .
0 0 - ap 0 0 - fBm
Oélﬁl * *
0 af *
0 0 coo nfBm
Hence A ® B is similar to the following an upper triangular matrix:
a1 * cee *
0 a1,82 *
*
0 0 - P
agfhy ke *
0 s fs *
0 0 - afhn
anfi * *
O 0 anfa *
0 0 anfBm
=1,...,m). O

Therefore the eigenvalues of A ® B are o5, (i =1,...,n,j

1.7 Exercises set

Exercise 1.7.1
Let f be an element of L(V,W;U). The set

Imf=fVxW)={f(v,w)|ueU and weW}
is not necessarily a vector subspace. Give an example of such that Imf is not a vector subspace.

(Compare with the case of linear mappings.)
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Solution. Let f : R[z] x R[y] — R[z,y] defined by

f(p,q) = pq.

The image of f contains z and y, but not x + y.

Exercise 1.7.2

Let U and V be two F-vector spaces and S a subset V. Show that if f,g € £L(V,U) such that
fw)=g(), forall ves

then f(v) = g(v) for all v € span(S).

Solution. Assume that
fw)=gw), forall ves.

Let v € span(S), then the vector v can be expressed as :

n
v = E ;S5
i=1

for some scalars a; and s; € S. Since f and g are linear, we have

flv) = f(zaisi) = Z flaisi) = Zaz’f(sz’%

i=1

and
n

g(v) = Q(Zaisi) = Zg(aisi) = Zaig(si)'

=1

But f(s;) = g(s;) for all i = 1,...,n. Hence

f(v) =g(v) forall v € span(S).

Exercise 1.7.3

Let V be a R-vector space de dimension 2, and B = {v1,v2} a basis for V.
(1) What is the dimension of V@ V'?

(2) Construct a basis S of V® V from B.

(3) Find the coordinates of (2v; — 3vs) ® (4v1 — v2) relative to the basis S.

(4) Show that the tensor X = 11v; ® v1 + 8v1 ® v2 + 3v2 ® v2 cannot be written as tensor product of
two vectors in V.

Solution.

(1) dimV ®V =4.

(2) S= {”01 ® 1,01 ® V2,02 @ V1, V2 ®1)2} .
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(3) We have (2v1 — 3v2) ® (dv1; — v2) = 8v1 @ v1 — 2v1 ® v — 12v3 ® v1 + vy ® va. So, the coordinates of
(2v1 — 3v2) ® (4v; — v2) relative to the basis S are (8,—2,—12, 3).

(4) Suppose that X = v ® v’ for some vectors v and v/ in V. Let v = av; + fvy and v’ = &’vy + 'vy. Then
X = ad'vi @ v1 + aB'vi ® va + Ba’vs @ v + BB v @ va

Hence, by comparison

aa’ =11
af’ =8
Ba' =0
BB =3

Clearly this system has no solution, and hence X can’t be written as v ® v'.

Exercise 1.7.4

Let S; and S, be the standard basis of the real vector spaces W = R3 and V = R? respectively:

S1 = {wi, w2, w3} and Sy = {vi,va}

1 0 0

1 0

wy, = 0 s Wwo = 1 s w3 = 0 ’01:<0), ’1)2:<1>,
0 0 1

where

=1
(1) Let x be the element of W @ V givenby z = | 2 | ® (_12 )
3

Express z as a linear combination of the basis elements (w; ® v;).

(2) Let y be the element of W ® V' given by

1 2 3
1 2
2 1 1 9 3

Is it possible to express y as the form w ® v for some w € W and v € V' 7

Solution. (1) We have

= (771)1 +2UJ2+3’U)3)®(’U1 721)2)
= —wi ®v1 + 2w ® vy + 2w ® v1 — 4dws ® vy + 3wz ® v1 — 6wz ® vy

w W

)

1 2 3
(2) Let y be the element of V@ W given by y = | 2 ®<;>+ 1 ®<?>_ 3 @(
1 1 2

and vz(r)
S

Consider y = v ® w, where

S
|
SalS
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We have

1 4 9 —4 ar
2 2 9 -5 a as
2 2 9 -5 b
ol Y I B 'Y el P e ®”:<Z>:: b
1 2 6 -3 ¢ er
2 1 6 -3 cs
Hence
ar = —4
as = —5
YD L
—wuv
Y bs = —4
cr=-3
cs = —3

e e el el N

e S
N = O

oo =

(1.
(1.
(1.
(1.
(1.

If this system has a solution, then a,b must be not equal zero. From the equations (1.9) and (1.10), we get

r+s= =2 Similarly form the equations (1.11) and (1.12), we get  + s = =2. Therefore

n -9 -9
r+s=—=—
a b
So a = b. Hence ar = —4 and ar = —5 which is a contradiction. Consequently, y can not be written as v @ w.

Exercise 1.7.5

Let 0 : R3 x R?2 —> RS the bilinear mapping defined by :

ar

as

¢ br

forall w=/| b eR® and v:(i)ERz: o(w,v) = bs
¢ cr

cs

(1) Let S; = {w1,ws, w3} and S; = {v1,va} be the standard basis of R? and R? respectively.

Compute e;; = o(w;,v;) for all 1 < 4,5 < 3.
(2) Find span(Imo).
(3) Let B :R3 x R? —> U be a bilinear mapping. Consider F : R® —> U defined by:
F ( Z LijCij ) = Z $¢jB(wi,Uj)
ISy 1<i,5<3

(4.1) Show that F is linear
(4.2) Find the relation between F o o and B.

(4) Show that R? @ R? = R,

Solution. (1) e;; = o(w;,v;) forall 1 <4,j < 3.
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1 0
0 1
0 0
e11 = o(wy,vy) = 0 e1z = o(wy,v2) = 0
0 0
0 0
0 0
0 0
1 0
€21 = (T('(UQ,"Ul) = 0 €22 = O—(w23v2) = 1
0 0
0 0
0 0
0 0
0 0
e31 = o(w3,v1) = 0 es2 = o(ws,v2) = 0
1 0
0 1

(2) span(Imo) = RS
(3) Let B :R3 x R? — U be a bilinear mapping. Consider F : R® —> U defined by:
F ( Z Tij€ij ) = Z xijB(wivvj)
Iy 1<i5<3

We have the following diagram:
R3 x R? —2— RS

XlF

U

is 1 . — e — e 5 i 6
. : ij€i 35 €4 .
(4.1) Fislinear : Let « € R and X = E xijei; and Y = g yijei; be two vectors in R®. Then
1<4,5<3 1<i,5<3

F(aX+Y)=F( Y (azi+y;)ei;)

1<i,j<3
= Z (axij + vij) B(w;, vj)
1<i,j<3
= Z (awi;) B(ws,vj) + Z Yij B(w;, v;)
1<4,5<3 1<4,j<3
=« Z xijB(wi,vj)—i— Z yijB(wiavj)
1<i,j<3 1<4,5<3

aF(X) + F(Y)

(4.2) Foo = B. Let
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We have

Foo(w,v)=F

cs
= F(are11 + asejs + bresy + bseas + cresy + csesa)

= arB(wy,v1) + asB(wy, v2) + brB(wa, v1) + bsB(wa, v2) + erB(ws, v1) + csB(ws, vz)
B(aws,rv1) + B(aws, sva) + B(bwa, rv1) + B(bws, sve) + B(cws, rv1) + B(cws, svs)

awy,Tv1 + svg) + B(bwa, rv1 + sve) + B(cws, rvy + sva)

B(
B(awy + bws + cws, rvy + sva)
B(

w,v)

(4) Using the universal property of the tensor product, we get R® ® R? = RS.

Exercise 1.7.6

Let V and W be F-vector space and V* and W* the dual spaces of V and W respectively.
(1) For fixed v € V and w € W, let B, ) : V* x W* — [ defined by
Bu,w)(f,9) = f(v)g(w) forall feV* and geW*
Show that the mapping B, . is a bilinear form.
(2) Consider the map o : V. x W — L(V*,W*;F) defined by
o(v,w) = By w)-

Show that o is bilinear.

Solution. (1) Let v € V and w € W. For any a, f1, fo € V* and g € W*, we have

Bowy(afi + fa,9) = (afi + f2)(v)g(w)

(afi(v) + fa(v))g(w)

= afi(v)g(w) + f2(v)g(w)

= aBy,w)(f1,9) + Bw,uw)(f2,9)-

Similarly, we can show that For any «, g1,90 € W* and f € V*,

Bo,w)(f, g1 + g2) = aByw)(f, 91) + Bw,w)(f; 92)-
Hence, the mapping B, ., is a bilinear form.
(2) Consider the map o : V x W — L(V*, W*,F) defined by
o(v,w) = Byw)-
Let a, v1,v2 € V and w € W. Then by definition,

J(Ozv1 + vg, w) = B(av1+vz,w)'
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Therefore, for all f € V* and g € W*, we have

U(avl + v2, w)(f, g) = B(avl-‘rvz,w)(fa g)

= f(avi +v2)g(w))

= (f(av1) + f(v2))g(w))
af(vi)g(w) + f(v2)g(w)
OBy, w) (f,9) + Bosw)(f59)
ao (v, w)(f,9) + o(v2, w)(f, g)
(ao (v, w) + o (va, w))(f, ).

Hence
o(avy + ve,w) = ao(vy,w) + o(va, w).

Similarly, we can show that, for all a, wy,ws € W and v € W. we have

o(v,cwy +wy) = ao(v,wr) + o(v, ws).

Exercise 1.7.7

Let By = {v1,...,v,} be a basis for V and By = {w1,...,w,,} a basis for W.

Put By ={f1,..., fn}, Biy ={91,...,9m} be respectively the dual basis of V* and W*.

Consider the linear mapping ® : V* @ W* — L(V,W;F) given by f; ® g; —> ®(f; ® g;), where
®(fi ® g;)(v, w) = fi(v)g;(w)

forall u € U and w € W.

Prove that ® is an isomorphic of F-vector spaces.

Solution. We know that the vector spaces V* ® W* and L(V,W;F) have the same dimension, so to prove
that ® is an isomorphic, we need only to show that ® is onto (subjective). Let h € L(V,W;F). Using Lemma
1.1.8, the set

{hij |1 <s<mnand1<r<m}

form a basis for L(V, W;F), where
hij(v,w) = fi(v)g;(w),

and
h=" h(vi, w;)hij.
i,j
Hence
h=> hvi,w;)®(f; ® g;).
J
Therefore

h=o( 3 Ao w)(fi99,)).

So ® is onto, and hence it is an isomorphism of F-vector spaces.
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Exercise 1.7.8

Let V, W and U be F-vector spaces. Show that
LV, W:U) = LV, LW, U)).

Deduce that
LV @W,U) = L(V,L(W,U)),

and

(Vew)* = L(V,W).

Solution. For any bilinear mapping B : V x W — U. Let ¢(f) : V —> Hom(W,U) the mapping defined
by
o(f)(w)(w) = f(v,w), forall veV,weW.

Conversely, given a linear map, g € L(V, L(W,U)), we get the bilinear map ¢ (g) : V x W — U, given by
$(9) (v, w) = (g(0))(w), Torall veVyweW.

It is clear that
¢ o1p(g)(v,w) = ¢(Y(g)(v,w) ) = ¢( g(v)(w) ) = g(v,w).
and
(o o(f))(v,w) =v(o(f))(v,w) ) =¢(g(v)(w) )= g(v,w).

So
pop=Id and to¢=Id.

Consequently, we have the following isomorphism:

LIV,W;U) = L(V,L(W,U)).

Exercise 1.7.9

Let V and W be F-vector spaces. Prove that

V*@W = Hom(V,W).

Solution. Recall that Hom(V, W) is the F-vector space of all linear mappings of V into W . Consider the
mapping B : V* x W — Hom(V, W) given by

B(p, w) = Byw

where By ., is defined by
By, w(v) = p(v)w forallveV
It is easy to see that B, ,, is an element of Hom (V' , W), and B is a bilinear mapping on V* x W.

Therefore, by condition (T2) applied to V* @ W, there exists a linear mapping F : V*@ W — Hom(V , W)
such that Foo = B.

