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Introduction

There are several ways to construct new vector spaces from a family of vector spaces over the same field.
Two of the most important of these constructions are the direct sum and the vector space of all linear trans-
formations.

This course introduces a basic concept which has a major importance in many areas of sciences such as
applied mathematics, physics and engineering, called tensor product, that combines two vector spaces V and
W into a new vector space V ⊗W .
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Chapter

1 Tensor products (Part 1)

Chapter contents

1.1 Linear and bilinear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Linearization of bilinear mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Tensor products of two vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Tensor products of more than two vector spaces . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Tensor products of linear mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Tensor product of matrices: A⊗B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7 Exercises set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

In this chapter, we will mainly be concerned with finite dimensional vector spaces over a field F of character-
istic zero. We will give the definition of the tensor product of vector spaces (resp. tensor product of linear
mappings). Also various properties of the tensor product are explained in this chapter.
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1.1 Linear and bilinear maps

Definition 1.1.1 Linear Transformation (Linear mapping)

Let V , W be two vector spaces over the same field F. A function f : V GA W is called a linear
transformation from V to W if the following hold for all vectors u, v in V and for all scalars α ∈ F.

(1) f(u+ v) = f(u) + f(v) (additivity),

(2) f(αu) = αf(u) (homogeneity).

Note 1.1.2
The set of all F-linear transformation f : V GAW is a vectors space. If f , g are two linear maps and
α ∈ F, the sum and scalar multiplication are defined by the following formulas.

(f + g)(v) = f(v) + g(v),

and
(αf)(v) = αf(v).

We denote the set of all such linear transformations, from V to W , by L(V,W ) or Hom(V,W ).

Definition 1.1.3 Linear Functional (or 1-form)

Let V be a vector space. Define
V ∗ = L(V,F).

V ∗ is called the dual space of V .

The elements of V ∗ are called linear functional. So a linear functional ϕ on V is a linear transfor-
mation ϕ : V GA F.

Lemma 1.1.4 Dual basis

Suppose that B = {v1, . . . , vn} is a basis for the finite dimensional vector space V . Define fi ∈ V ∗ by

fi(vj) = δij =
{

1 if i = j

0 if i ̸= j
.

Then
B∗ = {f1, f2, . . . , fn}

is a basis for V ∗, and it’s called the dual basis of B.

Proof. Let α1, . . . , αn be scalars such that
n∑
i=1

αifi = 0.

Then for all r ∈ {1, ..., n}, we have
n∑
i=1

αifi(vr) = 0.
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So
n∑
i=1

αiδij = 0.

So αr = 0. Therefore the set {f1, . . . , fn} is linearly independent. Clearly for all f ∈ V ∗, we have

h =
n∑
i=1

h(vi)fi.

Corollary 1.1.5

If V is a finite dimensional vector space, then dimV ∗ = dimV.

Definition 1.1.6 Bilinear maps

Let U , V and W be F-vectors spaces. A mapping f : V ×W GA U is called a bilinear mapping, if it
is linear in each variable. That means : for all u, u1, u2 ∈ U , v, v1, v2 ∈ V and a ∈ F, we have

f(au1 + u2, v) = af(u1, v) + f(u2, v),
f(u, av1 + v2) = af(u, v1) + f(u, v2).

Note 1.1.7

The set of all F-bilinear map f : U × V GA W is a vectors space. If f , g ∈ L(V,W ;U) are bilinear
maps and a ∈ F, the sum and scalar multiplication are defined by the following formulas.

(f + g)(v, w) = f(v, w) + g(v, w),

and
(af)(v, w) = af(v, w).

We denote the set of all F-bilinear maps from U × V into W by Bil(U × V,W ) or L(U, V ;W ).

Lemma 1.1.8 A basis L(V,W ;F)

Let V and W be two F vector spaces. Take bases {v1, . . . , vn} for V and {w1, . . . , wm} for W . Let
{f1, . . . , fn} for V and {g1, . . . , gm} be their dual bases.

For all 1 ≤ i ≤ n and 1 ≤ j ≤ m, we define the mapping hij : V ×W GA F by

hij(v, w) = fi(v)gj(w).

Then, the set
{hij | 1 ≤ s ≤ n and 1 ≤ r ≤ m}

form a basis for L(V,W ;F).
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Proof. Clearly hij is bilinear, and for all 1 ≤ s ≤ n and 1 ≤ r ≤ m,

hij(vr, ws) =
{

1 if i = r and j = s

0 otherwise

The set {hij | 1 ≤ i ≤ n is linearly independent and 1 ≤ j ≤ m} form a basis for L(V,W ;F), and every ele-
ment h ∈ L(V,W ;F), can be written as

h =
∑
i,j

h(vi, wj)hij .

Corollary 1.1.9

If dimV = n and dimW = m, then dim L(V,W ;F) = nm.

1.2 Linearization of bilinear mappings

Definition 1.2.1 Conditions (T1) and (T2)

Let V and W be finite dimensional F-vector spaces. We say that V and W satisfies the condition (T1)
and (T2), if there exist a F-vector space U0 and a bilinear mapping σ ∈ L(V,W ;U0) for which such
that

(T1) U0 is generated by the image σ(V ×W ) of σ.

(T2) For any B ∈ L(V,W ;U), there exists a F-linear mapping F : Uo GA U such that B = F ◦ σ:

V ×W U0

U

σ

B
F

Definition 1.2.2 Universality Property: condition (T)

Let V and W be finite dimensional F-vector spaces. We say that V and W satisfies the condition
(T), if there exist a F-vector space U0 and a bilinear mapping σ ∈ L(V,W ;U0) such that for any
B ∈ L(V,W ;U), there exists one and only F-linear mapping F : Uo GA U for witch B = F ◦ σ:

V ×W U0

U

σ

B
F

Remark 1.2.3. Let V be a vector space and S be a subset of V . The intersection of all subspaces of
V containing S is also a subspace containing S and is the smallest among them. This space is called
the subspace generated (or spanned) by S and is denoted by span(S). It is easy to see that span(S) is
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the set of all finite linear combination of elements of S. When span(S) = V , V is said to be generated
by S and S is called a set of generators (or a generating set) of V ,

Lemma 1.2.4

( T1 ∧ T1 ) ⇐⇒ (T)

Proof. Suppose that (U0, σ) satisfies (T1 and (T2). The existence of F follows from (T2).
Suppose that F and F ′ are linear mappings U0 GA U such that

B = F ◦ σ = F ′ ◦ σ.

Since F and F ′ are linear mappings that coincide on the generating set (V × W ) of U0, we have F = F ′,
which shows that (U0, σ) satisfies (T).

Conversely, suppose that (U0, σ) satisfies (T). Clearly we have (T2). Let U ′
0 be the subspace of U0 generated

by σ(V × W ). Since the image of is contained in U ′
0, σ can be considered as a mapping of V × W into U ′

0,
which we denote by σ1.

Applying (T2) to σ1, we have a linear mapping F such that σ1 = F ◦ σ

V ×W U0

U ′
0

σ

σ1
F

Let i be the inclusion mapping of U ′
0 into U . Then

σ = i ◦ σ1

We have
V ×W U0

U ′
0

U0

σ

σ1

σ

F

Id

i

Therefore
σ = (i ◦ F ) ◦ σ (1.1)

Clearly
σ = Id ◦ σ (1.2)

By the uniqueness of the linear mapping F , we get from (1.1) and (1.2)

i ◦ F = Id

Hence i is surjective, and so
U ′

0 = U0.
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Theorem 1.2.5 Linearization of bilinear mappings

Let V and W be finite dimensional F-vector spaces.

(1) There exist a F-vector space U0 and a bilinear mapping σ : V × W GA U0 which satisfy the
condition (T) .

(2) The pair (U0, σ) is unique in the following sense: If the pairs (U0, σ) and (U ′
0, σ

′) consisting of a
F-vector space and a F-bilinear mapping satisfy condition (T), then there exists a unique linear
isomorphism F0 : U0 GA U ′

0 such that σ′ = F ◦ σ:

V ×W

U0 U ′
0

σ σ′

F0

Proof. (1) Assume that dimV = n and dimW = m. By using Lemma 1.2.4, we will prove that any vector
space U0 of dimension nm satisfies the conditions (TI) and (T2) for an appropriate σ. Take

BV = {v1, . . . , vn} a basis for V

BW = {w1, . . . , wm} a basis for W

S = {uij | 1 ≤ i ≤ n and 1 ≤ j ≤ m} a basis for U0.

Define the bilinear mapping σ : V ×W GA U0 as follows:

σ(vi, wj) = uij

That means for all
v =

n∑
i=1

αivi and w =
m∑
j=1

βjwj ,

we have
σ(v, w) =

∑
i,j

αiβjuij

By construction of σ, it’s clear that σ ∈ L(V,W ;U0) and span(σ(V ×W )) = U0. So the condition (T1)
is satisfied. It remain to show that the condition (T2) is also satisfied.

Let B : V ×W GA U be a bilinear mapping. Define the function F : U0 GA U by

F (u) = F
( ∑
i,j

γijuij

)
=

∑
i,j

γijB(vi, wj).

We have for all i, j
F ◦ σ(vi, wj) = F (uij) = B(vi, wj).

Hence
B = F ◦ σ.

Therefore (U0, σ) has the condition (T2).

(2) Assume that (U0, σ) and (U ′
0, σ

′) have the property mentioned in (1).

V ×W U0

U ′
0

σ

σ′ F0
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Since σ′ is a bilinear mapping: V × W GA U ′
0, applying (T) to (U0, σ), we have a linear mapping

F0 : U0 GA U ′
0 such that

F0 ◦ σ = σ′ (1.3)
Similarly, there is a linear mapping G0 : U ′

0 GA U0 such that

G0 ◦ σ′ = σ (1.4)

V ×W U0

U ′
0

σ

σ′ G0

Hence, we have the following commutative diagram:

V ×W

U0 U ′
0

σ σ′

F0

G0

From (1.3) and (1.5), we get
σ = G0 ◦ F0 ◦ σ (1.5)

Clearly,
σ = IdU0 ◦ σ. (1.6)

By the uniqueness in the condition (T) we obtain from (1.5) and (1.6),

G0 ◦ F0 = IdU0

Similarly, we can show that
F0 ◦G0 = IdU ′

0

Therefore F0 is an isomorphism.

Corollary 1.2.6

Let BV = {v1, . . . , vn} and BW = {w1, . . . , wb} be respectively basis for V and W .

Let {f1, . . . , fn} and {g1, . . . , gm} are respectively the dual basis of BV and BW

Consider U0 = L(V,W ;F).

For all 1 ≤ i ≤ n, and 1 ≤ j ≤ m, let hij : V ×W GA F be the bilinear form given by

hij(v, w) = fi(v)gj(w)

The set
{hij | 1 ≤ i ≤ i, 1 ≤ j ≤ m}

form a basis for U0.

Then U0 = L(V,W ;F) is a vector space of dimension nm satisfies the conditions (TI) and (T2), where
the bilinear mapping σ : V ×W GA L(V,W ;F) is given by

σ(ui, vj) = hij .
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1.3 Tensor products of two vector spaces
We are now ready to define the tensor product of F-vector spaces.

Definition 1.3.1 Tensor product

Let V and W be F-vector spaces. The pair (U0, σ) consisting of a F-vector space U0 and a bilinear
mapping σ : V ×W GA U0, satisfying the property (T), the existence of which is assured by Theorem
1.2.5 is called a tensor product of V and W .
We write

U0 = V ⊗W and σ(u,w) = v ⊗ w.

The mapping σ is called the canonical mapping of a tensor product V ⊗W .