V*xW N VoW

I

I

F
X ;

Hom(V , W)
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We will show that F is an isomorphism.
First, we will prove that F' is one-to-one (injective). Let ¢t € V*®@W, such that F(¢t) = 0. If {w1,..., wn},

{¢1,...,om} is a basis for W and V* respectively, the element ¢ can be written as
m n m n m
t=3" Y aypiow =Y (Y aye)ow =Y fiow
j=11i=1 j=1 =1 j=1

where f; = Zaijgoi. Therefore
i=1

F(t)=F

/N

ifj ® wj)
j=1

NE

F(f] & w]‘)

<.
Il
—

NE

(Foo)(fjw;)

<.
Il
a

NE

B(fjawj>

<.
Il
a

NE

ij,wj'

<.
Il
i

So
Fit)=0= (F(f))(v) =0 forallveV
= Zij,wj (v) forallveV
= ij (v)w; forallveV.
Since w; are linearly independent, for all j =1,...,m:
fi(v)=0 forallveV.

So f; =0 for all j =1,...,m. Therefore ¢ = 0. That means F' is injective, and hence it is surjective because
the vector spaces V* @ W and Hom(V, W) have the same dimension:

dmV*@W = dimHom(V,W) = nm.

Exercise 1.7.10

Consider V and W are two finite dimensional vector spaces over a field F. Let v1,v2 € V\{0} and
wy, wy € W\{0}. Show that the following conditions are equivalent:

(1) V1 Q@ W1 = V2 @ Wa

(2) there exists & € F\{0} such that v = av; and wy = aw;

Solution.
(2) = (1): Suppose that, there exists o € F\{0} such that v3 = av; and w; = qwsy . Hence

vo =av; and wi] = qw; —> v QWi = oz_lvz & awsg
-1
= v Quw =a alvy® ws)

= V1 Q W1 = Vg3 @ Wa
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(1) = (2): Conversely, assume that v1 ® w1 = ve ® we. Then vy,vy or wy,we are linearly dependent.
Otherwise, by using the incomplete basis theorem, we can construct a basis B = {v1,va,...0,} of V and a
basis § = {wy, wa, ... w,, } of W, therefore v1 ® wy and vy ® wy are in the basis of V ® W obtained from B
and S§. Which is a contradiction with the hypothesis v; ® w; = v3 ® ws.

Consider for example vy, v9 are linrearly dependent, so there exists vo = awv;

V1 QW =V QWg = V1 QW = av; Q Wy

— V1 Qw1 = av; Q wa
— V1 QW] = v @ Qws
— 1w —v1 ®awy =0
= 11 ® (w1 —aws) =0
— w; —awy =0

— W1 = Qw2

Exercise 1.7.11

Let A be a matrix. Find
I,®I, and A®DO.

Solution. By the definition of Kronecker product of matrices:
I, @ Iy = Inm

and

Exercise 1.7.12

Let A be an n X n matrix and B an m X m matrix. Show that
(1) tr(A® B) = tr(A) - tx(B),
(2) det(A® B) = (det A)™ - (det B)™.

AR0=00A4=0.

Solution. (1) Let A = (c;;). We have

OéllB R OélnB
tr(A® B) = tr

amB - apnB

tr(akkB)

I
NIE

£l
I
-

agitr(B)

I
NE

>
Il
—

n

= tr(B) Z Qkk

k=1
= tr(B)tr(A).
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(2) Let A be an n x n matrix whose eigenvalues are a1,...,q, and let B be an m X m matrix whose
eigenvalues are f31,..., Bm. Using Schur’s Triangularization Theorem, there exist unitary matrices R
and S such that

A=RT'R™! and B=ST,S !

where
al * .. * 51 * AR *
0 ay - % 0 B2 -+ x
T1 = . . . and T2 =
0 0 e ay, 0 0 e ﬁm
Then
A®B=(RT'R™") ® (STLS™)
=Re9)(MNeT)(R'ews™)
=(R®8)(T1 ® Tr)(R® S)~*.
Hence
det(A ® B) = det(Th ® Tb),
and since
a1 * *
0 a1 B *
172 . *
0 0 alﬁm
azfy ok e *
0 OZQﬂQ . *
T T, = : B
ez 0 0 - ofy
ab
0 anﬂQ Ce *
0 . . .
det(A® B) = det(Ty ® T2) = (J[ ea)™ ([ 8™
i=1 j=1
Therefore

det(A® B) = (det A)™(det B)™.

Exercise 1.7.13

Let A and B be two matrices. Show that

tr(A® I, + I, ® B) = ntr(A) + mtr(B).

Solution.
tr(A® I, + I, ® B) = tr(A® I,,) + tr(I,, ® B) = ntr(A) + mtr(B).
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Exercise 1.7.14

Show that A ® B = 0 if and only if A =0 or B = 0.

Solution. Clearly, if A =0 or B =0, then A ® B = 0. Conversely, assume that A ® B =0 and A = (a;;),
then a;; B = 0, for all < and j. We have two cases:

(i) If a;; =0, for all 7 and j, then A =0.

(ii) If there is r and s such that a,s # 0, then the equation a,;B = 0 implies that B = 0.

Exercise 1.7.15

Let A be an m X n matrix. what size matrix is A®*? where

A = AR A®Q --QA.
—_——

k times

Solution. We know that, if A is an m x n matrix and B is an m’ x n/ matrix, then A ® B is an mm’ X nn’
matrix. Hence the size matrix is A®* is m* k

X k.
Exercise 1.7.16

Let A be an m x m and B be an n x n matrix. Recall that, the direct sum is the (m +n) x (m +n)

matrix 7
0
aom= (4 8)

Find the 2 x 2 matrices X such that X & X = X ® X.

Solution. Let
Ao (an am)
az1 Aa22

such that A A= A® A. Then

2 2
a1 a2 O 0 ai; 11012 A12011 a7
a1 az O 0 | | ania2r aiia2 ai2a21 Q12022
0 0 a1 a2 a21011 G21G12 (22011 (22012

2 2
0 0 a1 ao a3;  G21G22 A22G21 Qi
By comparison:
2
ail = ajy
_ 2
22 = Q39

0@1(&22 — 1) = 0

_ 2 _ _
(12011 = Afy = Q12021 = Q12022 = 0

_ _ 2 _ _
a11a21 = 12021 = A3 = aziaz = 0.
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Thus a12 = ag1 =0, and a1; = ase = 0 or a;; = age = 1. Therefore

1 0 0 0
X = (O 1) or X = (O 0> .
Exercise 1.7.17

Show that if A and B are two Hermitian matrices of the same size, then A ® B is Hermitian.

Solution. We know that
(A® B)" = A" @ B".

So, if A and B are Hermitian, we get A" = A and B" = B. Hence
(A® B)" = A® B.

This implies that A ® B is Hermitian.

Exercise 1.7.18

Let A be an n x n matrix and B an m x m matrix. Prove that, if A ® B = \Il,,;,, such that A # 0,
then there exist a scalars « and 8 such that A = al,,, B = 1, and aff = A.

Solution.
arrbss = A for all r, s

and
arkby; =0 forall r # k4,5

We have A® B#0 = B # 0, and hence a,, =0 for all r # k. That means A is diagonal matrix. Put

ag 0 - 0
0 (65 0
A =
0 0 o,
So
aB 0 0
0 ayB --- 0
0 0 an, B
Consequently, for all 4,
;B = A,,. (1.15)
Soa; =as =--- = a, = a, and hence
A= al,,

and form the equality (1.15), we get
B =a '\, = BI,,

Remark that « # 0, because if a = 0, then A = 0, and hence A ® B = 0, which is a contradiction.
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Exercise 1.7.19

Let Vi, Vo, Wy, W, Uy, Uy be F-vector spaces. Consider the following linear mappings of vector spaces:

F1 Gy

Vi Wi U,

Fg G2

Va Ws
Show that (Gl ] Fl) ® (GQ o Fg) = (Gl ® Gg) ] (Fl ®F2) o

U,

Solution. Let v; € V; and vy € V5. We have:

((Grec)e (R em))men) = (Gio6

) (
= (G1 ® Ga) (F4
=G, (Fl(”Ul)) ® Go (F2(U2))
= (Gl o Fl)(v ) (G2 o FQ)(’UQ)

= ((G1oF) @ (G20 By) ) (v @ a).

(F1 ® F3) (v1 ® v2))
(v1) ® F2(v2))

Exercise 1.7.20

Let Vq, Vo, W1, Wo be F-vector spaces and o € F. Consider the following linear mappings of vector

spaces:
Fy

Vi Wi

1

Fy

Va Wa

2

Prove the following properties:
1) (+G)F =R+ (G111 F)
(2) (OéFl) ® F2 = a(F1 ® FQ) .

Solution. (1) Let v; € V4 and vy € Vo. We have:

((Fl + Gl) ® FQ) (’1)1 ®U2) = (F1 + Gl) (’U1) (9 FQ(UQ)

= (Fl(m) + G1(U2)> ® Fy(v2)

= F1(v1) @ Fa(v2) + G1(v1) ® Fa(vg)
= (F1 ® Fy)(v1 @ v2) + (G1 @ F3)(v1 ® v2)

= ((FoR)+Gieh) )m o)

Hence
(F1 + Gl) ® Fy = (F1 ® FQ) + (Gl ® F2).

(2) Let v; € V; and vy € V5. We have:
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((aFl) ® Fg)(vl ® ) = (aFY) (v1) ® Fa(vs)
= aF(v1) ® F3(v2)
= a<F1(U1) ®F2(U2))

= (OZ(F1 ® Fg))(m ® vs)

Hence
(OzFl) R =N® (CEFQ) = Oz(Fl ® Fz) .

Exercise 1.7.21

Let A, B be square matrices of order n, and C, D be square matrices of order m.

(1) Show that for all integers k > 0 and m > 1, we have
(In ® A)F = I, ® AF.
(2) Recall that the exponential of a square matrix A of order n is defined by :

1 1 1
eA:In+A—|—§A2+—A3+...+_Ak+...

6 k!
Show that:
eA®Im —eA @1, and e™®4 =1, ®@et.
Solution.
(1)
(Im @ A)F = (Ly ® A) (I, © A) -+ (I, ® A)
k times
= (I I+ 1) ® (AA - - - A)
k times k times
=1, @ A"
(2)

1
eA®’m:(In®Im)+(A®Im)+5(Im®A)2+...

1
:(In®Im)+(A®Im)+5(A2®Im)+...

= (In+A+%A2+...)®Im

:eA®Im
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Exercise 1.7.22

Let A, B be square matrices of order n and m respectively. We define the Kronecker sum of matrices
by

Show that

(1) (A®I,) and (I, ® B) commute.

(2) e49B = et ® el

Solution.
o(ABB)  _ o(A®Ln+1,®B)
= (e’ ® I,) (I, ®eP)
= (e1,) ® (I,,eP)
=4 X eB
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Tensor products (Part 2)
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Modules over a ring are a generalization of the concept of vector spaces. In this chapter, we will give the
definition of the tensor product of R-modules (resp. tensor product of morphisms). Also various properties
of these tensor products are explained in this chapter.
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2.1 Modules over a ring

DA S WA | cft 2-module

Let M be an abelian group and R a ring with unity 1. We say that M is a left R-module, if there is
a scalar product

- RxM— M

(rym) — rm,
satisfying the following axioms.
. a(Bm) = (aB)m
e (a+pf)m=am+p-m
e a(m+n)=am+an
e lpm=m

where «, 5 € R and m,n € M.

Similarly, the right R-modules are defined as follow :

DI Tiale NIl right R-module

Let M be an abelian group and R a ring with unity 1z. We say that M is a right R-module, if there
is a scalar product

- :MxR-—M
(m,r) — mr,
satisfying the following axioms.
¢« (ma)f =m(af)
e m(a+f) =ma+mp
e (Mm+n)a=ma+ na
e mlp=m

where «, 5 € R and m,n € M.

Remark 2.1.3. If R is a commutative ring, every left R module is right module, and conversely. In
fact, let M be a left R-module. Define a mapping M x R — R by mr = rm and we can show
directly that the axioms of the right module are satisfied. Therefore, if a ring R is commutative, it is
not necessary to distinguish between left and right.

Example 2.1.4

If R is a field, a R-module is a R-vector space.
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Example 2.1.5

If G is an abelian group, the G can be viewed as Z-module with scalar multiplication defined as, for
geGandneZ,

g+g+...+g ifn>0
—_—
n times
ng=40 ifn=0
(=) + (—g)+...+(—g) ifn<0
n times

where —g¢ is the inverse of g.