Example 1.3.2

Let n,m ∈ N, V = Fn and W = Fm Then V ⊗ W = Fnm is a tensor product of V and W whose
canonical bilinear mapping σ is given by:

σ :Fn × Fm GA Fnm(
(xi)ni=1, (yj)mj=1

)
7GA (xiyj)1≤i≤n,1≤j≤m.

Remark 1.3.3.

In the following, we sometimes say that a vector space U0 is a tensor V and W . Implicitly
this means that there exists a bilinear mapping σ : V ×W GA U0 satisfying the property (T)).

The property (T) can be restated as follows: a tensor product U0 of V and W is generated by

{u⊗ w | v ∈ V and w ∈ W}

That means, every vector u ∈ V ⊗W can be written as

u =
∑
i,j

γij (vi ⊗ wj)

for some vectors vi ∈ V , wj ∈ W and scalars γij ∈ F.

The uniqueness property (2) of Theorem 1.2.5 can be restated as follows: if U0 and U ′
0 are tensor

products of V and W , then there exists a unique linear isomorphism F : U0 GA U ′
0 such that F

associates v ⊗ w in U0 to v ⊗ w in U ′
0 for all v ∈ V and w ∈ W .

Remark 1.3.4.

In the proof of existence in Theorem 1.2.5, we used bases for V and W Therefore, it might
be difficult to understand the meaning of the tensor product.

Thus, we give another construction of a tensor product (U0, σ) free from bases:
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Let V ∗ and W ∗ be the dual spaces of V and W respectively and let U0 be defined by

U0 = L(V ∗,W ∗;F).

For fixed v ∈ V and w ∈ W , the mapping B : V ∗ ×W ∗
GA F defined by

B(v,w)(f, g) = f(v)g(w)

is bilinear (cf. Exercise 1.7.6). So it is an element of U0.

Consider the following map: σ : V ×W GA U0 defined by

σ(v, w) = B(v,w)

which is also bilinear (cf. Exercise 1.7.6)..

Then we can show that (U0, σ) satisfies conditions (T1) and (T2). Take

BV = {v1, . . . , vn} a basis for V

BW = {w1, . . . , wm} a basis for W

and let B∗
V = {f1, . . . , fn}, B∗

W = {g1, . . . , gm} be receptively the dual basis of V ∗ and W ∗. We
construct a basis

S = {urs | 1 ≤ r ≤ n and 1 ≤ s ≤ m}

for U0, where

urs(f, g) =
{

1 if i = r and j = s

0 otherwise

Clearly
urs = B(vr,ws)

from which we obtain condition (T1).

For every B ∈ L(V,W ;U), define a linear mapping F : U0 GA U by

F
( ∑
r,s

γrsurs

)
=

∑
r,s

γrsB(vr, ws).

Hence B = F ◦ σ.
V ×W U0

U

σ

B
F

which implies condition (T2).

Using the bilinearity of the canonical mapping σ, we can prove the following properties :

Proposition 1.3.5 Bilinearity of ⊗

For a, a, b ∈ F, v, v1, v2 ∈ V and w,w1, w2 ∈ W , we have

(i) (av1 + bv2) ⊗ w = a(v1 ⊗ w) + b(v2 ⊗ w).

(ii) v ⊗ (aw1 + bw2) = a(v ⊗ w1) + b(v ⊗ w2).
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Proposition 1.3.6 Basis for V ⊗W

Let BV = {v1, . . . , vn} be a basis for V , and BW = {w1, . . . , wm} a basis for W . Then the nm vectors

{vi ⊗ wj | 1 ≤ i ≤ n and 1 ≤ j ≤ m}

form a basis for V ⊗W . In particular,

dim(V ⊗W ) = dimV × dimW.

Corollary 1.3.7

Let v ∈ V and w ∈ W be nonzero vectors. Then v ⊗ w ̸= 0.

Proof. If we take in the previous proposition v1 = v and w1 = w , we get v ⊗ w is a vector in the basis of
V ⊗W . Therefore v ⊗ w ̸= 0.

Proposition 1.3.8

Every vector u ∈ V ⊗W can be written as

u =
∑
i,j

(ei ⊗ fj)

for some vectors ei ∈ V , fj ∈ W .

Proof. Let u ∈ V ⊗W . Since

{vi ⊗ wj | 1 ≤ i ≤ n and 1 ≤ j ≤ m}

form a basis of V ⊗W , the vector u can be written as

u =
∑
i,j

γij(ui ⊗ wj) =
∑
i

(
ui ⊗

∑
j

γijwj

)
=

∑
j

( ∑
i

γijui ⊗ wj

)
.

Proposition 1.3.9

Let S1 = {v1, . . . , vr} ⊆ V and S2 = {w1, . . . , wr} ⊆ W and

u =
r∑
i=1

vi ⊗ wi.

Then

(1) If the S1 is linearly independent, the vectors w1, . . . , wr are uniquely determined. Namely, if
r∑
i=1

vi ⊗ wi =
r∑
i=1

vi ⊗ w′
i
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then w′
i = wi for all i.

(2) If the S2 is linearly independent, the vectors v1, . . . , vr are uniquely determined. Namely, if
r∑
i=1

vi ⊗ wi =
r∑
i=1

v′
i ⊗ wi,

then v′
i = v′

i for all i.

Proof. Assume that dimV = n and dimW = m.

(1) If S1 = {v1, . . . , vr} ⊆ V is linearly independent, then we can choose a basis for V of the form B1 =
{v1, . . . , vr, vr+1, . . . , vn}. Let B2 = {f1, . . . , fm} a basis for W . Suppose that

r∑
i=1

vi ⊗ wi =
r∑
i=1

vi ⊗ w′
i. (1.7)

Then
r∑
i=1

vi ⊗ (wi − w′
i) = 0. (1.8)

Since wi − w′
i is a vector in W , it’s can be expressed as linear combination in its basis:

wi − w′
i =

m∑
j=1

αijfj

Hence form (1.8), we get
r∑
i=1

vi ⊗
( m∑
j=1

αijfj

)
= 0.

So
r∑
i=1

m∑
j=1

αij (vi ⊗ fj) = 0.

Since {vi ⊗ fj}ij is a basis for V ⊗W , this implies αij = 0 for all i, j. Then by (1.7), we obtain wi = w′
i

for all i.

(2) Use the same ideas as in the first item.

Proposition 1.3.10 Bilinear GA Linear

As F-vector spaces, we have the following isomorphic

L(V,W ;U) ∼= L(V ⊗W,U).

Proof. Consider the following mapping: ψ : L(V ⊗W,U) GA L(V,W ;U) defined by ψ(F ) = F ◦ σ:

V ×W V ⊗W

U

σ

ψ(F )
F
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where σ is the canonical mapping of a tensor product V ⊗W .

First, we show that F is linear. Clearly for all F1, F2 ∈ L(V ⊗W,U) and α ∈ F,

ψ(F1 + αF2) = σ ◦ (F1 + αF2) = σ ◦ F1 + α(σ ◦ F2).

Then
ψ(F1 + αF2) = ψ(F1) + αψ(F2)

Using the property (T), for all B ∈ L(V,W ;U), there exists a unique F ∈ L(V ⊗W,U) such that

B = F ◦ σ = ψ(F ),

V ×W V ⊗W

U

σ

B
F

Hence, the property (T) confirm that ψ is bijective, hence we have the following isomorphic of F-vector
spaces:

L(V,W ;U) ∼= L(V ⊗W,U).

Corollary 1.3.11 Dual space of the tensor product

We have the following isomorphic :

(V ⊗W )∗ ∼= (V ∗ ⊗W ∗).

The element F of (V ⊗W )∗ corresponding to f ⊗ g ∈ V ∗ ⊗W ∗ is given by

F (v ⊗ w) = f(v)g(w).

Proof. Using the Proposition 1.3.10, we obtain

L(V ⊗W,F) ∼= L(V,W ;F)

Let
V ∗ ⊗W ∗ L(V,W ;F) (V ⊗W )∗ψ t

ψ(fi ⊗ gj) = hij

where hij(v, w) = fi(v) gj(w), and
t(hij) = Fij

where Fij(vi ⊗ wj) = fi(v) gj(w). Since ψ and t are isomorphisms, their composition F = t ◦ ψ is also an
isomorphism,and hence

V ∗ ⊗W ∗ ∼= (V ⊗W )∗.

Clearly, for all f ⊗ g ∈ V ∗ ⊗W ∗, we have

F (f ⊗ g)(v ⊗ w) = f(v) g(w).
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Proposition 1.3.12 Tensor with F

Let V be a vector space over a field F. By the correspondence (α ⊗ v DGA αv ), where α ∈ F and
v ∈ V ,

F ⊗ V ∼= V.

Proof. Let σ : F × V GA V the bilinear map defined by

σ(α× v) = αv.

Using Theorem 1.2.5 (2), to prove that F ⊗ V ∼= V, we will show that the pair (V, σ) satisfies the property
(T1) and (T2). Since σ(F×V ) = V , the pair (V, σ) satisfies (T1) . Let BL(F, V ;F) be a bilinear mapping.
Define the mapping F : V GA U by

F (v) = B(1, v).
Then B is linear and for all (α, v) ∈ V , we have

(F ◦ σ)(α, v) = F (αv) = B(1, (αv) = αB(1, v) = B(α, v).

That means F ◦ σ = B
F × V V

U

σ

B
F

Hence the pair (V, σ) satisfies the property (T2).

Consequently
F ⊗ V ∼= V.

By Theorem 1.2.5 (2), the isomorphism F0 : F ⊗ V GA V is given by

F0(α⊗ v) = αv.

Proposition 1.3.13 Commutativity of the tensor product

By the correspondence (v ⊗ w DGA w ⊗ v ),

V ⊗W ∼= W ⊗ V.

Proof. By the property (T) for the tensor product V ⊗W , the bilinear B : V ×W GA W ⊗ V defined by
B(v, w) = w ⊗ v, induces a linear mapping F : V ⊗W GAW ⊗ V such that Therefore

F (v ⊗ w) = w ⊗ v.

Similarly, we can find a linear mapping G : W ⊗ V GA V ⊗W such that

G(w ⊗ v) = v ⊗ w.

V ×W

V ⊗W W ⊗ V

σ B

F

G
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Clearly
F ◦G = Id and G ◦ F = Id.

Then F is an isomorphism, and so
V ⊗W ∼= W ⊗ V.

1.4 Tensor products of more than two vector spaces

Definition 1.4.1 Multilinear mapping

Let V1, V2, . . . , Vn and U be F-vector spaces. A mapping f : V1 × V2 × · · ·Vn GA U is called a
multilinear mapping (or n-multilinear mapping) if it is linear in each variable.

More precisely:

For for each k = 1, 2, . . . , n, and for all (v1, . . . , vn) ∈ V1 × V2 × · · · × · · · × Vn, v
′
k ∈ Vk and α, β ∈ F,

f(v1, . . . , vi−1, αvk + βv′
k, vk+1, . . . , vn ) =αf(v1, . . . , vk−1, vk, vk+1, . . . , vn )

+ βf(v1, . . . , vk−1, v
′
k, vk+1, . . . , vn ).

Definition 1.4.2 Multilinear form

In the previous definition, when U = F, the function f is called multilinear form (or n-multilinear
form)

Example 1.4.3

Let for all i = 1, ..., n, fi ∈ V ∗, and define f : V1 × V2 × · · ·Vn GA F by

f(v1, . . . , vn) = f1(v1)f2(v2) · · · fn(vn).

Then f is n-multilinear form.

Note 1.4.4 L(V1, . . . , Vn;U)

The set of all multilinear mappings of V1 × V2 × · · ·Vn into U is a F-vector space and it is is denoted
by L(V1, . . . , Vn;U).