DT nate NN Homomorphism of R-modules

Let R be a ring and let M and N be R-modules. A function f: M — N is an R-module homomor-
phism if and only if the following conditions hold:

o flmy+m2) = f(m1)+ f(me) forall my,me e M
o f(am)=af(m) forallae R,mec M.

DSl 2 Al |somorphism of R-modules

Let R be a ring M and N be R-modules and let f: M — N be an R-module homomorphism. The
function f is an R-module isomorphism if and only if f is one-to-one and onto.

As a generalization of bilinear mapping, we define the concept of a balanced mapping.

DI iate I NIl Balanced mapping

For a ring R, a right R-module M, a left R-module IV, and an abelian group G, amap ¢ : M xN — G
is said to be R-balanced mapping, if for all m,m’ € M, n,n’ € N, and r € R the following hold:

p(m,n +n') = p(m,n) + ¢(m,n’)
p(m +m',n) = p(m,n) + (m’,n)

p(mr,n) = p(m,rn)

Note 2.1.9

The set of all such balanced mapping over R from M X N to G is denoted by Hom (M, N; G), and it
is an abelian group (see, Exercise 2.3.1).
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DAt R Generating set for R-modules

Let M be a left R-module. A subset S of M is called a set of generators (or a generating set) of M, if
every element of Mcan be expressed as a linear combination of a finite number of {s;} with coefficients

in R, That mean
k
m=> s,
i=1

for some 7; € R and s; € S.

DM ANl Free R-basis / R-free subset

Let M be a left R-module. A subset S of M is called R-free, if for all {s1,...,sx} C S, we have

k
Zrisi =0 = r;=0 forall i=1,.. k.
i=1

DA N WA Free R-module

A R-free set of generators of M is called an R-basis of M and an R- module M which has an R-basis
is called a free R-module.

DI AWEI Then free module R°

Let S be a set and L(S) the set of mappings from S — R with finite support, where

support(f) ={s € 5| f(s) # 0}.

If I is the finite set of s € S with a non-zero image, we can denote f(s) = r; € R and identifying a
map with the set of its values, write the map as

[= erem

sel

where eg : S —> R is the mapping given by

es(t):{l if t=s,

0 otherwise

Clearly (L(S),+) is an abelian group, and it’s can be considered as R-module with the scalar multi-
plication defined as follow: for all » € R and f € L(S), the mapping rf is given by

(rf)(s) =r(f(s)), forall seS.

In addition, the set {e; | s € S} form a basis for the R-module L(S).
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Note 2.1.14

The free module L(S) will be denoted by R®, and it’s called by the module of the finite formal linear
combinations of elements of S.

DM AL Submodule / quotient module

¢ A submodule of an R-module M is a subgroups N of M which is closed under by the scalar
multiplication of M, that means, for all r € R and n,n’ € N, we have rn € N, and n —n’ € N.

o The quotient group M/N becomes an R-module by defining a(z + N) = ax + N. The R-module
M/N is the quotient of M by N.

2.2 Tensor product of modules

In these section, we define tensor products of modules over a commutative ring with unity and various
properties this tensor products are given.

DYl Il [:-linear, Homomorphism of modules

Let M and N be two R-modules. A mapping f: M —> N is called an R-module homomorphism or
an R-linear mapping if

(1) f(m+m') = f(m) + f(m),
(2) f(rm) =rf(m).
The set of all module homomorphisms from M to N is denoted by Homp (M, N).

IS Il [i-bilinear mapping

Let M, B and G be R-modules. A mapping f: M x N — G is called a R-bilinear, if it is linear in
each variable. That means : for all m,my,mo € M, n,ny,ne € V and r € R, we have

(1) frmi+m2,n) =rf(mi,v)+ f(ma,n)
(2) f(marnl + n?) = Tf(mvnl) + f(man2)a
The set of all R-bilinear mappings from M X N to G is denoted by Homg (M, N; G).

Theorem 2.2.3

Let R be a ring, M and N two R-modules. Then there exist a pair (Go,o) R-module Gy and an
R-bilinear mapping o : M x N — Gq such that, for every R-bilinear mapping B : M x N — G,
there exists a unique homomorphism of R-modules F' : Gy —> G such that B = F o 0.

MXN—U>G0

|
v
B v

G
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DI ate M Tensor product of R-modules

Let M and N be two R-modules. We say that (M, N) satisfy the property (T), if here exist a pair
(G, o) consisting of an R-module Gy and an R-bilinear mapping ¢ : M x N — Gq such that, for

every R-bilinear mapping B : M x N —> G, there exists a unique homomorphism of R-modules
F: Gy —> G such that B= Foo.

MXN—U>G0

|
v
B v

G

The existence of which is assured by Theorem 2.2.5 is called a tensor product of M and N.
We write

Go=M®rM and o(m,n)=men.
The mapping o is called the canonical R-bilinear mapping of a tensor product V @ W.

IO G Tensor Product of Modules

If M is a right R-module and N is a left R-module. Then their tensor product M ® gz IV is the quotient
of the free R-module RM*¥ by the R-submodule T generated by the elements

(a) €(m,n+n’) — €(m,n) — €(m,n’)
(b) €(m+m/,n) — €(m,n) — €(m’,n)

(C) €(mr,;n) — €(m,rn)

e

Remark 2.2.6. We have the following natural mappings:

M x N e RMxN n RMXN /T = M @ N

(m X n) = €(mn) = MO N =Cmn) = Emn) + T
So, for all m,m’ € M,n,n’ € N,r € R. We have a natural mapping M x N — M ® g N, where write
m ® n for the image of (m,n) in M ®r N. Hence we have
1) mMn+n)=men+maen
2) m+m)@n=men+m' Qn
(8) mren=me®rn.

Example 2.2.7

Z/27 &7 Z/37Z = 0 because

m@n=ml@n=m3Qn
=m®3In=mx0
=m®0-0=m-0x0
=0.
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X Tensor products of R-linear mappings : F} ® Fj

Let Fy : My — Ny and Fy : Ms —> N be R-module homomorphisms. Then there exists a linear
mapping F' : M1 ® My — N; ® Ny such that for all m; € My and mg € My

F(m1 X m2) = Fl(ml) X® Fg(mg).

The mapping F is called the tensor product of F; and F, and is denoted by Fy ® Fh.

Proof. Let 01 and o5 be the canonical mappings of M7 ® Ms and N7 ® N respectively.
Consider the R-bilinear mapping F' = Fy X Fy : M; x My — N7 x N5 given by
(F1 x F2)(m1,m2) = (Fi(m1), Fa(m2)).

Apply the property (T) for the tensor product M; ® My, there is an R-linear mapping F for which the
following diagram is commutative:

My x M, o M; ® My

PP

Hence

F(v1 @ vg) = 02(F (v1,v2)) = 02(F1(v1), Fo(v2)) = Fi(v1) @ Fa(va).

RITo o Tetinfe I Il Commutativity of the tensor product

Let N and M be R-modules. By the correspondence (m ® n <— w ® m ), we have

MN = N M.

SCeT Lo I M (VI Associativity of the tensor product

The correspondence
(m1 ® my) @ m3 <—> m1 @ (Mg ® m3)

gives an isomorphism
(M; ® M) ® Ms. = M; ® (Mz ® M3).
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2.3 Exercises set

Exercise 2.3.1

Let R be a commuatative ring and f and g an R-bilinear mappings from N x M — G.
(1) Show that f+ g and —f are R-bilinear mappings.
(2) Deduce that Hom((NV, M; G) is an R-module.

Solution. (1) For all n,ny,ns € N, m,my, mg € M and r € R, we have

(f +g>(n1 + n27m> = f(nl +n2am) +g(n1 +n27m)
= f(n1,m) + f(n2,m) + g(ni,m) + g(na2,m)
= f(n1 + ng2,m) + g(n1 + nz,m)

and

Exercise 2.3.2

Let R be a ring, M, N be two R-modules. Show that m ® n = 0, if and only if, for every R-balanced
mapping B : M x N — G, we have B(m,n) = 0.

Solution. Assume that m ® n = 0. Using the property (T) of the tensor product M ® N, for every R-
balanced mapping B : M x N — G, there exists a homomorphism of Z-modules F' : Gy —> G such that
B=Foo.

MxN—2> MQN

T

B(m,n)=F(m®n)=F(0)=0.

r
v
G
So

Reciprocally, assume that for every R-balanced mapping B : M x N — G, we have B(m,n) = 0. hence if
we take B = o, we get the canonical mapping o(m,n) =0, so m @ n = 0.

Exercise 2.3.3

Show that, in the tensor product of modules M ® N, we have

mO=0xn=0 forall meM and né€N.

Solution.
m0=me(0+0)=mx0+m®c0

Subtracting m ® 0 from both sides, m ® 0 = 0.
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Exercise 2.3.4

Let M and N be R-modules with respective generating sets {m;};cr and {n;};cs. Show that the
tensor product M ® N is generated linearly by the elementary tensors m; ® n;.

Solution. Let m®n € M ® N. Then

m®n:Zrimi ® Zsjnj = ZZrisj(miQ@nj).

iel jeJ i€l jeJ

Exercise 2.3.5

For positive integers a and b relatively prime. Show that

Z/)aZ ®z LJVL = 0.

Solution. Since a and b are relatively prime , there exist two integers r and s such that
1 =ar+bs.

Let B be an arbitrary R-balanced mapping B : M x N — G to an abelian group G. Then for any
(m,n) € Z/aZ xz ZJVZ, we have

B(n,m) = (ar + bs)B(n,m)
= arB(n,m) + bsB(n,m)
= rB(an,m) + sB(n,bm)
=rB(0,m) + sB(n,0)
=0

Using Exercise 7?7, we get m ®@ n = 0 for all (m,n) € Z/aZ xy 7Z/bZ. Therefore

Z/aZ @7 ZJVZ = 0.

Exercise 2.3.6

Let M be an R-module. Then on regarding R as a module over itself, show that

R M =M.

Solution. Define a map f: R x M — M by
f(r,m)=rm, reR, meM.

By properties of an R-module, it can be easily to show that f is R-bilinear. Then by the universal property
of the tensor product R ® M 1, there exist a unique R-module homomorphisnr f’: R ® M — M such that
f = f' oo ie. the following diagram commutes
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For any (r,m) € R x M, we have that

f@rym) = f'(o(r,m)) = f'(r@m).

Hence by the definition of f,
f(r@n)=rm.

We now claim that f’ is an isomorphism:

Surjectivity of f : For any m € M. Since R is a ring with unity 1, we have that 1 ® m € R ® M and then
ffA@m)=1m=m.

Therefore f’ is surjective.

Injectivity of f : An arbitrary element of R ® M is a finite sum of the form

Zri®mi:Zri(1®mi)221®(rimi):1®2rimi:1®m,
i i i i

7

for some r; € R and m; € M. Therefore, every element in R ® M can be written as 1 ® m for some m € M.
Now if 1 ® m € ker f, then

ffA@m)=0=1m=0= m=0,

1®m =1®0=0. Hence ker f = {0} , so 7 is injective.

Consequently f’ is an isomorphism.
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In this chapter, we give the definition of the tensor algebra TP (V') generated by a vector space V over a field

IF. It is also denoted as ,
® V o or V®P
i=0

and is called the p-th tensor power of V (with V®! =V and V®° =TF ). We can pack all the tensor powers
of V into the "big” vector space,
(V) =Ever.

p=>0

This is one of the most important associative algebra defined from V. The elements of this new vector space
are called ” Tensors”. Also we present in this chapter the definition of symmetric and alternating tensors with
their properties.

3.1 Tensor spaces

Let us now see how tensor products behave under duality. For this, we define a pairing between Vi*®---@V*
and V1 ® --- ® V,,. For any fixed
(fiyeo s fn) €V X x VX,

we have a multilinear form Iy, . 7.y : V1 X x V, — F defined by

Uy W1y vn) = fr(v1) - fa(va) -+ fu(vn).
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Using the property (T) of the tensor product V; ® -+ ® V,,, there exist a linear mapping

Lifyytay V1®--- @V —F

le...

Therefore, we have a multilinear mapping

L: Vix- - xVF¥—— LV - 0V,,F)

(f17 .. 7fn) — L(flv---vfn)

Using also the property (T) of the tensor product Vi* @ - -- ® V¥, there exist a linear mapping
L?fl,n.,fn) VeV, —F

such that the following diagram commutes:

Finlay, we have constructed a linear mapping;:
L' V'@ -V - LV®- - V,,F).