Definition 1.4.5 Conditions (T1) and (T2)

Let V1, . . . , Vn be finite dimensional F-vector spaces.

We say that V1, . . . , Vn satisfies the condition (T1) and (T2), if there exist a F-vector space U0 and
an n-multilinear mapping σ ∈ L(V1, . . . , Vn;U0) for which

(T1) U0 is generated by the image σ(V1 × V2 × · · · × Vn) of σ.
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(T2) For any B ∈ L(V1, . . . , Vn;U0), there exists a F-linear mapping F : Uo GA U such that B = F ◦σ:

V1 × V2 × · · · × Vn U0

U

σ

B
F

Theorem 1.4.6 Linearization of n-multilinear mappings

Let V1, . . . , Vn be finite dimensional F-vector spaces. There exist a F-vector space U0 and a multilinear
mapping σ : V1 × V2 × . . . Vn GA U0 which satisfy the the conditions (T1) and (T2).

Definition 1.4.7 Tensor product of more than two vector spaces

LetV1, . . . , Vn be F-vector spaces. The pair (U0, σ) consisting of a F-vector space U0 and a multilinear
mapping σ : V1 × V2 × . . . Vn GA U0, satisfying the conditions (T1) and (T2), the existence of which
is assured by Theorem 1.4.6 is called a tensor product of V1, . . . , Vn.

We write
U0 = V1 ⊗ V2 ⊗ . . . Vn and σ(v1, . . . , vn) = v1 ⊗ v2 ⊗ . . . vn

The mapping σ is called the canonical mapping of a tensor product V1 ⊗ V2 ⊗ . . .⊗ Vn.

Proposition 1.4.8

The correspondence
v1 ⊗ v2 ⊗ v3 DGA (v1 ⊗ v2) ⊗ v3

gives an isomorphism
V1 ⊗ V2 ⊗ V3. ∼= (V1 ⊗ V2) ⊗ V3.

Proof. Consider the multilinear mapping B : V1 × V2 × V3 GA (V1 ⊗ V2) ⊗ V3 given by

(v1, v2, v3) 7GA (v1 ⊗ v2) ⊗ v3.

Apply (T2) for the tensor product V1 ⊗V2 ⊗V3, there is a linear mapping F for which the following diagram
is commutative:

V1 × V2 × V3 V1 ⊗ V2 ⊗ V3

(V1 ⊗ V2) ⊗ V3

σ

B
F

Then
F (v1 ⊗ v2 ⊗ v3) = (v1 ⊗ v2) ⊗ v3.

Fix v ∈ V3, and consider the bilinear mapping Bv : V1 × V2 GA V1 ⊗ V2 ⊗ V3 given by

Bv(v1, v2) = v1 ⊗ v2 ⊗ v.
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Apply (T2) for the tensor product V1 ⊗ V2, there is a linear mapping Fv for which the following diagram is
commutative:

V1 × V2 V1 ⊗ V2

V1 ⊗ V2 ⊗ V3

σ

Bv
Fv

Then
Fv(v1 ⊗ v2) = v1 ⊗ v2 ⊗ v.

For v.v′ ∈ V3 and α ∈ F, we have

Fv+v′ = Fv + Fv′ and Fαv = αFv

Using these facts, we define a bilinear mapping ω : (V1 ⊗ V2) × V3 GA V1 ⊗ V2 ⊗ V3 by

ω(x, v) = Fv(x)

Apply (T2) for the tensor product (V1 ⊗V2)⊗V3, there is a linear mapping G for which the following diagram
is commutative:

(V1 ⊗ V2) × V3 (V1 ⊗ V2) ⊗ V3

V1 ⊗ V2 ⊗ V3

σ

ω G

Then
G((v1 ⊗ v2) ⊗ v3) = ω(v1 ⊗ v2, v3) = Fv3(v1 ⊗ v2) = v1 ⊗ v2 ⊗ v3.

Clearly
G ◦ F = Id and F ◦G = Id.

Hence F is an isomorphism of vector spaces. Consequently

V1 ⊗ V2 ⊗ V3. ∼= (V1 ⊗ V2) ⊗ V3.

Proposition 1.4.9

The correspondence
v1 ⊗ v2 ⊗ v3 DGA v1 ⊗ (v2 ⊗ v3)

gives an isomorphism
V1 ⊗ V2 ⊗ V3. ∼= V1 ⊗ (V2 ⊗ V3).

Corollary 1.4.10 Associativity of the tensor product

The correspondence
(v1 ⊗ v2) ⊗ v3 DGA v1 ⊗ (v2 ⊗ v3)

gives an isomorphism
(V1 ⊗ V2) ⊗ V3. ∼= V1 ⊗ (V2 ⊗ V3).
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Proposition 1.4.11 Multilinearity of ⊗

Let vi, v′
i ∈ Vi, and α, β ∈ F. For any i = 1, . . . , n.

v1 ⊗ · · · ⊗ vi−1 ⊗ (αvi + βv′
i) ⊗ vi+1 ⊗ · · · ⊗ vn =α(v1 ⊗ · · · ⊗ vi−1 ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn )

+ β(v1 ⊗ · · · ⊗ vi−1 ⊗ v′
i ⊗ vi+1 ⊗ · · · ⊗ vn ).

Proposition 1.4.12 Basis for V1 ⊗ · · · ⊗ Vn

Let Bi = {e(i)
1 , . . . , e

(i)
mi} be a basis for Vi, where mi = dimVi. Then the m1m2 · · ·mn vectors

e
(1)
j1

⊗ e
(2)
j2

⊗ · · · ⊗ e
(n)
jn
, 1 ≤ ji ≤ mi and 1 ≤ i ≤ n

Corollary 1.4.13 Dimension of V1 ⊗ · · · ⊗ Vn

dim(V1 ⊗ · · · ⊗ Vn) = dimV1 dimV2 · · · dimVn.

1.5 Tensor products of linear mappings

Theorem 1.5.1 Tensor products of linear mappings : F1 ⊗ F2

Let F1 : V1 GA W1 and F2 : V2 GA W2 be linear mappings. Then there exists a linear mapping
F̃ : V1 ⊗ V2 GAW1 ⊗W2 such that for all v1 ∈ V1 and v2 ∈ V2

F̃ (v1 ⊗ v2) = F1(v1) ⊗ F2(v2).

The mapping F̃ is called the tensor product of F1 and F2 and is denoted by F1 ⊗ F2.

Proof. Let σ1 and σ2 be the canonical mappings of V1 ⊗ V2 and W1 ⊗W2 respectively.

Consider the bilinear mapping F = F1 × F2 : V1 × V2 GAW1 ×W2 given by

(F1 × F2)(v1, v2) = (F1(v1), F2(v2)).

Apply the property (T) for the tensor product V1 ⊗ V2, there is a linear mapping F̃ for which the following
diagram is commutative:

V1 × V2 V1 ⊗ V2

W1 ×W2

W1 ⊗W2

σ1

σ2◦F

F

F̃

σ2
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Hence
F̃ (v1 ⊗ v2) = σ2(F (v1, v2)) = σ2(F1(v1), F2(v2)) = F1(v1) ⊗ F2(v2).

Proposition 1.5.2 Properties of the tensor product of linear mappings

Let V1, V2,W1,W2, U1, U2 be F-vector spaces and α ∈ F. Consider the following six linear mappings of
vector spaces:

V1 W1 U1
F1

G1

H1

V2 W2 U2
F2

G2

H2

Then

(1) F1 ⊗ (F2 +G2) = F1 ⊗ F2 + F1 ⊗G2,

(2) (F1 +G1) ⊗ F2 = F1 ⊗ F2 +G1 ⊗ F2,

(3) (αF1) ⊗ F2 = F1 ⊗ (αF2) = α (F1 ⊗ F2) ,

(4) (H1 ◦ F1) ⊗ (H2 ◦ F2) = (H1 ⊗H2) ◦ (F1 ⊗ F2) .

Proof. The proofs of (1), (2), (3) and (4) are all similar, so we give here just the proof of the first equality.
Since both sides of the equality are linear mappings of the vector space V1 ⊗ V2 into W1 ⊗W2, it is enough
to show that they coincide on the generating set {v1 ⊗ v2 | v1 ∈ V1, v2 ∈ V2} of V1 ⊗ V2. For all v1 ⊗ v2, we
have

(F1 ⊗ (F2 +G2)) (v1 ⊗ v2) = F1 (v1) ⊗ (F2 +G2) (v2)
= F1 (v1) ⊗

(
F2 (v2) +G2 (v2)

)
(definition of the sum of mappings)

= F1 (v1) ⊗ F2 (v2) + F1 (v1) ⊗G2 (v2) (bilinearity of ⊗)
= (F1 ⊗ F2) (v1 ⊗ v2) + (F1 ⊗G2) (v1 ⊗ v2) (tensor product of mappings)
= (F1 ⊗ F2 + F1 ⊗G2) (v1 ⊗ v2) (definition of the sum of mappings).

Remark 1.5.3. The tensor product F1 ⊗ · · · ⊗ Fn of n linear mappings Fi : Vi GAWi, (i = 1, .., n) is
defined similarly.

(F1 ⊗ · · · ⊗ Fn) (v1 ⊗ · · · ⊗ vn) = F1(v1) ⊗ F2(v2) ⊗ · · · ⊗ Fn(vn).

1.6 Tensor product of matrices: A ⊗ B

Let V1, V2,W1, and W2 be F-vector spaces of dimension r, s,m, n respectively. Take

BV1 = {e1, . . . , er}
BV2 = {e′

1, . . . , e
′
s}

BW1 = {f1, . . . , fm}
BW2 = {f ′

1, . . . , f
′
n}



21C. BEDDANI

be bases of V1, V2,W1, and W2 respectively.

Then by Proposition 1.3.6).

BV1⊗V2 = {e1 ⊗ e′
1, e1 ⊗ e′

2, . . . , e1 ⊗ e′
s, e2 ⊗ e′

1, e2 ⊗ e′
2, . . . , e2 ⊗ e′

s, . . . , er ⊗ e′
1},

and
BW1⊗W2 = {f1 ⊗ f ′

1, f1 ⊗ f ′
2, . . . , f1 ⊗ f ′

m, f2 ⊗ f ′
1, f2 ⊗ f ′

2, . . . , f2 ⊗ f ′
m, . . . , fm ⊗ f ′

n},

are bases of V1 ⊗ V2 and W1 ⊗W2 respectively.

Let A = (αij) and B = (βij) be the matrices for F1 and F2 with respect to the bases BV1 ,BV2 ,BW1 and BW2 ,
Namely,

F1 (ei) =
m∑
l=1

αlifl, F2
(
e′
j

)
=

n∑
h=1

βhjf
′
h.

Thus, for all i and j, we have

(F1 ⊗ F2)
(
ei ⊗ e′

j

)
= F1 (ei) ⊗ F2

(
e′
j

)
=

m∑
l=1

n∑
h=1

αliβhj (fl ⊗ f ′
h) .

The matrix of F1 ⊗ F2 with respect to the bases BV1⊗V2 and BW1⊗W2 is given as follows:

 α11β11 α11β12 · · ·
α11β21 α11β22 · · ·

...
...

 =


α11B α12B · · · α1rB
α21B α22B · · · α2rB

...
...

αm1B αm2B · · · αmrB

 .

Definition 1.6.1 Tensor product of matrices (Kronecker product)

Let A = (αij) and B = (βij) be matrices. The matrix
α11B α12B · · · α1nB
α21B α22B · · · α2nB

...
...

αm1B αm2B · · · αmnB


is called the tensor product (or Kronecker product) of A and B. It is denoted by A ⊗ B. If A is an
m× n matrix and B is an m′ × n′ matrix, A⊗B is an mm′ × nn′ matrix.

Example 1.6.2

(
1 2
3 4

)
⊗

(
0 5
6 7

)
=

1
(

0 5
6 7

)
2

(
0 5
6 7

)
3

(
0 5
6 7

)
4

(
0 5
6 7

)
 =


0 5 0 10
6 7 12 14
0 15 0 20
18 21 24 28

 .

According to this definition, the matrix of F1 ⊗ F2 with respect to the bases above is the tensor product
of the matrices of F1 and F2.
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Proposition 1.6.3 Properties of the tensor product of matrices

Let Ai be m × n matrices, Bi be m′ × n′ matrices; let C1 be an n × l matrix and D1 be an n′ × l′

matrix. Then we have

A1 ⊗ (B1 +B2) = A1 ⊗B1 +A1 ⊗B2,

(A1 +A2) ⊗B1 = A1 ⊗B1 +A2 ⊗B1,

(αA1) ⊗B1 = A1 ⊗ (αB1) = α (A1 ⊗B1) (α ∈ k),
(A1 ⊗B1)t = At

1 ⊗Bt
1,

A1C1 ⊗B1D1 = (A1 ⊗B1) (C1 ⊗D1) .

Corollary 1.6.4

If A and B are regular matrices, then A⊗B is regular, and we have

(A⊗B)−1 = A−1 ⊗B−1.

This follows from the last formula in Proposition 1.6.3.

Definition 1.6.5 Unitary matrices

An invertible complex square matrix U is unitary if its conjugate transpose U∗ is also its inverse, that
is:

U∗ = U−1.

Lemma 1.6.6 Schur’s Triangularization Theorem

Given A a square n×n matrix with eigenvalues λ1, . . . , λn counting multiplicities, there exists a unitary
matrix U such that

A = U


λ1 ⋆ · · · ⋆
0 λ2 · · · ⋆
... . . . ...
0 0 · · · λn

U∗

Proposition 1.6.7

Let A be an n × n matrix whose eigenvalues are α1, . . . , αn and let B be an m × m matrix whose
eigenvalues are β1, . . ., βm. Then the eigenvalues of A⊗B are αiβj , (i = 1, . . . , n, j = 1, . . . ,m).

Proof. Using Schur’s Triangularization Theorem. There exist unitary matrices S and T such that

S−1AS =


α1 ⋆ · · · ⋆
0 α2 · · · ⋆
... . . . ...
0 0 · · · αn





23C. BEDDANI

and

T−1BT =


β1 ⋆ · · · ⋆
0 β2 · · · ⋆
... . . . ...
0 0 · · · βm


By Corollary 1.6.4, the matrix S ⊗ T is invertible and

(S ⊗ T )−1(A⊗B)(S ⊗ T ) = (S−1 ⊗ T−1)(A⊗B)(S ⊗ T )
= (S−1AS) ⊗ (T−1BT )

=


α1 ⋆ · · · ⋆
0 α2 · · · ⋆
... . . . ...
0 0 · · · αn

 ⊗


β1 ⋆ · · · ⋆
0 β2 · · · ⋆
... . . . ...
0 0 · · · βm



=


α1β1 ⋆ · · · ⋆

0 α2β2 · · · ⋆
... . . . ...
0 0 · · · αnβm


Hence A⊗B is similar to the following an upper triangular matrix:

α1β1 ⋆ · · · ⋆
0 α1β2 · · · ⋆
... . . . ...
0 0 · · · α1βm

⋆

α2β1 ⋆ · · · ⋆
0 α2β2 · · · ⋆
... . . . ...
0 0 · · · α2βm

. . .

0
αnβ1 ⋆ · · · ⋆

0 αnβ2 · · · ⋆
... . . . ...
0 0 · · · αnβm


Therefore the eigenvalues of A⊗B are αiβj , (i = 1, . . . , n, j = 1, . . . ,m).

1.7 Exercises set

Exercise 1.7.1

Let f be an element of L(V,W ;U). The set

Imf = f(V ×W ) = {f(v, w) | u ∈ U and w ∈ W}

is not necessarily a vector subspace. Give an example of such that Imf is not a vector subspace.
(Compare with the case of linear mappings.)
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Solution. Let f : R[x] ×R[y] GA R[x, y] defined by

f(p, q) = pq.

The image of f contains x and y, but not x+ y.

Exercise 1.7.2

Let U and V be two F-vector spaces and S a subset V . Show that if f, g ∈ L(V,U) such that

f(v) = g(v), for all v ∈ S

then f(v) = g(v) for all v ∈ span(S).

Solution. Assume that
f(v) = g(v), for all v ∈ S.

Let v ∈ span(S), then the vector v can be expressed as :

v =
n∑
i=1

αisi

for some scalars αi and si ∈ S. Since f and g are linear, we have

f(v) = f
( n∑
i=1

αisi
)

=
n∑
i=1

f(αisi) =
n∑
i=1

αif(si),

and

g(v) = g
( n∑
i=1

αisi
)

=
n∑
i=1

g(αisi) =
n∑
i=1

αig(si).

But f(si) = g(si) for all i = 1, . . . , n. Hence

f(v) = g(v) for all v ∈ span(S).

Exercise 1.7.3

Let V be a R-vector space de dimension 2, and B = {v1, v2} a basis for V .

(1) What is the dimension of V ⊗ V ?

(2) Construct a basis S of V ⊗ V from B.

(3) Find the coordinates of (2v1 − 3v2) ⊗ (4v1 − v2) relative to the basis S.

(4) Show that the tensor X = 11v1 ⊗ v1 + 8v1 ⊗ v2 + 3v2 ⊗ v2 cannot be written as tensor product of
two vectors in V .

Solution.

(1) dimV ⊗ V = 4.

(2) S = {v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2} .
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(3) We have (2v1 − 3v2) ⊗ (4v1 − v2) = 8v1 ⊗ v1 − 2v1 ⊗ v2 − 12v2 ⊗ v1 + 3v2 ⊗ v2. So, the coordinates of
(2v1 − 3v2) ⊗ (4v1 − v2) relative to the basis S are (8,−2,−12, 3).

(4) Suppose that X = v⊗ v′ for some vectors v and v′ in V . Let v = αv1 + βv2 and v′ = α′v1 + β′v2. Then

X = αα′v1 ⊗ v1 + αβ′v1 ⊗ v2 + βα′v2 ⊗ v1 + ββ′v2 ⊗ v2

Hence, by comparison 
αα′ = 11
αβ′ = 8
βα′ = 0
ββ′ = 3

Clearly this system has no solution, and hence X can’t be written as v ⊗ v′.

Exercise 1.7.4

Let S1 and S2 be the standard basis of the real vector spaces W = R3 and V = R2 respectively:

S1 = {w1, w2, w3} and S2 = {v1, v2}

where

w1 =

1
0
0

 , w2 =

0
1
0

 , w3 =

0
0
1

 v1 =
(

1
0

)
, v2 =

(
0
1

)
,

(1) Let x be the element of W ⊗ V given by x =

−1
2
3

 ⊗
(

1
−2

)
Express x as a linear combination of the basis elements (wi ⊗ vj).

(2) Let y be the element of W ⊗ V given by

y =

 1
2
1

 ⊗
(

1
2

)
+

 2
1
1

 ⊗
(

2
1

)
−

 3
3
2

 ⊗
(

3
3

)

Is it possible to express y as the form w ⊗ v for some w ∈ W and v ∈ V ?

Solution. (1) We have

x =

−1
2
3

 ⊗
(

1
−2

)
= (−w1 + 2w2 + 3w3) ⊗ (v1 − 2v2)
= −w1 ⊗ v1 + 2w1 ⊗ v2 + 2w2 ⊗ v1 − 4w2 ⊗ v2 + 3w3 ⊗ v1 − 6w3 ⊗ v2

(2) Let y be the element of V ⊗W given by y =

 1
2
1

 ⊗
(

1
2

)
+

 2
1
1

 ⊗
(

2
1

)
−

 3
3
2

 ⊗
(

3
3

)
Consider y = v ⊗ w, where

w =

 a
b
c

 and v =
(
r
s

)
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We have

y =


1
2
2
4
1
2

 +


4
2
2
1
2
1

 −


9
9
9
9
6
6

 =


−4
−5
−5
−4
−3
−3

 and w ⊗ v =

 a
b
c

 ⊗ v =
(
r
s

)
=


ar
as
br
bs
cr
cs


Hence

y = w ⊗ v ⇐⇒



ar = −4 (1.9)
as = −5 (1.10)
br = −5 (1.11)
bs = −4 (1.12)
cr = −3 (1.13)
cs = −3 (1.14)

If this system has a solution, then a, b must be not equal zero. From the equations (1.9) and (1.10), we get
r + s = −9

a . Similarly form the equations (1.11) and (1.12), we get r + s = −9
b . Therefore

r + s = −9
a

= −9
b

So a = b. Hence ar = −4 and ar = −5 which is a contradiction. Consequently, y can not be written as v⊗w.

Exercise 1.7.5

Let σ : R3 × R2
GA R6 the bilinear mapping defined by :

for all w =

 a
b
c

 ∈ R3 and v =
(
r
s

)
∈ R2 : σ(w, v) =


ar
as
br
bs
cr
cs


(1) Let S1 = {w1, w2, w3} and S1 = {v1, v2} be the standard basis of R3 and R2 respectively.

Compute eij = σ(wi, vj) for all 1 ≤ i, j ≤ 3.

(2) Find span(Im σ).

(3) Let B : R3 × R2
GA U be a bilinear mapping. Consider F : R6

GA U defined by:

F

( ∑
1≤i,j≤3

xijeij
)

=
∑

1≤i,j≤3
xijB(wi, vj)

(4.1) Show that F is linear
(4.2) Find the relation between F ◦ σ and B.

(4) Show that R3 ⊗ R2 = R6.

Solution. (1) eij = σ(wi, vj) for all 1 ≤ i, j ≤ 3.
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e11 = σ(w1, v1) =


1
0
0
0
0
0

 e12 = σ(w1, v2) =


0
1
0
0
0
0



e21 = σ(w2, v1) =


0
0
1
0
0
0

 e22 = σ(w2, v2) =


0
0
0
1
0
0



e31 = σ(w3, v1) =


0
0
0
0
1
0

 e32 = σ(w3, v2) =


0
0
0
0
0
1


(2) span(Im σ) = R6

(3) Let B : R3 × R2
GA U be a bilinear mapping. Consider F : R6

GA U defined by:

F

( ∑
1≤i,j≤3

xijeij
)

=
∑

1≤i,j≤3
xijB(wi, vj)

We have the following diagram:
R3 × R2 R6

U

σ

B
F

(4.1) F is linear : Let α ∈ R and X =
∑

1≤i,j≤3
xijeij and Y =

∑
1≤i,j≤3

yijeij be two vectors in R6. Then

F (αX + Y ) = F (
∑

1≤i,j≤3
(αxij + yij)eij)

=
∑

1≤i,j≤3
(αxij + yij)B(wi, vj)

=
∑

1≤i,j≤3
(αxij)B(wi, vj) +

∑
1≤i,j≤3

yijB(wi, vj)

= α
∑

1≤i,j≤3
xijB(wi, vj) +

∑
1≤i,j≤3

yijB(wi, vj)

= αF (X) + F (Y )

(4.2) F ◦ σ = B. Let

w =

 a
b
c

 ∈ R3 and v =
(
r
s

)
∈ R2
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We have

F ◦ σ(w, v) = F


ar
as
br
bs
cr
cs


= F (are11 + ase12 + bre21 + bse22 + cre31 + cse32)
= arB(w1, v1) + asB(w1, v2) + brB(w2, v1) + bsB(w2, v2) + crB(w3, v1) + csB(w3, v2)
= B(aw1, rv1) +B(aw1, sv2) +B(bw2, rv1) +B(bw2, sv2) +B(cw3, rv1) +B(cw3, sv2)
= B(aw1, rv1 + sv2) +B(bw2, rv1 + sv2) +B(cw3, rv1 + sv2)
= B(aw1 + bw2 + cw3, rv1 + sv2)
= B(w, v)

(4) Using the universal property of the tensor product, we get R3 ⊗ R2 = R6.