Therefore

L'ef(Vf®@ @V LWV® - @V,,F).
By the fact that (see Exercise 1.7.8), for any F-vector spaces. V, W and U,
LVeWU) = LV,LW,U)),

Hence
E(V1*®~--®V,Z‘,£(V1®--~®Vn,F)) = E((V1*®-~-®V,2‘)®(V1®~--®Vn),]F)

So L* can be viewed a linear form on

Ve eV)e (i - aV,).
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DISTMIAt M Tensor space

If T is a tensor product of p copies of V and ¢ copies of V*, we call T the tensor space of type (p,q)
and denote it by TP(V). More precisely:

TPV)=VRVeVe - VeV V' eV 'e...@V*

q

p factors q factors

DRIl Covariant/contravariant

e Elements of the tensor space qu(V) are called tensors of type (p, ¢) or tensors which are contravariant
of degree p and covariant of degree q.

e In particular, tensors of type (p,0) are called contravariant tensors of degree p and those of type
(0, q) covariant tensors of degree q.

e Moreover the elements of Ty (V) = V are called contravariant vectors, those of T{ (V) = V* covariant
vectors, and those of T3 (V) = F scalars.

.
Remark 3.1.3. Sometimes we write

TPV)=T5(V)=VVRVe---QV

p factors

T, V) =T2(V)=V*"@V*eV*'®---®V*

q factors

and
Example 3.1.4 NS

From Exercise 1.7.9, we know that V* @ V = L(V, V). Hence
THV) = L(V,V).

That is, the linear transformations of V' can be regarded as tensors of type (1,1).

Example 3.1.5 NPU@
Since V@ W = L(V*, W*;F) and (V*)* 2V, we have
Th(V)=V*@V*= L(V,V,F).
More general, we can show that

T,(V)=V'@V*@V*'® - eV* 2 LV,V, - ,V;F).
—_—————

q factors q factors
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Example 3.1.6 KB

Setting W = U =V in the following formula
LV, W, DZLVIW, U)ZVIW) " QUZV W*'QU,

we have

LV, V:V)2V*RV* RV =T(V).

=N WAl Dual space of Tg’(V)

(Tg(V))* > TY(V).

3.2 Properties of tensor spaces

Proposition 3.2.1

If V is a F-vector space of dimension n, then

dimTP(V) = nP*a.

Proof. Since dimV @ W =dimV x dimW and dim V* = dim V', we have

dm Ty (V) =dim (Y @VeVe aVeV eV eV e oV )

p factors q factors
=dimV xdimV x -+ x dimV xdimV* x dimV* x --- x dim V'*
p factors q factors
=dimV xdimV x---dimV xdimV xdimV x --- x dim V'
p factors q factors

=dimV xdimV x --- xdimV

p+q factors

= nPtae,

T
Remark 3.2.2. If {vy,...,v,} is a basis for V and {f1,..., fn} its dual basis, then, the set

{vh®~-®vip®fjl®-~®qu | 1<i,<n and 1§jl§n}

form a basis for TP(V).
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Example 3.2.3

Bilinear forms on V' can be considered as covariant tensors of degree 2 because
TXV)=V*@V* = L(V,V;F).
Let {v1,...,v,} be a basis for V and {fi,..., f,} its dual basis. Then, the set
{fi®fi11<4,5<n}
Therefore, every bilinear form B on V can be written as
B'= Zz&'jfi ® f;
i=1 j=1
Then

B(vk,v) =Y Y & fi ® fj(ve, v1)

i=1 j=1

= Z Z &ij fi(vk) £ (o)

=1 j=1

= Z Z &ij0ikdji

=1 j=1

= &kt

Proposition 3.2.4

Consider the tensor space TF (V) and assume that p > 0 and ¢ > 0. Fix integers r and s such that
1 <r<pand1<s<gq Then there is a unique linear mapping C7 : T?(V') — Tf:ll (V), such that
for all v; € V and f; € V/*, we have

C;(U1®"'®Up®f1®“'®fq) = fs(vr)vl®’"®vr—1®vr+1®"'®Up®f1®"'®fs—1®fs+l®’"®fq~

Proof. Let B: VX - - XVxV*x...xV* —>T5__11(V) the mapping defined by
B(le"'xvprlX"‘Xfq):fs(vr)vl®"'®UT71®UT+1®"’®/UP®](A1®"'®f571®f5+1®"'®f¢

It is easy to see that B is (p + ¢)-multilinear mapping. Using the property (T) of the tensor product T?(V'),
there exists a linear mapping L : TP (V) —> T(f__ll(V), for which the following diagram commutes:

VX oo XxVxV*x...xV* 2 (V)
;
y
TP (V)

Therefore, we can take Cf = L

C. BEDDANI




DT iAo Nl Contraction

The linear mapping C} is called the contraction with respect to rth contravariant index and sth
covariant index.

3.3 Symmetric tensors and alternating tensors

There are families of tensors which are called symmetric or alternating. In this section, we give their defini-
tions and study their properties.

Let S, be the set of permutations of the set {1,...,p} with p elements. Denote by sgn(c) the signature of o,
(i.e., sgn(o) = 1 if o is an even permutation and sgn(o) = —1 if ¢ is an odd permutation.)

Proposition 3.3.1

Let 0 € S).

(1) There exists a linear mapping P, : T?(V) — T?(V), such that for all vq,...,v, € V,
Po(01® - @ up) = Vs-1(1) ®Vo-1(2) @+ @ Vg1 ()

(2) If 0,7 € Sy, then P, 0 P, = P,

Proof. (1) Let F, : V3 x -+ x V, — TP(V') the mapping defined by
Fa‘(”l) e »vp) = vo_l(l) & UU_1(2) K& va_l(p)

This mapping is p-multilinear (see Exercise 3.5.1). Using the property (T) of the tensor product T?(V),
there exists a linear mapping P, such that the following diagram commutes:

(2)
Py o P01 ® -+ @) = Pty © vy © - B vr-1(y)
= Up-17-1(1) X Vg—17-1(2) ®R---R Vo—17-1(p)

= V(ro)=1(1) O V(ro)=1(2) @ @ V(o)1 (p)
:PTJ(U1®"'®U;D)-

T
Remark 3.3.2. Denote by 1 the identity permutation. Then P; id the identity transformation of
TP (V).
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Definition 3.3.3
(1) An element t € TP(V) is called a symmetric tensor, if P,(t) =t for all 0 € S,,.

(2) An element t € TP(V) is called an alternating tensor, if P, (t) = sgn(o)t for all o € S,,.

Note 3.3.4

The set of symmetric tensors and that of alternating tensors are vector subspaces of T* (V) and are
denoted by SP(V) and AP(V') respectively.

Example 3.3.5

If p =1, we have
SY V) =AY (V) =TYV).

Example 3.3.6

Let V' be a vector space. If p =2, we have
Sy ={1,(12)} and sgn(l2)=-1.

Then
S2(V) = {t e TA(V) | Pu o(t) =1}

and
A (V) ={t e T*(V) | Pu 2)(t) = —t}

We know that if B = {v1,va,...,v,} is a for V, then the set
{tij=vi®v; |1<4,5 <n}
form a basis for T?(V). Clearly for all 1 <i,5 <n
P oy (tij) = tjs.
In addition, for all 1 <4,j < n, we have
P(l 2)(tij alx tji) =t;; +1t;; and P(l 2)(tij = tji) =tj; —ty; = —(tij = tji)
That means, ¢;; + tj; are symmetric tensors and ¢;; — ¢;; are alternating tensors for all 1 <4,j <n.

The set {t;; +t;i | i <j} is a basis for S*(V) and {t;; — t;; | i < j} is a basis for A%(V). Hence

aim 52(v) = "0 1)
and )

dim A%(V) = —”(”2_ )
Therefore

T2(V) = S2(V) @ A%(V).
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DAt TR Al Sy mmetrizer and alternator on T7(V)
Consider the following linear transformations on T?7(V):
1 1
&y = o Z P, and A, = ] Z sgn(o)P,.
oc€ESy oESy

The mappings S, and A, are called respectively the symmetrizer and the alternator on T?(V)

Proposition 3.3.8

(1) For any 7 € S, we have

PTSp = SpPT e Sp and PTAp = -ApP‘r = Sgn(T)AP

(2) S,> =8, and A2 = A,.
(3) Let t € TP(V). We have
(a) te SP(V) < S,(t) =t.
(b) te AP(V) <= A,(t) =t.
(4) If p > 1, then A,S, = S, A, =0.

(5) for all p > 1, we have
SP(V) NnAP(V) = {0}.

Proof. (1) For fixed 7 € S,,, we have

P.S, = P, (5 3 Pg)

o€S,

1
- — PTPG'
e

1
:ZT!ZPJT

o€S)

1
= Z P, (because {o7 |0 € S,}=5,)
P o€S,

=S,

C. BEDDANI




Similarly, we can show that S, P, = S,,.

P A, =P; (Z% Z sgn(U)Pa)

T o€S,

1
= Z sgn(o)P. P,
p: o€Sy

1
= LS ()P,
P oES)

1 1
=—= Z sgn(o7) Py,

sgn(7) p or

1

= sgn(7)— Z sgn(o7) Py,
P o€Sy
1

= sgn(7)—~ Z sgn(o) Py
P oES)

= sgn(7)A,.

Similarly, we can show that A, P, = sgn(7)A,.

(2) Using (1), we obtain

1
S, = o Y PS,

T oES,

1
=]§ZSP

oES,
=5,
and similarly, we get A, = A,.
(3) Let t € SP(V). We have
(a) Assume that ¢ € SP. Then by definition P,(t) =t for all o € S,,. Therefore

Sp(t):l% ZPU(t):]%Zt:t.

oES)y o€Sy

Conversely, if S,(t) = t, then for all 7 € S,,, we have

Po(t) = PrS,(t) = S,(t) = .

Hence t € SP.
(b) Use the same ideas as in (b).
(4)
1
ApSp = ~ Z sgn(o)P,S,
P o€Sy
1
=L S sn()s,
oESy
1
= Ij( Z sgn(a))Sp
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Since p > 1, the number of odd permutation equal the number of even permutation, we get

Z sgn(o) = 0.

oc€S,
Therefore, A,S, =0

(5) Let t € SP(V) N AP(V), then S,(t) =t . Apply A, on both sides, A,S,(t) = A,(t), so 0 = Ap(t),
therefore ¢ = 0 because A,(t) = t. Hence

SP(V) N AP(V) = {o}.

Corollary 3.3.9

We have
Im(S,) = SP(V) and Im(A,) = AP(V).

In particular, for any t € TP(V), S,(t) is a symmetric tensor and a A, (t) is an alternating tensor.

Proof. Clearly form the equivalence t € SP(V) <= Sp(t) =t, we have
SP(V) C Im(Sp).

Conversely, let ¢ € Im(S,), then S,(t') =t for some t' € TP(V'), apply P, both sides and since P,S, = S,

we get Sp(t') = P,(t), so t = P,(t), and hence ¢t € SP(V'). Similarly we show that Im(A,) = AP(V). O
Lemma 3.3.10
Let V be a F-vector space , where F = R or C. If vy,..., v are vectors in V' such that v; = v; for

some ¢ and j in {1,...,k}, then
A(v1 ®@---®@vE) =0

Proof. Let 7 be the transposition (i j). By using Proposition 3.3.8 (1), we have
ApPr (01 ® - - @ ug) = sgn(7) Ap(v1 @ -+ - @ vg).

That means
Ap(v1 @ @ug) = —Ap(v1 ® - @)

Hence A,(v1 ® - ®@vi) = 0. O

Proposition 3.3.11

Let V be a F-vector space , where F = R or C. Then for any p > n =dimV, A?(V) = {0}.
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Proof. Let vy, ...,v, be a basis for V. We know that, the set
{fvip®@---@v;, | 1<i<n}
form a basis for TP(V'). Using that fact that A?(V) = Im.A,, we obtain
AP(V) =span{Ap(vi, ® ---®@v;,) | 1<idp <n}.
Apply Lemma 3.3.10, we get (when p > n) :
Ap(viy, ® - ®0;,) =0 forall 1<, <n.
Then AP(V) = 0.