Exercise 1.7.6
Let V and W be F-vector space and V ∗ and W ∗ the dual spaces of V and W respectively.

(1) For fixed v ∈ V and w ∈ W , let B(v,w) : V ∗ ×W ∗
GA F defined by

B(v,w)(f, g) = f(v)g(w) for all f ∈ V ∗ and g ∈ W ∗

Show that the mapping B(v,w) is a bilinear form.

(2) Consider the map σ : V ×W GA L(V ∗,W ∗;F) defined by

σ(v, w) = B(v,w).

Show that σ is bilinear.

Solution. (1) Let v ∈ V and w ∈ W . For any α, f1, f2 ∈ V ∗ and g ∈ W ∗, we have

B(v,w)(αf1 + f2, g) = (αf1 + f2)(v)g(w)
= (αf1(v) + f2(v))g(w)
= αf1(v)g(w) + f2(v)g(w)
= αB(v,w)(f1, g) +B(v,w)(f2, g).

Similarly, we can show that For any α, g1, g2 ∈ W ∗ and f ∈ V ∗,

B(v,w)(f, αg1 + g2) = αB(v,w)(f, g1) +B(v,w)(f, g2).

Hence, the mapping B(v,w) is a bilinear form.

(2) Consider the map σ : V ×W GA L(V ∗,W ∗;F) defined by

σ(v, w) = B(v,w).

Let α, v1, v2 ∈ V and w ∈ W . Then by definition,

σ(αv1 + v2, w) = B(αv1+v2,w).
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Therefore, for all f ∈ V ∗ and g ∈ W ∗, we have

σ(αv1 + v2, w)(f, g) = B(αv1+v2,w)(f, g)
= f(αv1 + v2)g(w))
=

(
f(αv1) + f(v2)

)
g(w))

= αf(v1)g(w) + f(v2)g(w)
= αB(v1,w)(f, g) +B(v2,w)(f, g)
= ασ(v1, w)(f, g) + σ(v2, w)(f, g)
=

(
ασ(v1, w) + σ(v2, w)

)
(f, g).

Hence
σ(αv1 + v2, w) = ασ(v1, w) + σ(v2, w).

Similarly, we can show that, for all α, w1, w2 ∈ W and v ∈ W . we have

σ(v, αw1 + w2) = ασ(v, w1) + σ(v, w2).

Exercise 1.7.7

Let BV = {v1, . . . , vn} be a basis for V and BW = {w1, . . . , wm} a basis for W .

Put B∗
V = {f1, . . . , fn}, B∗

W = {g1, . . . , gm} be respectively the dual basis of V ∗ and W ∗.

Consider the linear mapping Φ : V ∗ ⊗W ∗
GA L(V,W ;F) given by fi ⊗ gj 7GA Φ(fi ⊗ gj), where

Φ(fi ⊗ gj)(v, w) = fi(v)gj(w)

for all u ∈ U and w ∈ W .

Prove that Φ is an isomorphic of F-vector spaces.

Solution. We know that the vector spaces V ∗ ⊗W ∗ and L(V,W ;F) have the same dimension, so to prove
that Φ is an isomorphic, we need only to show that Φ is onto (subjective). Let h ∈ L(V,W ;F). Using Lemma
1.1.8, the set

{hij | 1 ≤ s ≤ n and 1 ≤ r ≤ m}

form a basis for L(V,W ;F), where
hij(v, w) = fi(v)gj(w),

and
h =

∑
i,j

h(vi, wj)hij .

Hence
h =

∑
i,j

h(vi, wj)Φ(fi ⊗ gj).

Therefore
h = Φ

( ∑
i,j

h(vi, wj)(fi ⊗ gj)
)
.

So Φ is onto, and hence it is an isomorphism of F-vector spaces.
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Exercise 1.7.8
Let V , W and U be F-vector spaces. Show that

L(V,W ;U) ∼= L(V,L(W,U)).

Deduce that
L(V ⊗W,U) ∼= L(V,L(W,U)),

and
(V ⊗W )∗ ∼= L(V,W ∗).

Solution. For any bilinear mapping B : V × W GA U . Let ϕ(f) : V GA Hom(W,U) the mapping defined
by

ϕ(f)(v)(w) = f(v, w), for all v ∈ V,w ∈ W.

Conversely, given a linear map, g ∈ L(V,L(W,U)), we get the bilinear map ψ(g) : V ×W GA U , given by

ψ(g)(v, w) = (g(v))(w), for all v ∈ V,w ∈ W.

It is clear that
ϕ ◦ ψ(g)(v, w) = ϕ( ψ(g)(v, w) ) = ϕ( g(v)(w) ) = g(v, w).

and
(ψ ◦ ϕ(f))(v, w) = ψ( ϕ(f))(v, w) ) = ϕ( g(v)(w) ) = g(v, w).

So
ϕ ◦ ψ = Id and ψ ◦ ϕ = Id.

Consequently, we have the following isomorphism:

L(V,W ;U) ∼= L(V,L(W,U)).

Exercise 1.7.9
Let V and W be F-vector spaces. Prove that

V ∗ ⊗W ∼= Hom(V,W ).

Solution. Recall that Hom(V,W ) is the F-vector space of all linear mappings of V into W . Consider the
mapping B : V ∗ ×W GA Hom(V,W ) given by

B(φ,w) = Bφ,w

where Bϕ,w is defined by
Bφ,w(v) = φ(v)w for all v ∈ V

It is easy to see that Bφ ,w is an element of Hom(V , W ), and B is a bilinear mapping on V ∗ ×W .

Therefore, by condition (T2) applied to V ∗ ⊗W , there exists a linear mapping F : V ∗ ⊗W GA Hom(V , W )
such that F ◦ σ = B.

V ∗ ×W V ∗ ⊗W

Hom(V , W )

σ

B
F
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We will show that F̂ is an isomorphism.
First, we will prove that F̂ is one-to-one (injective). Let t ∈ V ∗ ⊗W , such that F (t) = 0. If {w1, . . . , wm},

{φ1, . . . , φm} is a basis for W and V ∗ respectively, the element t can be written as

t =
m∑
j=1

n∑
i=1

αijφi ⊗ wj =
m∑
j=1

( n∑
i=1

αijφi

)
⊗ wj =

m∑
j=1

fj ⊗ wj

where fj =
n∑
i=1

αijφi. Therefore

F (t) = F
( m∑
j=1

fj ⊗ wj

)
=

m∑
j=1

F (fj ⊗ wj)

=
m∑
j=1

(F ◦ σ)(fj , wj)

=
m∑
j=1

B(fj , wj)

=
m∑
j=1

Bfj ,wj
.

So

F (t) = 0 =⇒ (F (f)) (v) = 0 for all v ∈ V

=⇒
∑

Bfj ,wj (v) for all v ∈ V

=⇒
∑

fj(v)wj for all v ∈ V.

Since wj are linearly independent, for all j = 1, ...,m:

fj(v) = 0 for all v ∈ V.

So fj = 0 for all j = 1, ...,m. Therefore t = 0. That means F is injective, and hence it is surjective because
the vector spaces V ∗ ⊗W and Hom(V,W ) have the same dimension:

dimV ∗ ⊗W = dim Hom(V,W ) = nm.

Exercise 1.7.10

Consider V and W are two finite dimensional vector spaces over a field F. Let v1, v2 ∈ V \{0} and
w1, w2 ∈ W\{0}. Show that the following conditions are equivalent:

(1) v1 ⊗ w1 = v2 ⊗ w2

(2) there exists α ∈ F\{0} such that v2 = αv1 and w1 = αw2

Solution.
(2) =⇒ (1): Suppose that, there exists α ∈ F\{0} such that v2 = αv1 and w1 = αw2 . Hence

v2 = αv1 and w1 = αw2 =⇒ v1 ⊗ w1 = α−1v2 ⊗ αw2

=⇒ v1 ⊗ w1 = α−1α(v2 ⊗ w2)
=⇒ v1 ⊗ w1 = v2 ⊗ w2
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(1) =⇒ (2): Conversely, assume that v1 ⊗ w1 = v2 ⊗ w2. Then v1, v2 or w1, w2 are linearly dependent.
Otherwise, by using the incomplete basis theorem, we can construct a basis B = {v1, v2, ...vn} of V and a
basis S = {w1, w2, ...wm} of W , therefore v1 ⊗ w1 and v2 ⊗ w2 are in the basis of V ⊗ W obtained from B
and S. Which is a contradiction with the hypothesis v1 ⊗ w1 = v2 ⊗ w2.

Consider for example v1, v2 are linrearly dependent, so there exists v2 = αv1

v1 ⊗ w1 = v2 ⊗ w2 =⇒ v1 ⊗ w1 = αv1 ⊗ w2

=⇒ v1 ⊗ w1 = αv1 ⊗ w2

=⇒ v1 ⊗ w1 = v1 ⊗ αw2

=⇒ v1 ⊗ w1 − v1 ⊗ αw2 = 0
=⇒ v1 ⊗ (w1 − αw2) = 0
=⇒ w1 − αw2 = 0
=⇒ w1 = αw2

Exercise 1.7.11
Let A be a matrix. Find

In ⊗ Im and A⊗ 0.

Solution. By the definition of Kronecker product of matrices:

In ⊗ Im = Inm

and
A⊗ 0 = 0 ⊗A = 0.

Exercise 1.7.12
Let A be an n× n matrix and B an m×m matrix. Show that

(1) tr(A⊗B) = tr(A) · tr(B),

(2) det(A⊗B) = (detA)m · (detB)n.

Solution. (1) Let A = (αij). We have

tr(A⊗B) = tr

α11B · · · α1nB
... . . . ...

αn1B · · · αnnB


=

n∑
k=1

tr(αkkB)

=
n∑
k=1

αkktr(B)

= tr(B)
n∑
k=1

αkk

= tr(B)tr(A).
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(2) Let A be an n × n matrix whose eigenvalues are α1, . . . , αn and let B be an m × m matrix whose
eigenvalues are β1, . . ., βm. Using Schur’s Triangularization Theorem, there exist unitary matrices R
and S such that

A = RT1R
−1 and B = ST2S

−1

where

T1 =


α1 ⋆ · · · ⋆
0 α2 · · · ⋆
... . . . ...
0 0 · · · αn

 and T2 =


β1 ⋆ · · · ⋆
0 β2 · · · ⋆
... . . . ...
0 0 · · · βm


Then

A⊗B = (RT1R
−1) ⊗ (ST2S

−1)
= (R⊗ S)(T1 ⊗ T2)(R−1 ⊗ S−1)
= (R⊗ S)(T1 ⊗ T2)(R⊗ S)−1.

Hence
det(A⊗B) = det(T1 ⊗ T2),

and since

T1 ⊗ T2 =



α1β1 ⋆ · · · ⋆
0 α1β2 · · · ⋆
... . . . ...
0 0 · · · α1βm

⋆

α2β1 ⋆ · · · ⋆
0 α2β2 · · · ⋆
... . . . ...
0 0 · · · α2βm

. . .

0
αnβ1 ⋆ · · · ⋆

0 αnβ2 · · · ⋆
... . . . ...
0 0 · · · αnβm


det(A⊗B) = det(T1 ⊗ T2) = (

n∏
i=1

αi)m(
m∏
j=1

βj)n.