Proposition 3.3.12

Let {v1,...,v,} be a basis for a vector space V over a field F. Then the set
{Sp(vs, ®vi, ®---®v,) | 1<d3 <ig<---<dp <n}

form a basis for SP(V'). Furthermore

: D o n+p—1 __ (n+p—1)'
dim S*(V) = G} TR
Proposition 3.3.13
Let {v1,...,v,} be a basis for a vector space V over a field F. For all p < n, the set
{Ap(vi, ®vi, ® - ®uy) | 1<iy <ig<--- <ip<n}
form a basis for AP(V'). Furthermore
dim AP(V) = O o
A =G =

3.4 Tensor algebras and their properties

DI WAl Direct product / Direct sum of vector spaces

oo
Let (VZ) be infinitely collection of F-vector spaces.
i=1

oo
e A direct product H V; is the set of all sequences (v1, va, ...) where each v; € V; with usual pointwise
i=1
addition
(v1,v2,...) + (w1, ws,...) = (v1 +w1,ve + wa,...),

and scalar multiplication
)\(1}1,112, .. ) = (/\Ul, )\1}2, .. )
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oo
e The direct sum @ V; is the set of all sequences (v1,vs, ...) where each v; € V; such that

i=1
{i|v; #0} is finite
with usual pointwise addition and scalar multiplication.

If we identify

o0
v; €V 0,...,0,0:,0,...) e PV
=1

T

ith term
oo
then V; can be considered as a subset of @ V.
=1
oo
If v = (v1,v9,...) € @ V;, there exists an integer ig such that v; = 0 for all i > 5. Thus we can write
=1

the element v as

i
v = E V;.
i=1

IS WAl [-2lgebras

Given a field, IF, a F-algebra is a F-vector space A, together with a bilinear operation - : A x A — A,
called multiplication, which makes A into a ring with 1. This means that - is associative and that
there is a multiplicative identity element, 1, so that 1-a =a -1 = a, for all a € A.

Example 3.4.3

(1) The polynomial ring F[X,Y] is a F-algebra.
(2) My xn(F) is a F-algebra, This is called a matrix algebra over F.

(3) The set L(V,V) of linear maps of a F-vector space V to itself is a F-algebra under addition and
composition of linear maps.

Recall that if p, g, r, s be positive integers, we have the following isomorphism of F-vector spaces:
I ~ +
TP(V) @ TI(V) = TPH(V).
Let o be the canonical mapping of the tensor product 77 (V) @ T7 (V). We have :

TP(V) @ TI(V) z TP(V) @ T (V) TPH(V)

(z,y) TRy xy

The image of (z,y) in TF{J(V) is denoted by zy.
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DY TIAT I/ WMl Tensor algebra

We define the tensor algebra T(V) of a F-vector space V by

(V) =17 (V).

Next, let us define the product of two elements of T (V). We have the following bilinear mapping;:

TP(V)@TI(V)

TP+q (V)

(z,y) ! Ty

(oo} (oo}
Thus for t = Z t;and t’ = Z t be two elements in T'(V'), where t;,t; € T*(V'), we define the product ¢’ by
i=1 i=1

oo

tt :Z Z tots

i=1r4s=1

From the associativity of tensor product, the multiplication thus defined satisfies the associativity law, i.e.,
for t,t/,t” € T(V), we have

t(tlt”) — (tt/)t//
If we consider 1 € F = T°(V) as an element of T(V), we have, for all t € T(V),

It=1t1=t.

DI Tate M3 Homomorphism of associative algebras

Let R and S be two associative algebras over a field F. A linear mapping f from R to S of F-vector
spaces is called homomorphism of associative algebras if f(1g) = 1g. and

fr-r)y=f(r)- f(+') forall = €R.

T N Universal property of the Tensor Algebra T'(V)

Let V be a F-vector space, R an associative algebra with the unit element 15, and f a linear mapping
of V into R. There exists a unique associative algebra homomorphism F : T(V) — R such that
F(1p) = 1g and F ot = f, where ¢ denotes the natural inclusion mapping of V' into T'(V).

V=T V) - T(V)

F

v
R

3.5 Exercise set
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Exercise 3.5.1

Let 0 € Sy and Fy, : Vi x -+ x V,, — T?(V) the mapping defined by
Fg(’Ul, e ,’Up) = Vg-1(1) @ Vg=1(2) @ - =+ ® Vg-1(p)

Show that F, is p-multilinear.

Solution. Linearity for the first variable: consider o(1) = r. Then
Fo(awi,va, ..., 0p) = Vo-1(1) ® Ug-1(2) @+ @ Vg=1(r—1) ® QU] @ Vg=1(r41) @+ ® Ug—1(p)
= O4(%7—1(1) BVo-1(2) @ @ Vom1(r-1) @ Vo1 (r) @ Vgi(ry1) @ & Url(p))
= aF;(v1,v2,...,0p)
In addition
Fo(v1 40,02, ., 0p) = Vp-1(1) ® Vg-1(2) @ - @ Vg—1(p—1) @ (V1 + V1) @ Ug—1(41) @+ -+ @ Vg—1(p)
= Vo-1(1) @ Vg—1(2) @ * @ Vg—1(r—1) @ V1L & Vo=1(r41) &+ @ VUs—1(p)
+ Vp-1(1) ®Vp-1(2) @+ @ Up=1(p-1) @ V] ® Vp=1(r11) @+ @ Vg—1(p)
= Fy(vi,v2,...,0p) + Fy(v1 + v, v2,...,0p).

Similarly, we can show that F, is linear for all of each variable.

Exercise 3.5.2

Show that, the set of symmetric tensors SP(V') and that of alternating tensors AP(V') are vector
subspaces of T (V).

Solution. Recall that:
(1) An element t € TP(V) is called a symmetric tensor, if P,(t) =t for all 0 € S,,.
(2) An element t € TP(V) is called an alternating tensor, if P,(t) = sgn(o)t for all o € S,,.
Clearly 0 € SP(V), because P,(0) =0 for all ¢ € S,,. Let t1,ty € SP(V). Then

P,(t1) =t1 and P,(tz) =ty forall o€ S,.
Since P, is linear, for all o € S, and o € TF,

P,(t1 + ata) = Py(t1) + aPy(t2)
=11 + ats.

Hence t1 + ate € SP(V). Therefore SP(V') is a vector subspace of TP(V).

Similarly, we have 0 € AP(V'), because P,(0) = 0 = sgn(c)0 for all ¢ € Sy,. Let t1,t, € AP(V'). Then
P,(t1) =sgn(o)ty and P,(t2) =sgu(o)te forall o€ S,.
Since P, is linear, for all o € S, and o € F,
P,(t1 + atz) = P,(t1) + aPy(t2)
= sgn(o)t; + asgn(o)ty
= sgn(o)(t1 + ata).
Hence t; + aty € AP(V). So AP(V) is a vector subspace of TP(V).
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Exercise 3.5.3

Let V' be a vector space. Show that

STV)y=At(V)=TYV)=V.

Solution. By definition 7" (V) = V. The set of permutations S; contains one element o = Id with signature
equals 1. We have, for all v; € V

Po'(/l}l) = ’1}0—1(1)

= ’Ul
= sgn(o)v;.
Hence
SH(V) =AY (V) =V.
Exercise 3.5.4
Let V be a F-vector space of dimension n, B = {v1,...,v,} a basis for V, and

tij=v;®v; forall 1<4,j<mn.
(1) Show that,

(a) tij+tj € S*(V) foralll <i,j<n.
(b) tij —tj; € A%2(V) for all 1 < i, j < n.
(¢) By ={tij +t;i|i<j} form a basis of S*(V).
(d) By ={tij —tji | i < j} form a basis of A%(V).

(2) Deduce that

aim 52(v) = 251
and )
dim A%(V) = —"("2_ )

Solution. Let t = Zi,j Oéijtij S 52(V) Then P(l 2) (t) =1t. So

E Oéijtij:g @ity
i,J 1,

Qij = Qi
t="Y i+ Y aij(tij +t5)
i i<j
G2 n(n+1)
dim S (V)zn—i—(n—l)—i—-'-—i—l:T
and
n(n—1)

dmA?(V)=n-1)+n—-1)+-+1= 5
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Exercise 3.5.5

Let vy, v9,v3 be three vectors in V. Show that

S?)(”l K U2 ® 'U3) = 83('01 X v3 Q 1)2).

Solution. By definition, we have

1
83(?}1 X v9 ®?}3) = 5 Z Pa(vl & Vo ®U3).
" 0€S3

Since S3 has six permutations {(1),(12),(23),(13),(123),(132)},

1
S3(v1 @ v2 @ v3) = 6(U1®Uz®v3—v2®v1®v3—v1 QU3 ®Uy — U3 QU2 ®V + V2 ® V3 QU1 + V3 QU ®v2).
Interchanging vy and vz, we get form the previous equality

S3(v1 @ v3 @ v2) = (Ul®vs®v2—v3®v1 QU2 — V1 QU2 QU3 — V2 QU3 QU + V3 Q V2 QU1 + V2 @V ®v3).

| =

Hence S3(v; ® va ® v3) = S3(v1 ® v3 @ v2).

Exercise 3.5.6

Let {v1,...,v,} be a basis for a vector space V over a field F. Show that dim A"(V) = 1 and give a
generator of A™(V).

Solution. Using the formula
n!

dim AP(V) =C" = ———
) (n—p)'p!

p

we get dim A™(V) = 1. and
AP(V) = span{v1 ® - -- @ v, }.

Exercise 3.5.7

Let {vy,...,v,} be a basis for a vector space V over a field F and p < n. Show that

dim AP (V) = dim A"7P(V).

Solution. Using the formula
|
we get

dim A" P(V) = C"_ =
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Chapter

Symmetric and

exterior algebras
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4.1 Symmetric algebra
Recall that if V' is a F-vector space, then for any permutation o € S;,, we have a linear mapping
P, :TP(V) — TP(V),
such that for all vy,...,v, €V,
Pr(v1® - ®@0p) = 5-1(1) ® Vg-1(2) ® B VUg1p)
The vector space of symmetric tensor is
SP(V) ={teT(V) | F(t) =t}

It known that
SO%V)=F and S*(V)=V.

Consider the F-vector space

S(V)ZéS”(V)z]F@V@SQ(V)@...

Clearly S(V) is a vector subspace of T'(V').
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We will define a multiplication for which S(V') becomes an associative algebra. Let ¢ € SP(V) and ¢’ € SP(V),
then t ® t' € TPT9(V) is not necessarily a symmetric tensor, but S,14(t ® ') is symmetric regarding the
proposition 3.3.8, where Sy, is the symmetrizer transformation on T'(V)

> P

0ESpiq

P p+q

Hence we can define the multiplication ® on S(V') by

1
LOU =Syt @t) = oo D2 Balt ),

" 0€Sptq

for all t € SP(V) and ¢ € TI(V).

o0 (oo}
In general, for ¢t = th and t' = th’ (tp € SP(V) and t, € SY(V)) , define

p=0 q=0
tot' =Y Hoty=> | Y Stbot) =D 8| D ot ]. (4.1)
p,q k=0 \p+q=k k=0 p+q=k

Example 4.1.1

Let v1,v9 be two vectors in V' and a € F. Then v, and vy are symmetric tensors in Sl(V) and

1
v Qv = 2l Z Py (v1 ® v2).
’ g€Ssy

Since S has two permutations {01 = (1),02 = (12)}, v1 @ vy = (P, (v1 ® v2) + Py, (v1 ®v2)). Hence
v O vy = %(vl ® v2 +v2®v1).
We conclude that , If we take v; = vg = v € V, then
VOUV=vR0.
We have, also, if a € S°(V) and v € S}(V) are symmetric tensor, and

a@QU=a@u.

Example 4.1.2

1
Let vy, v9.v3 be two vectors in V. Put r = 5(1)1 ® U2 + v ® vl) and s = v3. Then
SQT_S'XS: 7 (V1 ® v2 @ v3) + Py (v2 ® U1 ® v3)) = 'ZS:P (v1 ® v2 ® v3).
gES3 gES3

Since S5 has six permutations {(1),(12),(13),(23),(123),(132)},
Hence

reos= (vl®U2®v3+u2®v1®v3+v1®v3®v2+v3®v2®v1+v2®v3®v1+v3®v1®vz)~

| =
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Proposition 4.1.3

Let t, € T?(V) and t, € T9(V). Then

Sprq( Sp(tp) @ty ) = Sprq(tp @ Se(tg) ) = Spiq(ty @tg).

Proof. For all o € Sp, we denote & € S,14 the permutation defined by

. o(i) if 1<i<p
G(i) = . : :
i if p+1<i<p+gq

Sp+q( Sp(tp) tq - | Z Serq ® tq )

P oc€Sy
But Spiq( Po(tp) @ty ) = Sprq( Pty @ty) ) = Spiq(ty @t,) (see Proposition 3.3.8 (1)) . Therefore

Spa( Spltp) @ty ) = | Z Spqlt tq )

'UES
= p+q( p®tq)

The product defined in (4.1) is commutative, bilinear and associative.

Commutativity: this product is commutative, because for all ¢, € SP(V) and ¢, € S9(V), we have
Z Po(ty @tq) = Z Po(ty @ tp)
oESptq oESptq
Bilinearity: by the definition of the multiplication in (4.1), we have clearly
(ty+t) Ot =t, 0t +t, 0t forall (t,,t,,t) € SP(V)x SY V) x SHV).

and for all @ € F, we have

(atp) ©tq = Z Po(aty, ®tq)

TESptq

Z aPy(tp ®tq)

0ESptq

az S (ty @ t4)

0ESpiq

= a(t, ©ty).

Associativity: for all (t,,t,,%) € SP(V) x S9(V) x SY(V), we have

(tp Otg) Ot1 = Spag(ty Dty) - 1
-+ (Sptq(tp @ tq) @ 1)
gt ( (tp ®tq) ® tl> By Proposition 4.1.3 (1)
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Similarly, we can show that
(ty © Oty O 1) = Spyqnt (b @ (tg 2 11) ) (4.3)
Since t, @ (t, ® t1) = (t, @ t,) @ t;, we obtain from (4.2) and (4.3),

(tp Oty Ot =1, O (t4 O t).

DR TN Symmetric algebra S(V)

The associative algebra S(V') is called the symmetric algebra of V.

4.2 Exterior algebras

Recall that if V is a F-vector space of dimension n, then the vector space of alternating tensor is
AP(V) ={t e T(V) | P,(t) =t}

It known that
A%V)=F and AYV)=V.

Consider the F-vector space

A(V) = éA”(V) = éAP(V) —FaV®A(V)a - A(V).
1=0 1=0

Clearly A(V) is a vector subspace of T'(V).

We define now a multiplication on A(V). Let t € AP(V) and ' € A%(V'). Then, t @ t' € TPT4(V). Therefore
Apiq(t ® 1) is an alternating tensor in AP*9(V'), where

1
A = o Z sgn(o)Py.

gESk

We define exterior product A of ¢t and t' by

tAE = Ayt t).

oo (oo}
In general, for ¢t = th and t' = th’ (tp € AP(V) and t;, € AY(V)) , define

p=0 q=0
(oo} (o]
tAt =ty nty=> | Y Atyety) | =) A| D ot ]. (4.4)
p,q k=0 \p+q=k k=0 p+q=k

Example 4.2.1

Let v1,v9 be two vectors in V and o € F. Then v, and vy are alternating tensors in Al (V) and

1
v1 A Vg = 7 Z sgn(o) Py (v ® va).
’ g€Ssy
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Therefore,

(”[)1 ®’02 — V2 ®1)1).

DO

V1 N\ vg =
We conclude that:
(1) for all V1,V € V, V1 N\ Vg = —(UQ 74\ ’Ul)

(2) forallveV,vAv=0.

Example 4.2.2

1
Let vq,v9.v3 be two vectors in V. Put r = v; Avg = 5(1)1 ® vy — vy ®v1) and s = v3. Then

1 1 1
SAT = 3 ZS —sgn(o) (P(,(vl ® v ®u3) — Pr(va ® 01 ® 113)) =3 ZS sgn (o) Py (v1 ® va ® v3).
oES3 oES3

Since S5 has six permutations {(1),(12),(13),(23),(123),(132)},
Hence

rAs=—(v1 @V V3 — V2@V ®U3 — V] ®VU3® V2 — V3 ® V2 ® V1 + V2 ® V3 ® vy + V3 @ V1 ®Va).

S| =

Proposition 4.2.3

Let t, € T?(V) and t, € T9(V). Then

Ap+q( Ap(tp) X tq ) = Ap+q( lp ®~Aq(tq) ) = Ap+q(tp ®tq)-

Proof. For all o € S, we denote & € S,14 the permutation defined by

ﬂ”_{a@ if 1<i<p

] if p+1<i<p+gq

Ap+q( Ap(t) = Z p+q P (tp Z p+q P( ®t))

€S, €S,
Apply Proposition 3.3.8 (1), for any 7 € S,+,, we have
PrApiq = AprqPr = sgn(1) Apig.

Hence

Apral Aplty) @1, ) = ;Zsgn(a)sgn(&)(Ap+q<tp®tq>>

T o€ESy

= p| ZAP-HI ®t)

€Sy
= Ap-i-q( p @ tq)~
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The product defined in (4.4) is bilinear and associative.

Bilinearity: by the definition of the multiplication in (4.4), we have clearly

(ty +t) ANty =ty ANty +ty Aty forall (t,,t,,t) € AP(V) x A1(V) x AY(V).

and for all & € F, we have

(aty) Nty = Z sgn(o) P, (at, ®@t,)

0ESpiq

= Z sgn(o) Py (t, ® tq)

0ESptq
=a(t, Ntg).

Associativity: for all (t,,t,,t) € AP(V) x AY(V) x AY(V'), we have

(tp Ntg) Nt = Apiq(ty @ 1) Ay
= Aptqti(Aptq(tp ® tg) @ 1)
= Apiqti ( (tp @ty) @ ) By Proposition 4.2.3

Similarly, we can show that
tp A (tq A1) = Apyqti ( (tp @ (tg @ tl))
Since t, @ (t; ® t1) = (t, ® ty) ® t;, we obtain from (4.5) and (4.6),

(tp Atg) Ntp =1, A (g A ty).

DR I Ml Exterior algebra A(V)

The associative algebra A(V) is called the exterior algebra of V.

Proposition 4.2.5

For all ¢t € AP(V) and ' € A%(V), we have

tAt = (=1)PIt At

Proof. Since A is bilinear, it suffices to prove the result for

t=A,01® - Quy) =v1 Ava A--- Ay
= Ag(Vp41 ® - @ Vpyq) = Vpy1 AVpy2 Av - AUpyg.
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We have

A = (v Ava A Avp) A (Upgt AVpga Ao AUpyg)
= (D% vi Avg A+ Avp_1) A (Upg1 AVpga A= Apyq) AUy
= (—l)q(—l)q(vl ANvg A+ A 'Up_g) VAN (Up+1 A Up+2 VARERIVAN Up+q) A Up—1 A Up

= (=)= (=1) (vps1 AUpga A== AUpig) A (V1 Ava A-ev Auy)

p factors
(=1)P9 (vpg1 AVptr2 A Atpig) A (V1 Ava A-e- Awy)
= (—=1)PUt' AT).
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4.3 Exercise set

Exercise 4.3.1

Let B = {e1, e2,€e3} be the standard basis of the real vector space V = R3.
(1) Give the dimension of the following vector spaces: T3(V), S3(V) and A3(V).
(2) Let u = (uy,ug,u3), v = (v1,v2,v3) and w = (w1, ws,w3) be three vectors in R3. Show that:

(a) uAv=(ujvy —ugvi)er Aes + (ujvs — ugvy)er A ez + (ugvs — uzva)ea A es

Uy v w1
(b) uAvAw=|uy v2 wale; AesAes.
uz vz w3

Solution.

uAv = (uje; + uges + uges) A (vie; + vaea + vzes)
=wuivier Nep +ujvoe; Aes +ujvzep Aes
+ ugav1 €2 N\ e1uv3 €2 N\ €2 4+ ugv3 €9 A €3
—+ usv1 ez N\ ey + usvg es A\ es + uszvs es /\ es
=uiv2e1 N\ eg +ujvge; A es + ugvy ea A ey + ugvs ea A es — usvy e; A\ es — uszva e N es

= ujv2e1 Neg + u1vs3 €1 A €3 — UQV1 €1 N eg + UQV3 €9 AN €3 — U3V1 €1 N €3 — U3V3g €2 N €3

(ulvg — u2v1)el N es + (U11)3 — ’LL31)1)€1 Nesz+ (U2U3 — ’LL31)2)€2 A e3

Hence

Uy
UNv =

U2
e1 Nes+
U2 us

U1
v

uyp U1
e1 Ney+
uz U3

V2
e N\ es.
3

uAvAw = (ure; + ugeg + uzes) A (vieg + vaea + vses) A (wieg + woes + wses)
= ((’U,l’l}g — UQU1)61 N e + (’(1,1’[}3 — U3’U1)€1 Nes + (UQ’U3 — ’U,3’U2)€2 A 63) (w2€2 =+ w3€3)

U1VW3 — uQvlwg)el Nea N\ €3 + (u1v3w2 - U3v1w2)el A €3 N eg + (Ug’l)gwl - ’LL3'U2’U)1)62 A €3 N eq

(U1U2w3 — ugvlwg)el A €9 A €3 — (ul’U3UJ2 — U3U1w2)61 A\ () A\ €3 + (’UQUg’LUl — U3’Ugwl)61 N €2 N €3
(u1v2w3 — UV W3 — UIV3W2 + U3V W2 + UV3W1 — U3’UQ’LU1)61 Neg N es

Uy V1 wi
= |ug vy wayleyp NeaxAes.
uz U3 W3

Exercise 4.3.2

Let V be a vector space of dimension n. Show that
dim A(V) = 2".

Hint. Use Newton’s Binomial Theorem.
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Solution. Since A(V) =37, AP(V),

dim A(V) =) dim AP(V) = > Cp.
— =

By Newton’s Binomial Theorem, we now that

(x +y)" ZC":CP””

Therefore N
=G
p=1
Consequently,
dim A(V) = 2"™.
Exercise 4.3.3
Let
1 ..
o=(i & D)
21 19 e Zp
be a permutation in S, and vi, ..., v, be elements in a vector space V. Show that
Viy ANVip Ao Aoy, = sgn(a)(m A Vg /\---/\vp).
Solution.

Vi, ANV Ao ANy, = Ap(vy, @i, @ Quy,)
Ap(Pr-1(v1 @02 ® -+ ® 1p))
= sgn(o A (11 @@ @)
= sgn(o)(vi Ava A Avp)

Exercise 4.3.4

Let t € AP(V'), where p is odd number. Show that

tAt=0.

Solution. We now that, for all t € A?(V) and ' € A%(V),
tAE = (1Pt At

Hence )
tAt= (=1 tAt.

If p =2k + 1 is odd, then p? = 2(2k? + 2k) + 1 is odd, so
tAt=—t ANt

Therefore
tAt=0.
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Exercise 4.3.5

Let V =R? e; = L 0). Show that, if v;1 = ae; + bes and vy = ce; + des, where a, b, ¢ and

0) 2= (1
d are real numbers, then vy A v = (ad — be)(er A e3).

Solution.
(a,b) A (c,d) = (ax + by) A (cx + dy)
=ac(zx Az)+ad(xz ANy)+be(y Az)+bd(y Ay)
=0+ad(zAy)+bc(yAz)+0
=ad(x ANy) —be(y A x)
= (ad — bc)(x A y)

Exercise 4.3.6

Let t € AP(V) and t' € A4(V), where p and ¢ are odd numbers. Show that

tAt =—t' At

Solution. We now that, for all ¢t € AP(V) and ' € A%(V),
tAt = (=1)P At
Since p and ¢ are odd numbers, pg is odd. Hence

tANt=—1TAT.

Exercise 4.3.7

Let v and v’ be vectors in V. Show that

vAv =0 <= v and v are linearly dependent

Solution. If v and v’ are linearly dependent, then v/ = aw for some scalar o € F, so
VAV =vAav=alvAv)=0.

Conversely, if v and v’ are linearly independent and can be extended to a basis, but then v A v’ is a basis
vector and so is non-zero.