Therefore
det(A⊗B) = (detA)m(detB)n.

Exercise 1.7.13
Let A and B be two matrices. Show that

tr(A⊗ In + Im ⊗B) = ntr(A) +mtr(B).

Solution.
tr(A⊗ In + Im ⊗B) = tr(A⊗ In) + tr(Im ⊗B) = ntr(A) +mtr(B).
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Exercise 1.7.14
Show that A⊗B = 0 if and only if A = 0 or B = 0.

Solution. Clearly, if A = 0 or B = 0, then A⊗ B = 0. Conversely, assume that A⊗ B = 0 and A = (aij),
then aijB = 0, for all i and j. We have two cases:

(i) If aij = 0, for all i and j, then A = 0.

(ii) If there is r and s such that ars ̸= 0, then the equation arsB = 0 implies that B = 0.

Exercise 1.7.15

Let A be an m× n matrix. what size matrix is A⊗k? where

A⊗k = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
k times

.

Solution. We know that, if A is an m× n matrix and B is an m′ × n′ matrix, then A⊗B is an mm′ × nn′

matrix. Hence the size matrix is A⊗k is mk × nk.

Exercise 1.7.16

Let A be an m×m and B be an n× n matrix. Recall that, the direct sum is the (m+ n) × (m+ n)
matrix

A⊕B :=
(
A 0
0 B

)
Find the 2 × 2 matrices X such that X ⊕X = X ⊗X.

Solution. Let
A =

(
a11 a12
a21 a22

)
such that A⊕A = A⊗A. Then

a11 a12 0 0
a21 a22 0 0
0 0 a11 a12
0 0 a21 a22

 =


a2

11 a11a12 a12a11 a2
12

a11a21 a11a22 a12a21 a12a22
a21a11 a21a12 a22a11 a22a12
a2

21 a21a22 a22a21 a2
22


By comparison: 

a11 = a2
11

a22 = a2
22

a12(a11 − 1) = 0
a21(a11 − 1) = 0
a22(a11 − 1) = 0
a11(a22 − 1) = 0
a12(a22 − 1) = 0
a21(a22 − 1) = 0
a12a11 = a2

12 = a12a21 = a12a22 = 0
a11a21 = a12a21 = a2

21 = a21a22 = 0.
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Thus a12 = a21 = 0, and a11 = a22 = 0 or a11 = a22 = 1. Therefore

X =
(

1 0
0 1

)
or X =

(
0 0
0 0

)
.

Exercise 1.7.17
Show that if A and B are two Hermitian matrices of the same size, then A⊗B is Hermitian.

Solution. We know that
(A⊗B)h = Ah ⊗Bh.

So, if A and B are Hermitian, we get Ah = A and Bh = B. Hence

(A⊗B)h = A⊗B.

This implies that A⊗B is Hermitian.

Exercise 1.7.18
Let A be an n × n matrix and B an m × m matrix. Prove that, if A ⊗ B = λInm such that λ ̸= 0,
then there exist a scalars α and β such that A = αIn, B = βIm and αβ = λ.

Solution.
arrbss = λ for all r, s

and
arkbij = 0 for all r ̸= k, i, j

We have A⊗B ̸= 0 =⇒ B ̸= 0, and hence ark = 0 for all r ̸= k. That means A is diagonal matrix. Put

A =


α1 0 · · · 0
0 α2 · · · 0
... . . . ...
0 0 · · · αn


So

A⊗B =


α1B 0 · · · 0

0 α2B · · · 0
... . . . ...
0 0 · · · αnB

 = λInm.

Consequently, for all i,

αiB = λIm. (1.15)

So α1 = α2 = · · · = αn = α, and hence
A = αIn,

and form the equality (1.15), we get
B = α−1λIm = βIm,

Remark that α ̸= 0, because if α = 0, then A = 0, and hence A⊗B = 0, which is a contradiction.
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Exercise 1.7.19
Let V1, V2,W1,W2, U1, U2 be F-vector spaces. Consider the following linear mappings of vector spaces:

V1 W1 U1
F1 G1

V2 W2 U2
F2 G2

Show that (G1 ◦ F1) ⊗ (G2 ◦ F2) = (G1 ⊗G2) ◦ (F1 ⊗ F2) .

Solution. Let v1 ∈ V1 and v2 ∈ V2. We have:(
(G1 ⊗G2) ◦ (F1 ⊗ F2)

)
(v1 ⊗ v2) = (G1 ⊗G2)

(
(F1 ⊗ F2) (v1 ⊗ v2)

)
= (G1 ⊗G2) (F1(v1) ⊗ F2(v2))
= G1 (F1(v1)) ⊗G2 (F2(v2))
= (G1 ◦ F1)(v1) ⊗ (G2 ◦ F2)(v2)

=
(

(G1 ◦ F1) ⊗ (G2 ◦ F2)
)

(v1 ⊗ v2).

Exercise 1.7.20
Let V1, V2,W1,W2 be F-vector spaces and α ∈ F. Consider the following linear mappings of vector
spaces:

V1 W1
F1

G1

V2 W2
F2

G2

Prove the following properties:

(1) (F1 +G1) ⊗ F2 = (F1 ⊗ F2) + (G1 ⊗ F2)

(2) (αF1) ⊗ F2 = α (F1 ⊗ F2) .

Solution. (1) Let v1 ∈ V1 and v2 ∈ V2. We have:(
(F1 +G1) ⊗ F2

)
(v1 ⊗ v2) = (F1 +G1) (v1) ⊗ F2(v2)

=
(
F1(v1) +G1(v2)

)
⊗ F2(v2)

= F1(v1) ⊗ F2(v2) +G1(v1) ⊗ F2(v2)
= (F1 ⊗ F2)(v1 ⊗ v2) + (G1 ⊗ F2)(v1 ⊗ v2)

=
(

(F1 ⊗ F2) + (G1 ⊗ F2)
)

(v1 ⊗ v2)

Hence
(F1 +G1) ⊗ F2 = (F1 ⊗ F2) + (G1 ⊗ F2).

(2) Let v1 ∈ V1 and v2 ∈ V2. We have:
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(
(αF1) ⊗ F2

)
(v1 ⊗ v2) = (αF1) (v1) ⊗ F2(v2)

= αF1(v1) ⊗ F2(v2)

= α
(
F1(v1) ⊗ F2(v2)

)
=

(
α(F1 ⊗ F2)

)
(v1 ⊗ v2)

Hence
(αF1) ⊗ F2 = F1 ⊗ (αF2) = α (F1 ⊗ F2) .

Exercise 1.7.21
Let A, B be square matrices of order n, and C, D be square matrices of order m.

(1) Show that for all integers k ≥ 0 and m ≥ 1, we have

(Im ⊗A)k = Im ⊗Ak.

(2) Recall that the exponential of a square matrix A of order n is defined by :

eA = In +A+ 1
2A

2 + 1
6A

3 + · · · + 1
k!A

k + · · ·

Show that:
eA⊗Im = eA ⊗ Im and eIm⊗A = Im ⊗ eA.

Solution.

(1)

(Im ⊗A)k = (Im ⊗A)(Im ⊗A) · · · (Im ⊗A)︸ ︷︷ ︸
k times

= (ImIm · · · Im)︸ ︷︷ ︸
k times

⊗ (AA · · ·A)︸ ︷︷ ︸
k times

= Im ⊗Ak.

(2)

eA⊗Im = (In ⊗ Im) + (A⊗ Im) + 1
2! (Im ⊗A)2 + . . .

= (In ⊗ Im) + (A⊗ Im) + 1
2!

(
A2 ⊗ Im

)
+ . . .

=
(
In +A+ 1

2!A
2 + . . .

)
⊗ Im

= eA ⊗ Im
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Exercise 1.7.22
Let A, B be square matrices of order n and m respectively. We define the Kronecker sum of matrices
by

A⊕B = (A⊗ Im) + (In ⊗B).

Show that

(1) (A⊗ Im) and (In ⊗B) commute.

(2) eA⊕B = eA ⊗ eB

Solution.
e(A⊕B) = e(A⊗Im+In⊗B)

= (eA ⊗ Im)(In ⊗ eB)
= (eAIn) ⊗ (ImeB)
= eA ⊗ eB
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Chapter

2 Tensor products (Part 2)

Chapter contents

2.1 Modules over a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2.3 Exercises set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Modules over a ring are a generalization of the concept of vector spaces. In this chapter, we will give the
definition of the tensor product of R-modules (resp. tensor product of morphisms). Also various properties
of these tensor products are explained in this chapter.
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2.1 Modules over a ring

Definition 2.1.1 Left R-module

Let M be an abelian group and R a ring with unity 1R. We say that M is a left R-module, if there is
a scalar product

· :R×M GAM

(r,m) 7GA rm,

satisfying the following axioms.

• α(βm) = (αβ)m

• (α+ β)m = αm+ β ·m

• α(m+ n) = αm+ αn

• 1Rm = m

where α, β ∈ R and m,n ∈ M .

Similarly, the right R-modules are defined as follow :

Definition 2.1.2 right R-module

Let M be an abelian group and R a ring with unity 1R. We say that M is a right R-module, if there
is a scalar product

· :M ×R GAM

(m, r) 7GA mr,

satisfying the following axioms.

• (mα)β = m(αβ)

• m(α+ β) = mα+mβ

• (m+ n)α = mα+ nα

• m1R = m

where α, β ∈ R and m,n ∈ M .

Remark 2.1.3. If R is a commutative ring, every left R module is right module, and conversely. In
fact, let M be a left R-module. Define a mapping M × R GA R by mr = rm and we can show
directly that the axioms of the right module are satisfied. Therefore, if a ring R is commutative, it is
not necessary to distinguish between left and right.

Example 2.1.4

If R is a field, a R-module is a R-vector space.
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Example 2.1.5

If G is an abelian group, the G can be viewed as Z-module with scalar multiplication defined as, for
g ∈ G and n ∈ Z,

ng =



g + g + . . .+ g︸ ︷︷ ︸
n times

if n > 0

0 if n = 0
(−g) + (−g) + . . .+ (−g)︸ ︷︷ ︸

n times

if n < 0

where −g is the inverse of g.

Definition 2.1.6 Homomorphism of R-modules

Let R be a ring and let M and N be R-modules. A function f : M GA N is an R-module homomor-
phism if and only if the following conditions hold:

• f(m1 +m2) = f(m1) + f(m2) for all m1,m2 ∈ M

• f(αm) = αf(m) for all α ∈ R,m ∈ M .

Definition 2.1.7 Isomorphism of R-modules

Let R be a ring M and N be R-modules and let f : M GA N be an R-module homomorphism. The
function f is an R-module isomorphism if and only if f is one-to-one and onto.

As a generalization of bilinear mapping, we define the concept of a balanced mapping.

Definition 2.1.8 Balanced mapping

For a ring R, a right R-module M , a left R-module N , and an abelian group G, a map φ : M×N GA G
is said to be R-balanced mapping, if for all m,m′ ∈ M , n, n′ ∈ N , and r ∈ R the following hold:

φ(m,n+ n′) = φ(m,n) + φ(m,n′)
φ(m+m′, n) = φ(m,n) + φ(m′, n)
φ(mr, n) = φ(m, rn)

Note 2.1.9

The set of all such balanced mapping over R from M × N to G is denoted by Hom(M,N ;G), and it
is an abelian group (see, Exercise 2.3.1).
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Definition 2.1.10 Generating set for R-modules

Let M be a left R-module. A subset S of M is called a set of generators (or a generating set) of M , if
every element of Mcan be expressed as a linear combination of a finite number of {si} with coefficients
in R, That mean

m =
k∑
i=1

risi,

for some ri ∈ R and si ∈ S.

Definition 2.1.11 Free R-basis / R-free subset

Let M be a left R-module. A subset S of M is called R-free, if for all {s1, . . . , sk} ⊂ S, we have

k∑
i=1

risi = 0 =⇒ ri = 0 for all i = 1, ..., k.

Definition 2.1.12 Free R-module

A R-free set of generators of M is called an R-basis of M and an R- module M which has an R-basis
is called a free R-module.

Definition 2.1.13 Then free module RS

Let S be a set and L(S) the set of mappings from S GA R with finite support, where

support(f) = {s ∈ S | f(s) ̸= 0}.

If I is the finite set of s ∈ S with a non-zero image, we can denote f(s) = rs ∈ R and identifying a
map with the set of its values, write the map as

f =
∑
s∈I

rses,

where es : S GA R is the mapping given by

es(t) =
{

1 if t = s,

0 otherwise

Clearly (L(S),+) is an abelian group, and it’s can be considered as R-module with the scalar multi-
plication defined as follow: for all r ∈ R and f ∈ L(S), the mapping rf is given by

(rf)(s) = r(f(s)), for all s ∈ S.

In addition, the set {es | s ∈ S} form a basis for the R-module L(S).
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Note 2.1.14

The free module L(S) will be denoted by RS , and it’s called by the module of the finite formal linear
combinations of elements of S.

Definition 2.1.15 Submodule / quotient module

• A submodule of an R-module M is a subgroups N of M which is closed under by the scalar
multiplication of M , that means, for all r ∈ R and n, n′ ∈ N , we have rn ∈ N, and n− n′ ∈ N .

• The quotient group M/N becomes an R-module by defining a(x+N) = ax+N . The R-module
M/N is the quotient of M by N .

2.2 Tensor product of modules
In these section, we define tensor products of modules over a commutative ring with unity and various
properties this tensor products are given.

Definition 2.2.1 R-linear, Homomorphism of modules

Let M and N be two R-modules. A mapping f : M GA N is called an R-module homomorphism or
an R-linear mapping if

(1) f(m+m′) = f(m) + f(m′),

(2) f(rm) = rf(m).

The set of all module homomorphisms from M to N is denoted by HomR(M,N).

Definition 2.2.2 R-bilinear mapping

Let M , B and G be R-modules. A mapping f : M × N GA G is called a R-bilinear, if it is linear in
each variable. That means : for all m,m1,m2 ∈ M , n, n1, n2 ∈ V and r ∈ R, we have

(1) f(rm1 +m2, n) = rf(m1, v) + f(m2, n)

(2) f(m, rn1 + n2) = rf(m,n1) + f(m,n2),

The set of all R-bilinear mappings from M ×N to G is denoted by HomR(M,N ;G).

Theorem 2.2.3

Let R be a ring, M and N two R-modules. Then there exist a pair (G0, σ) R-module G0 and an
R-bilinear mapping σ : M × N GA G0 such that, for every R-bilinear mapping B : M × N GA G,
there exists a unique homomorphism of R-modules F : G0 GA G such that B = F ◦ σ.

M ×N G0

G

σ

B
F



44C. BEDDANI

Definition 2.2.4 Tensor product of R-modules

Let M and N be two R-modules. We say that (M,N) satisfy the property (T), if here exist a pair
(G0, σ) consisting of an R-module G0 and an R-bilinear mapping σ : M × N GA G0 such that, for
every R-bilinear mapping B : M × N GA G, there exists a unique homomorphism of R-modules
F : G0 GA G such that B = F ◦ σ.

M ×N G0

G

σ

B
F

The existence of which is assured by Theorem 2.2.5 is called a tensor product of M and N .
We write

G0 = M ⊗RM and σ(m,n) = m⊗ n.

The mapping σ is called the canonical R-bilinear mapping of a tensor product V ⊗W .

Theorem 2.2.5 Tensor Product of Modules

If M is a right R-module and N is a left R-module. Then their tensor product M ⊗RN is the quotient
of the free R-module RM×N by the R-submodule T generated by the elements

(a) e(m,n+n′) − e(m,n) − e(m,n′)

(b) e(m+m′,n) − e(m,n) − e(m′,n)

(c) e(mr,n) − e(m,rn)

Remark 2.2.6. We have the following natural mappings:

M ×N RM×N RM×N/T = M ⊗R N

(m× n) e(m,n) m⊗ n = e(m,n) = e(m,n) + T

e π

So, for all m,m′ ∈ M,n, n′ ∈ N, r ∈ R. We have a natural mapping M ×N GAM ⊗RN , where write
m⊗ n for the image of (m,n) in M ⊗R N . Hence we have

(1) m⊗ (n+ n′) = m⊗ n+m⊗ n′

(2) (m+m′) ⊗ n = m⊗ n+m′ ⊗ n

(3) mr ⊗ n = m⊗ rn.

Example 2.2.7

Z/2Z ⊗Z Z/3Z = 0 because

m⊗ n = m1 ⊗ n = m3 ⊗ n

= m⊗ 3n = m⊗ 0
= m⊗ 0 · 0 = m · 0 ⊗ 0
= 0.
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Theorem 2.2.8 Tensor products of R-linear mappings : F1 ⊗ F2

Let F1 : M1 GA N1 and F2 : M2 GA N2 be R-module homomorphisms. Then there exists a linear
mapping F̃ : M1 ⊗M2 GA N1 ⊗N2 such that for all m1 ∈ M1 and m2 ∈ M2

F̃ (m1 ⊗m2) = F1(m1) ⊗ F2(m2).

The mapping F̃ is called the tensor product of F1 and F2 and is denoted by F1 ⊗ F2.

Proof. Let σ1 and σ2 be the canonical mappings of M1 ⊗M2 and N1 ⊗N2 respectively.

Consider the R-bilinear mapping F = F1 × F2 : M1 ×M2 GA N1 ×N2 given by

(F1 × F2)(m1,m2) = (F1(m1), F2(m2)).

Apply the property (T) for the tensor product M1 ⊗ M2, there is an R-linear mapping F̃ for which the
following diagram is commutative:

M1 ×M2 M1 ⊗M2

N1 ×N2

N1 ⊗N2

σ1

σ2◦F

F

F̃

σ2

Hence
F̃ (v1 ⊗ v2) = σ2(F (v1, v2)) = σ2(F1(v1), F2(v2)) = F1(v1) ⊗ F2(v2).

Proposition 2.2.9 Commutativity of the tensor product

Let N and M be R-modules. By the correspondence (m⊗ nDGA w ⊗m ), we have

M ⊗N ∼= N ⊗M.

Proposition 2.2.10 Associativity of the tensor product

The correspondence
(m1 ⊗m2) ⊗m3 DGA m1 ⊗ (m2 ⊗m3)

gives an isomorphism
(M1 ⊗M2) ⊗M3. ∼= M1 ⊗ (M2 ⊗M3).



46C. BEDDANI

2.3 Exercises set

Exercise 2.3.1
Let R be a commuatative ring and f and g an R-bilinear mappings from N ×M GA G.

(1) Show that f + g and −f are R-bilinear mappings.

(2) Deduce that Hom((N,M ;G) is an R-module.

Solution. (1) For all n, n1, n2 ∈ N , m,m1,m2 ∈ M and r ∈ R, we have

(f + g)(n1 + n2,m) = f(n1 + n2,m) + g(n1 + n2,m)
= f(n1,m) + f(n2,m) + g(n1,m) + g(n2,m)
= f(n1 + n2,m) + g(n1 + n2,m)

and

Exercise 2.3.2
Let R be a ring, M , N be two R-modules. Show that m⊗ n = 0, if and only if, for every R-balanced
mapping B : M ×N GA G, we have B(m,n) = 0.

Solution. Assume that m ⊗ n = 0. Using the property (T) of the tensor product M ⊗ N , for every R-
balanced mapping B : M × N GA G, there exists a homomorphism of Z-modules F : G0 GA G such that
B = F ◦ σ.

M ×N M ⊗N

G

σ

B
F

So
B(m,n) = F (m⊗ n) = F (0) = 0.

Reciprocally, assume that for every R-balanced mapping B : M × N GA G, we have B(m,n) = 0. hence if
we take B = σ, we get the canonical mapping σ(m,n) = 0, so m⊗ n = 0.

Exercise 2.3.3
Show that, in the tensor product of modules M ⊗N , we have

m⊗ 0 = 0 ⊗ n = 0 for all m ∈ M and n ∈ N .

Solution.
m⊗ 0 = m⊗ (0 + 0) = m⊗ 0 +m⊗ 0

Subtracting m⊗ 0 from both sides, m⊗ 0 = 0.
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Exercise 2.3.4

Let M and N be R-modules with respective generating sets {mi}i∈I and {nj}j∈J . Show that the
tensor product M ⊗N is generated linearly by the elementary tensors mi ⊗ nj .

Solution. Let m⊗ n ∈ M ⊗N . Then

m⊗ n =
∑
i∈I

rimi ⊗
∑
j∈J

sjnj =
∑
i∈I

∑
j∈J

risj(mi ⊗ nj).

Exercise 2.3.5
For positive integers a and b relatively prime. Show that

Z/aZ ⊗Z Z/bZ = 0.

Solution. Since a and b are relatively prime , there exist two integers r and s such that

1 = ar + bs.

Let B be an arbitrary R-balanced mapping B : M × N GA G to an abelian group G. Then for any
(m,n) ∈ Z/aZ ×Z Z/bZ, we have

B(n,m) = (ar + bs)B(n,m)
= arB(n,m) + bsB(n,m)
= rB(an,m) + sB(n, bm)
= rB(0,m) + sB(n, 0)
= 0

Using Exercise ??, we get m⊗ n = 0 for all (m,n) ∈ Z/aZ ×Z Z/bZ. Therefore

Z/aZ ⊗Z Z/bZ = 0.

Exercise 2.3.6
Let M be an R-module. Then on regarding R as a module over itself, show that

R⊗M ∼= M.

Solution. Define a map f : R×M GAM by

f(r,m) = rm, r ∈ R, m ∈ M.

By properties of an R-module, it can be easily to show that f is R-bilinear. Then by the universal property
of the tensor product R⊗M l, there exist a unique R-module homomorphisnr f ′ : R⊗M GAM such that
f = f ′ ◦ σ i.e. the following diagram commutes

R×M R⊗M

M

σ

f
f ′
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For any (r,m) ∈ R×M, we have that

f(r,m) = f ′(σ(r,m)) = f ′(r ⊗m).

Hence by the definition of f ,
f ′(r ⊗ n) = rm.

We now claim that f ′ is an isomorphism:

Surjectivity of f : For any m ∈ M. Since R is a ring with unity 1, we have that 1 ⊗m ∈ R⊗M and then

f ′(1 ⊗m) = 1m = m.

Therefore f ′ is surjective.

Injectivity of f : An arbitrary element of R⊗M is a finite sum of the form∑
i

ri ⊗mi =
∑
i

ri (1 ⊗mi) =
∑
i

1 ⊗ (rimi) = 1 ⊗
∑
i

rimi = 1 ⊗m,

for some ri ∈ R and mi ∈ M . Therefore, every element in R⊗M can be written as 1 ⊗m for some m ∈ M .
Now if 1 ⊗m ∈ ker f, then

f ′(1 ⊗m) = 0 =⇒ 1m = 0 =⇒ m = 0,

1 ⊗m = 1 ⊗ 0 = 0. Hence ker f = {0} , so f is injective.

Consequently f ′ is an isomorphism.
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In this chapter, we give the definition of the tensor algebra T p(V ) generated by a vector space V over a field
F. It is also denoted as

p⊗
i=0

V or V ⊗p

and is called the p-th tensor power of V (with V ⊗1 = V , and V ⊗0 = F ). We can pack all the tensor powers
of V into the ”big” vector space,

T (V ) =
⊕
p≥0

V ⊗p.