Exercise 4.3.8

Let vy, ..., v be vectors in a finite dimensional F-vector space V. Show that,

vi Avg A---Avp =0 <= the vectors vy,...,v; are linearly dependent.
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Solution. Assume that the vectors vy, ..., v are linearly dependent. Without loss of generality, suppose

that :
k—1
=Y e,
i=1
where ¢, ...,cp—1 € F. Then

Vg Avg A AU A Ao = (v Ava A - vg—1) A vy

k—1
= (Ul /\’UQ/\"'/\’Uk_l)/\ZCiUi
1

k—1
:ZCZ‘(’Ul/\’1)2/\"-/\1)1‘/\"‘/\’[)]@71)/\111'
=1 -0
=0.

Conversely, suppose that the vectors vy, ..., v are linearly independent. Then we can extend it to a basis
V1,...,0, of V. This means the elements

Vi, AUy A= Ay, where 1 <4y <idg < - <4 <n
form a basis for A¥(V), and since vy Avg A -+ Av; A--- Ay is an element of this basis,

vy Avg A Avg # 0.

Exercise 4.3.9

Let v1,v9 and vz be vectors in V. Show that

(Ug Avp A ’1)2) + (1)2 VAN WAN 1)1) = 2(1)1 AL WAN ’1)3).

Solution. Clearly
U3/\’U1 /\”UQ = —U1 /\"U3/\’U2 = —(—’Ul /\’1)2/\’03) =1 /\1)2/\?)3,

and
’U2/\’U3/\U1 = —(1)2/\1}1/\113) = —(—’Ul /\’Ug /\U3) = V1 /\’Ug /\1}3.

Then
(’1)3 Avp A UQ) + (’02 VAL AN ’01) = 2(’1)1 A va A ’U3).

Exercise 4.3.10

Let v be a nonzero vector in V and t € A*(V). Show that v At = 0 if and only if ¢ = v A ¢/ for some
t' e AF-L(V).

Solution. Clearly, if t = v At’ for some t' € A*~1(V), then
vAt=vAWAt)=@wAV)At =0At =0.

Conversely, assume that v At = 0. Extend v to a basis vy, ..., v, for V, with v; = v. Write

t:ZCJUJ,
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where the sum runs over all strictly ascending multi-indices 1 < j; < --- < jr < n,and vy = vy, Avj, A - -Avy,.
In the sum

’U/\t:ZCJ’U/\'UJ
J

all the terms o A v/ with j; = 1 vanish, since v = v; . Hence,

O=vAy= ZCJ'U/\UJ.
J1#1

Since (v Av”);, 1 is a subset of a basis for Ag1(V) it is linearly independent, and so all ¢, are 0 if j; # 1.
Thus,

t= ZCJUJ:U/\ E:CijQ/\'--/\vj,c =uAt,
ji=1 ji=1

where

/ — . ... s
U= E CgUj N Ny, .
=1
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Appendix

Permutations

5
Appendix contents
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A.1 What is a permutation?

Definition A.1.1

A permutation of a set S is a function from S to S that is both one-to- one and onto. A permutation
group of a set S is a set of permutations of S that forms a group under function composition.

Although groups of permutations of any nonempty set S of objects exist, we will focus on the case where S
is finite. Furthermore, it is customary, as well as convenient, to take .S to be a set of the form {1,2,3,--- ,n}

for some positive integer n.
For example, we define a permutation o of the set {1,2,3,4} by specifying
c(l)=2, 0(2)=3, o@3)=1, o(4) =4
A more convenient way to express this correspondence is to write it in array form as
o ( 1 2 3 4 ) .
2 3 1 4

Composition of permutations in the set of permutation is a binary operation. As an example, let

/12345 412345
o \2 435 1) M 7=\5 41 2 3)
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Then

To(1) =7(0(1)) =7(2) =4
70(2) =7(0(2)) =7(4) =2
70(3) =7(0(3)) =7(3) =1
To(4) =7(0(4)) =7(5) =3
70(5) =7(0(5)) = 7(1) =5,

that is, 70 = (

=
(NSl V]
— W
[GUINTN
Tt Ot
S—

A.2 Symmetric Group

The symmetric group is one of the most important examples of a finite group, and we will spend quit a bit
of time investigating its properties. It will arise as a special case of the set Sx of bijections from a set X
back to itself.

Before we can proceed, we need some preliminaries on functions. We will need some of these facts later on
when we discuss homomorphisms, so we will work a little more generally than is absolutely necessary right
now.

Now let’s formally define Sx, the set of bijections from X to itself. We will then produced prove that

Sx is a group under composition.
Definition A.2.1

Let X be a set. We define

Sx={f:X—X: f isa bijection}

Note that Sx is closed under composition of functions. In other words, the composition operation on Sx is
associative (Exercise for student).

The composition is not commutative operation. To see this, let for example X = {1,2,3}, and define f
and g by the following diagrams:

/ g
X X X X
» 1 1
— : :

Then

go f(1)=g(f(1) =g(2) =3,
but

fog(1)=[f(g(1) = f(1) =2,

gof#/fog

Thus Sx will provide a new example of a nonabelian group.
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To finish checking that Sx is a group, we need to verify the existence of an identity and inverses. For the
first one, recall that any set X has a special bijection from X to X, namely the identity function Idx:

Id,(z) ==
for all x € X. note for any f € Sx, we have
feoldx(z) = f(ldx(z)) = f(x)
and
Idy o f(z) =Idx(f(z)) = f(x)

forallz € X. ThusIdxof = foldx = f forall f € Sx, so Idx serves as an identity for Sx under composition.

Finally, if f € Sx and y € X, there is an x € X such that f(z) = y, since f is onto. But f is also
one-to-one, so this z is unique. Therefore, we can define f~!(y) = z. You can check that

and
f7ho flz) = 1 (f(2))
="y
= Idx(l’)

so f~! really is an inverse for f under composition. Therefore, by making all of these observations, we

establishes the following result:
Proposition A.2.2

Sx forms a group under composition of functions.

If X is an infinite set, then Sx is fairly hard to understand. One would have to either very brave or very
crazy to try to work with it. Things are much more tractable (and interesting) when X is finite.

DISTIAI I Wl Symmetric group

Sp is the set of all permutations of the set {1,2,--- ,n} and it is called the symmetric group of n
letters.

Pictorially, we represent the following bijection o of {1,2,3} defined by
o(l)=2, o(2)=1 and o(3)=3,

with the following diagrams:

1 1 1 2 3
2 S I
3 3 2 1 3
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Proposition A.2.4

The order of the symmetric group S, is n!.

How many permutations of {1,2,---,n} are there? In order to define a permutation f of {1,2,---,n}, we
need to determine where to send each integer. There are n choices for (1), and there are n — 1 choices for
0(2). There are n — 2 choices for ¢(3), and so on, until we reach o(n), for which we only have one choice. In
other words, we have observed that the total number of permutations of {1,2,--- ,n}isn(n—1)(n—2)---2.1

Phrased in the language of group theory, we have shown that |.S,,| = nl.

Example A.2.5

Suppose that o € S3 is given by the picture that we considered earlier, i.e. (1) = 2, 0(2) = 1, and

0(3) = 3. Then we have
(1 2 3
“\2 1 3 )

Of course if we are going to represent permutations in this way, it would help to know how multiplication
works in this notation. As an example, let

(1 23
=\{2 3 1)

Then remember that multiplication is really just composition of functions:

(1
or=1{ 4

— N
w w
~__
N
OIS
wW N
— W
~__
|
7 N
q
—
A -
—
=
Q
—
Pl
&
q
—
\]
—
w
S—
~

On the other hand, what 707

(=]
[N}
w
—
[N}
w

! =1 !

TO = l'

[+2]
—
w

[e<]
[N}
=

In other words, one moves right to left when computing the product of two permutations. First one
needs to find the number below 1 in the rightmost permutation, then find this number in the top row
of the left permutation, and write down the number directly below it. Repeat this process for the rest
of the integers 2 and 3.

In example above, note that o7 # 70, we have actually verified that S3 in nonabelian.

Proposition A.2.6

For n > 3, S,, is nonabelian group.

Proof. Let 0,7 € S3 be defined as in the example, and suppose that n > 3. Define 7,7 € S,, by

[ o) if 1<i<3,
"(Z)_{ i if >3
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Similarly for 7, by

(i) = {

7(1)

7

if 1<i<3,
if 4> 3.

We have ,7 € S,,. Then the computation that we performed in S3 shows that 67 # 77, so 5, is nonabelian.

Definition A.2.7

For any permutation o the unique permutation 7 such that o7 = 70 = (1) is called the inverse of o

and is denoted by o~ !.

SETNI AV WEI Symmetric group Ss

If S = {1, 2,3}, the possible permutations can be written as

-~
-
g

W= R P

N W NN

2 (SO
I Il
/N 7 N

R R

Q
Il
/~

Thus, S3 = {e, p, 0,7, d,&}. The Cayley Table of S5 is given as:

loflefplélo]n]0

ellelpl&lol~y]|d
pllp|&le|r]d o
El€lelp|d]|aly
ollo|d|v|el|&]|p
Yy lold|ple|§
d||d|~v|a|&lple

The following table give the inverse of the permutations in Ss:
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Permutation Inverse | Remarks
e=<} ; g) el=ec| et=(1)
5:<} . g) 01 =5 | 82 =(1)
7=<;) ; i’) =y =Q)
0‘=<; ? g) o l=0|o2=(1)
p=<; ; i’) pt=¢ | pPP=(1)
£:<§ ; 3) £l =p | £=()

=N NN W

W W = W N W
N— N



Example A.2.9

Find the inverse of each of the following permutations:

1.

(12 3 45
7=\ 31 2 5 4 )

9 - 1 2 3 4
T3 41 2 )
Solution
1. The inverse of o can be obtained by reading the array form the bottom row to the top row. For

example, 1 in the bottom row must map to the number above it, which is 2. Similarly for the other

numbers, so
4 _ (1 2 3 5
7 “\231 5 4

[SAQN

. Similar to 1., we read the array form of 7 from bottom-to-top to get the array form of 771 :

(1 2 3 4
T T\3 41 2 )

Notice this is just 7 itself. So 7 is its own inverse.

Theorem A.2.10

For any o € S,, there exists an integer m > 1 for which ¢™ = (1).

Proof. Consider the list of powers:

o,0%,0%,. ...

Since there are only finitely many permutations of any finite set, there must be repetitions within the list.
Assume that ¢® = ¢" for some 0 < r < s. Then

DT Ao I W Orbits

Let o be a permutation on a set X. The equivalence classes in X determined by the equivalence
relation

a~b ifandonlyif b=oc"(a), forall neZ

are the orbits of o.

Example A.2.12

Find the orbits of the permutation
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Solution. To find the orbit containing 1, we apply o repeatedly
g [eg (o2 o g
l1—-3—>6—>1—>3—6---

Since o' would simply reverse the directions of the arrow in the chain, we see that the orbit containing
11is {1,3,6}. We now choose an integer from 1 to 8 not in {1, 3,6}, say 2, and similarly find the orbit
containing 2 is

27,8792 5.

that is {2,8}. Finally, we find the orbit containing 4 is {4,7,5}. Since these three orbits include all
integers from 1 to 8. Hence the complete list of orbits of o is

{1,3,6}, {2,8}, {4,7,5}.

OO

There is another notation commonly used to specify permutations. It is called cycle notation. Cycle
notation has theoretical advantages in that certain important properties of the permutation can be readily
determined when cycle notation is used.

Definition A.2.13 E&ZHE

A permutation o € S, is a cycle if it has at most one orbit containing more that one element. The
length of the cycle is the number of elements in its largest orbit.

Example A.2.14

Let us consider the permutation
(1 2 3 4 5 6
=2 146 5 3 )

This assignment of values could be presented schematically as follows:

Instead, we leave out the arrows and simply write a

c=(12)(346)(5)=(12)(346)=(346)(12).
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Example A.2.15

As a second example, consider

(123 45 6
™\5 316 2 4)

L

In cycle notation, 7 can be written as

T=(2315)(64)=(46)(3152).

Definition A.2.16

An expression of the form (a1, a9, - ,a;,) is called a cycle of length m or an m-cycle.

Example A.2.17

To determine the cycle form of the permutation

/(12345 6 789 10
{5 16 8 4107 29 3

start with the smallest number in the set, in this case it is 1. Since o(1) = 5 we begin the cycle by
writing

(1,5,-+) -
Next, 5 maps to 4, so we continue building the cycle

(1,5,4,++) -

Continuing in this way we construct (1,5,4,8,2,---)---, and since 2 maps back to 1 then we close off

the cycle:
(1,5,4,8,2)---

Next, we pick the smallest number that doesn’t appear in any previously constructed cycle. This is
the number 3 in this case. We now repeat what we just did and construct the cycle involving 3:

(1,5,4,8,2)(3,6,10) - - -

We now pick the smallest number that doesn’t appear in any previously constructed cycle, which is 7,
and construct the cycle to which it belongs. In this case 7 just maps to itself:

(17 5,4,38, 2)(37 6, 10)(7) T
Finally, the only number remaining is 9 and it maps back to itself so the cycle for of o is
(1,5,4,8,2)(3,6,10)(7)(9)

which simplifies to
o=(1,5,4,8,2)(3,6,10)

since our convention is omit 1-cycles. Therefore, o is the product of a 3-cycle and a 5-cycle.
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Definition A.2.18 [SIUjs]elelg

The support of a k-cycle o = (a1, as,...,ax), is the set of entries

Supp(d) = {a'lva'Qa e 7ak} .

In particular the support of a 1-cycle (aq1) is the one-point set {a;}.

DY TiTiate I Wl Disjoint cycles

Two cycles ¢ and 7 in S, are called disjoint if supp(c) N supp(7) = 0.

Proposition A.2.20 RINVEEEKIR-RaTdlS
If 0 =(s1 82 ... Sk—1 sk) be a cycle of length k, then

o7t = (g Sp_1 ... 52 81)

Proof. Exercise for students.

Example A.2.21

e Let 0 = (254 6), then supp(c) = {2,5,4,6} and 07! = (6 4 5 2).
o The cycles (125 6) and (4 3) are disjoint.

o The cycles (1,2,6) and (4,3, 1) are not disjoint.

S Wvel Products of disjoint cycles

Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

Definition A.2.23 [RLEUSseSIdll

A cycle of length 2 is called a transposition.

——
Remark A.2.24.

1. If o is a transposition, then 0~! = o. For example (2 5)~ = (5 2) = (2 5).
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2. Every k-cycle (s1,82,...,8k—1,Sk) can be written as a product transposition:

(s1 S9 S3 cee Sg—1  Sk) = (s1 8g) (s1 Sk—1) -+ (s1 83)(s1 82)-

or
(51 82 o+ Sp—2 Sk—1 Sk) = (Sk Sk—1) (Sk Sk—2) -+ (sk S2)(Sk S1)-

Example A.2.25

Consider the cycle ¢ = (14 2 3) € Sy: @

Then o can be written as : (1423) = (3 2)(3 4)(3 1)
(2314) =

@@@

No permutation in S,, can be expressed both as a product of an even number of transpositions and as
a product of an odd number of transpositions.

Theorem A.2.26

DSl B Wyl Even and odd permutations

A permutation that can be expressed as a product of an even number of transpositions is called an even
permutation. A permutation that can be expressed as a product of an odd number of transpositions
is called an odd permutation.

DI iate . WLl Signature of permutations

The signature of a permutation o is denoted sgn(o) and defined as 1 if o is even, and —1 if o is odd.

That means:
i) = 1 if o is even
& 1 -1 ifoisodd
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——_—
Remark A.2.29.
1. Every transposition is an odd permutation.

2. The identity permutation e = (1) is even, because for example e = (1 2)(1 2).

Example A.2.30

Determine whether the following permutation is odd or even and find their signature?

1.0:(
2.7':(;)

— N
~

3 )
4 )

(=2
w
N—

N =

5

w N
—
SN
[\
INQN
N~—

Solution:
Since
c=(12)(346)=(12)(36)(34),
P N
1 2 3
is a product of 3 transpositions, o is an odd permutation, and hence sgn(c) = —1. For the second

permutation, we have:
7=(1523)(46)=(13)(12)(15)(46).
Yy Ty

So 7 is a product of 4 transpositions. Therefore 7 is even, and hence sgn(7) = 1.

Proposition A.2.31

Let o be a cycle of length k. Then
sgn(o) = (—1)F 1.

Proposition A.2.32

Let 0 and 7 be two permutations in .S,,. Then
sgn(o7) = sgn(o) x sgn(r).

Moreover
sgn(ot) = sgn(o).

and
sgn(or) = sgu(7o).
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Appendix

Graded algebras

Abpendix contents
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B.1 Preliminaries

DA IRl [-algebras (associative algebras)

Given a field, F, a F-algebra (or associative algebra over F) is a F-vector space R, together with a
bilinear operation - : R x R —> R, called multiplication, which makes R into a ring with 1 = 1. This
means that - is associative and that there is a multiplicative identity element, 1, so that 1-r =r-1 =r,
for all » € R.

SETI RN Algebra of linear transformations

The vector space L(V) of all linear transformations 7' : V' — V is an algebra, where in this algebra
the product fg of two linear transformations f,g € £(V) is defined to be their composition; that is,
fg is the linear transformation on V' defined by

(f9)(v) = f(g(v))-

The identity map on V| which sends every v € V' to itself, is the identity element 1 € £(V'), and if V
has dimension greater than 1, then £(V') is a noncommutative algebra.
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SET RN Algebra of square matrices

M5 n(F) is a F-algebra, This is called a matrix algebra over F, where in this algebra the product is
the matrix multiplication, and 1 = I,, the identity matrix.

Example B.1.4

The vector space of polynomial F[z] is a F-algebra, with polynomial multiplication. Thus, if

fla)=> aa’, glz)=> b,
i=1 j=1

then fg is the polynomial
r+s

(f9)(@) = f(z)g(z) = Y _ cra®
k=1

where

C = Z aibj.

i+j=k

DSl =N Homomorphism of associative algebras

Let R and S be two associative algebras over a field F. A linear mapping f from R to S of F-vector
spaces is called homomorphism of associative algebras if f(1g) = 1g. and

flr-r)y=f(r)- f(+') forall =7 €R.

ISR Subalgebra

A nonempty subset A of an associative algebras R over a field F is called subalgebra of R if it is a
vector subspace of R and a-a’ € A for all a,a’ € A.

Example B.1.7

The set

(e RN SIS
[ecRE TS
o O O

€ M3(F) | a,b,c,d € F}

is a subalgebra of M3 (TF).

Proposition B.1.8

The intersection of a family of sublagebras (A;);cs of an algebra R is also a sublagebra of R.
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Proof. We know that, the intersection of a family of subspaces is a subspace. Let a,b € ﬂ A;, then a,b € A;
i€l
for all ¢ € I. Since A; is a subalgebra, we get ab € A; for all i € I. Hence ab € ﬂiel A;. O

DI ate =M Subalgebra generated by a set

Suppose that S is a nonempty subset of an algebra R. The subalgebra generated by the set S is
denoted by Alg(S) and is defined to be the smallest subalgebra of R that contains the set S. In terms
of S alone,

Alg(S) =span{si - - sm | m €N, $1,...,8m € S}

Example B.1.10

Let V be a vector space over a filed F, and {v1,...,v,} a basis for V. Then
S={1}yu{v,...,vn}
S is a set of generators for the tensor algebra T'(V):

T(V)=Alg{1} U{v1,...,vn}).

Example B.1.11

Flz] = Alg({1, z}).
and

F[I’ y] = Alg<{17 T, y})

More general, we have
Flzy,...,z,] = Alg({1,21,...,2,}).

Definition B.1.12 [t
A subalgebra a of R is called an ideal of R if, for all @ € a, r € R, we have

r-a€aand a-r€a

Example B.1.13
The set A= {P € F[z] | P(0) = 0} is an ideal of F|z].

Proposition B.1.14

The intersection of a family of ideals (a;);c; of an algebra R is also an ideal.
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Proof. From Proposition B.1.8, ﬂ a; is a subalgebra of R. Let a € ﬂ a;and r € R,soa € q; forall i € 1.
icl el
Since a; is ideal, we obtain ra € a; and ar € a; for all i € I. Therefore ra and ar are in m a;. O
iel

DIl Factor algebra (or quotient algebra)

For any ideal a of R, we can define an equivalence relation on R by declaring x to be equivalent to y
if and only if x — y € a. We denote the set of equivalence classes of elements of R by

R/a={zZ, | € R}
and the equivalence class (or coset) of every element = € R is indicated by T; thus,
T={yeR|y—z€a}=z+a.
Consider the factor space R/a defined by
R/fa={f=r+a | r€R}
This set is a F-vector space with the following addition and scalar multiplication:
Ti+Ta=r1+72

and
oF) =ar

In addition, the following multiplication

:R/a x R/a R/a

(H,E) 71" T2.

is well defined (independent of the choice of representative for (71 and 732) and bilinear. Hence R/a is
an associative algebra, and it’s called the factor algebra of R by a.

B.2 Graded vector spaces

DIl Direct product / Direct sum of vector spaces

oo
Let (%) be infinitely collection of F-vector spaces.
i=0

oo
e A direct product H V; is the set of all sequences (vy,v9, ...) where each v; € V; with usual pointwise
i=0
addition
(vo,v1,v2,...) + (wo, w1, w2,...) = (vo + wo,v1 + w1, V2 + wa,...),

and scalar multiplication
)\(’1)0,’1)1,1)2, o0 ) = ()\1)0, )\’Ul, )\’UQ, 000 )
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oo
e The direct sum @ V; is the set of all sequences (vp, , v1,v2,...) where each v; € V; such that
i=0

{i|v; #0} is finite
with usual pointwise addition and scalar multiplication.

If we identify

o0
v; €V 0,...,0,0:,0,...) e PV
1=0

T

ith term
oo
then V; can be considered as a subset of @ V.
=0
o0
If v = (vo,v1,v2,...) € @%, there exists an integer iy such that v; = 0 for all ¢ > i5. Thus we can
=1

write the element v as

i
v = E V;.
=0

DSl o2 Graded vector space

e The direct sum presented in the previous definition @ V; is called a graded vector space.
i=0

e Every element in v; € V; is called homogeneous element of degree 7.

[e%s) i0
e Moreover, if w € @ V; such that w = Zwi, where w; € V;, then w; is called the homogeneous
i=0 i=0
component of w of degree 7.

DSl Mol Graded associative algebra

o0

If a graded vector space R = @ R; is an associative algebra such that for all z; € R; and z; € R;, we
i=0

have z;x; € R;1;, then R is called a graded associative algebra.

Example B.2.4

The tensor algebra T'(V') = @ TP(V) is a graded associative algebra.
p=0

oo
Flz] = @]Fx” =F@® Fz @ F2?® Fz3@--- is a graded associative algebra, where Fz? = span(z?).
p=0

C. BEDDANI @




C. BEDDANI




Bibliography

[1] Basic Algebra. A.long with a Companion Volume Advanced Algebra. Digital Second Edition (2016).

[2] Basic Algebra. Anthony W. Knapp. Along with a Companion Volume Advanced Algebra. Digital
Second Edition, (2016).

[3] Multilinear algebra D. G. Northcott. Cambridge University press (2008).
[4] Advanced Linear Algebra, Steven Roman, Graduate Texts in Mathematics, Springer (2007).
[56] Linear Algebra . Kenneth Hoffman. Prentice-HaLL, INc., Englewood Cliffs, New Jersey (1971).

[6] Tensor Spaces and Exterior Algebra. American Mathematical Society (1992).

C. BEDDANI




	 1 Tensor products (Part 1) 
	 1.1 Linear and bilinear maps
	 1.2 Linearization of bilinear mappings
	 1.3 Tensor products of two vector spaces
	 1.4 Tensor products of more than two vector spaces
	 1.5 Tensor products of linear mappings
	 1.6 Tensor product of matrices: AB
	 1.7 Exercises set

	 2 Tensor products (Part 2) 
	 2.1 Modules over a ring
	 2.2 Tensor product of modules
	 2.3 Exercises set

	 3 Tensors and Tensor Algebras
	 3.1 Tensor spaces
	 3.2 Properties of tensor spaces
	 3.3 Symmetric tensors and alternating tensors
	 3.4 Tensor algebras and their properties
	 3.5 Exercise set

	 4 Symmetric and exterior algebras
	 4.1 Symmetric algebra
	 4.2 Exterior algebras
	 4.3 Exercise set

	A Permutations
	A.1 What is a permutation?
	A.2 Symmetric Group

	B Graded algebras
	B.1 Preliminaries
	B.2 Graded vector spaces