This is one of the most important associative algebra defined from V . The elements of this new vector space
are called ”Tensors”. Also we present in this chapter the definition of symmetric and alternating tensors with
their properties.

3.1 Tensor spaces
Let us now see how tensor products behave under duality. For this, we define a pairing between V ∗

1 ⊗· · ·⊗V ∗
n

and V1 ⊗ · · · ⊗ Vn. For any fixed
(f1, . . . , fn) ∈ V ∗

1 × · · · × V ∗
n ,

we have a multilinear form l(f1,...,fn) : V1 × · · · × Vn GA F defined by

l(f1,...,fn)(v1, . . . , vn) = f1(v1) · f2(v2) · · · fn(vn).
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Using the property (T) of the tensor product V1 ⊗ · · · ⊗ Vn, there exist a linear mapping

L(f1,...,fn) : V1 ⊗ · · · ⊗ Vn GA F

such that the following diagram commutes:

V1 × · · · × Vn V1 ⊗ · · · ⊗ Vn

F

σ

l(f1,...,fn)

L(f1,...,fn)

Therefore, we have a multilinear mapping

L : V ∗
1 × · · · × V ∗

n L(V1 ⊗ · · · ⊗ Vn,F)

(f1, . . . , fn) L(f1,...,fn)

Using also the property (T) of the tensor product V ∗
1 ⊗ · · · ⊗ V ∗

n , there exist a linear mapping

L∗
(f1,...,fn) : V1 ⊗ · · · ⊗ Vn GA F

such that the following diagram commutes:

V ∗
1 × · · · × V ∗

n V ∗
1 ⊗ · · · ⊗ V ∗

n

L(V1 ⊗ · · · ⊗ Vn,F)

L(f1,...,fn)
L∗

(f1,...,fn)

Finlay, we have constructed a linear mapping:

L∗ : V ∗
1 ⊗ · · · ⊗ V ∗

n GA L(V1 ⊗ · · · ⊗ Vn,F).

Therefore
L∗ ∈ L(V ∗

1 ⊗ · · · ⊗ V ∗
n ,L(V1 ⊗ · · · ⊗ Vn,F)).

By the fact that (see Exercise 1.7.8), for any F-vector spaces. V , W and U ,

L(V ⊗W,U) ∼= L(V,L(W,U)),

Hence
L

(
V ∗

1 ⊗ · · · ⊗ V ∗
n ,L(V1 ⊗ · · · ⊗ Vn,F)

)
∼= L

((
V ∗

1 ⊗ · · · ⊗ V ∗
n

)
⊗

(
V1 ⊗ · · · ⊗ Vn

)
,F

)
So L∗ can be viewed a linear form on(

V ∗
1 ⊗ · · · ⊗ V ∗

n

)
⊗

(
V1 ⊗ · · · ⊗ Vn

)
.
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Definition 3.1.1 Tensor space

If T is a tensor product of p copies of V and q copies of V ∗, we call T the tensor space of type (p, q)
and denote it by T pq (V ). More precisely:

T pq (V ) = V ⊗ V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
p factors

⊗V ∗ ⊗ V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q factors

Definition 3.1.2 Covariant/contravariant

• Elements of the tensor space T pq (V ) are called tensors of type (p, q) or tensors which are contravariant
of degree p and covariant of degree q.

• In particular, tensors of type (p, 0) are called contravariant tensors of degree p and those of type
(0, q) covariant tensors of degree q.

• Moreover the elements of T 1
0 (V ) = V are called contravariant vectors, those of T 0

1 (V ) = V ∗ covariant
vectors, and those of T 0

0 (V ) = F scalars.

Remark 3.1.3. Sometimes we write

T p(V ) = T p0 (V ) = V ⊗ V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
p factors

and
Tq(V ) = T 0

q (V ) = V ∗ ⊗ V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q factors

Example 3.1.4 T 1
1 (V )

From Exercise 1.7.9, we know that V ∗ ⊗ V ∼= L(V, V ). Hence

T 1
1 (V ) ∼= L(V, V ).

That is, the linear transformations of V can be regarded as tensors of type (1, 1).

Example 3.1.5 T2(V )

Since V ⊗W ∼= L(V ∗,W ∗;F) and (V ∗)∗ ∼= V, we have

T2(V ) = V ∗ ⊗ V ∗ ∼= L(V, V ;F).

More general, we can show that

Tq(V ) = V ∗ ⊗ V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q factors

∼= L(V, V, · · · , V︸ ︷︷ ︸
q factors

;F).
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Example 3.1.6 T 1
2 (V )

Setting W = U = V in the following formula

L(V , W ; U) ∼= L(V ⊗W , U) ∼= (V ⊗W )∗ ⊗ U ∼= V ∗ ⊗W ∗ ⊗ U ,

we have
L(V, V : V ) ∼= V ∗ ⊗ V ∗ ⊗ V = T 1

2 (V ).

Example 3.1.7 Dual space of T pq (V ) (
T pq (V )

)∗ ∼= T qp (V ).

3.2 Properties of tensor spaces

Proposition 3.2.1

If V is a F-vector space of dimension n, then

dimT pq (V ) = np+q.

Proof. Since dimV ⊗W = dimV × dimW and dimV ∗ = dimV , we have

dimT pq (V ) = dim
(
V ⊗ V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

p factors

⊗V ∗ ⊗ V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q factors

)
= dimV × dimV × · · · × dimV︸ ︷︷ ︸

p factors

× dimV ∗ × dimV ∗ × · · · × dimV ∗︸ ︷︷ ︸
q factors

= dimV × dimV × · · · dimV︸ ︷︷ ︸
p factors

× dimV × dimV × · · · × dimV︸ ︷︷ ︸
q factors

= dimV × dimV × · · · × dimV︸ ︷︷ ︸
p+q factors

= np+q.

Remark 3.2.2. If {v1, . . . , vn} is a basis for V and {f1, . . . , fn} its dual basis, then, the set{
vi1 ⊗ · · · ⊗ vip ⊗ fj1 ⊗ · · · ⊗ fjq

| 1 ≤ ik ≤ n and 1 ≤ jl ≤ n
}

form a basis for T pq (V ).
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Example 3.2.3

Bilinear forms on V can be considered as covariant tensors of degree 2 because

T 0
2 (V ) = V ∗ ⊗ V ∗ ∼= L(V, V ;F).

Let {v1, . . . , vn} be a basis for V and {f1, . . . , fn} its dual basis. Then, the set

{fi ⊗ fj | 1 ≤ i, j ≤ n}

Therefore, every bilinear form B on V can be written as

B =
n∑
i=1

n∑
j=1

ξijfi ⊗ fj

Then

B(vk, vl) =
n∑
i=1

n∑
j=1

ξijfi ⊗ fj(vk, vl)

=
n∑
i=1

n∑
j=1

ξijfi(vk)fj(vl)

=
n∑
i=1

n∑
j=1

ξijδikδjl

= ξkl.

Proposition 3.2.4

Consider the tensor space T pq (V ) and assume that p > 0 and q > 0. Fix integers r and s such that
1 ≤ r ≤ p and 1 ≤ s ≤ q. Then there is a unique linear mapping Crs : T pq (V ) GA T p−1

q−1 (V ), such that
for all vi ∈ V and fj ∈ V ∗

j , we have

Crs (v1 ⊗· · ·⊗vp⊗f1 ⊗· · ·⊗fq) = fs(vr)v1 ⊗· · ·⊗vr−1 ⊗vr+1 ⊗· · ·⊗vp⊗f1 ⊗· · ·⊗fs−1 ⊗fs+1 ⊗· · ·⊗fq.

Proof. Let B : V × · · · × V × V ∗ × · · · × V ∗
GA T p−1

q−1 (V ) the mapping defined by

B(v1 × · · · × vp × f1 × · · · × fq) = fs(vr)v1 ⊗ · · · ⊗ vr−1 ⊗ vr+1 ⊗ · · · ⊗ vp ⊗ f1 ⊗ · · · ⊗ fs−1 ⊗ fs+1 ⊗ · · · ⊗ fq.

It is easy to see that B is (p+ q)-multilinear mapping. Using the property (T) of the tensor product T pq (V ),
there exists a linear mapping L : T pq (V ) GA T p−1

q−1 (V ), for which the following diagram commutes:

V × · · · × V × V ∗ × · · · × V ∗ T pq (V )

T p−1
q−1 (V )

σ

B
L

Therefore, we can take Crs = L.
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Definition 3.2.5 Contraction

The linear mapping Crs is called the contraction with respect to rth contravariant index and sth
covariant index.

3.3 Symmetric tensors and alternating tensors
There are families of tensors which are called symmetric or alternating. In this section, we give their defini-
tions and study their properties.

Let Sp be the set of permutations of the set {1, ..., p} with p elements. Denote by sgn(σ) the signature of σ,
(i.e., sgn(σ) = 1 if σ is an even permutation and sgn(σ) = −1 if σ is an odd permutation.)

Proposition 3.3.1

Let σ ∈ Sp.

(1) There exists a linear mapping Pσ : T p(V ) GA T p(V ), such that for all v1, . . . , vp ∈ V ,

Pσ(v1 ⊗ · · · ⊗ vp) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(p)

(2) If σ, τ ∈ Sn, then Pσ ◦ Pτ = Pτσ

Proof. (1) Let Fσ : V1 × · · · × Vp GA T p(V ) the mapping defined by

Fσ(v1, . . . , vp) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(p)

This mapping is p-multilinear (see Exercise 3.5.1). Using the property (T) of the tensor product T p(V ),
there exists a linear mapping Pσ such that the following diagram commutes:

V × · · · × V T p(V )

T p(V )

σ

Fσ
Pσ

(2)

Pσ ◦ Pτ (v1 ⊗ · · · ⊗ vp) = Pσ(vτ−1(1) ⊗ vτ−1(2) ⊗ · · · ⊗ vτ−1(p))
= vσ−1τ−1(1) ⊗ vσ−1τ−1(2) ⊗ · · · ⊗ vσ−1τ−1(p)

= v(τσ)−1(1) ⊗ v(τσ)−1(2) ⊗ · · · ⊗ v(τσ)−1(p)

= Pτσ(v1 ⊗ · · · ⊗ vp).

Remark 3.3.2. Denote by 1 the identity permutation. Then P1 id the identity transformation of
T p(V ).
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Definition 3.3.3

(1) An element t ∈ T p(V ) is called a symmetric tensor, if Pσ(t) = t for all σ ∈ Sp.

(2) An element t ∈ T p(V ) is called an alternating tensor, if Pσ(t) = sgn(σ)t for all σ ∈ Sp.

Note 3.3.4

The set of symmetric tensors and that of alternating tensors are vector subspaces of TP (V ) and are
denoted by Sp(V ) and Ap(V ) respectively.

Example 3.3.5

If p = 1, we have
S1(V ) = A1(V ) = T 1(V ).

Example 3.3.6

Let V be a vector space. If p = 2, we have

S2 = {1, (1 2)} and sgn(1 2) = −1.

Then
S2(V ) = {t ∈ T 2(V ) | P(1 2)(t) = t}

and
A2(V ) = {t ∈ T 2(V ) | P(1 2)(t) = −t}

We know that if B = {v1, v2, ..., vn} is a for V , then the set

{tij = vi ⊗ vj | 1 ≤ i, j ≤ n}

form a basis for T 2(V ). Clearly for all 1 ≤ i, j ≤ n

P(1 2)(tij) = tji.

In addition, for all 1 ≤ i, j ≤ n, we have

P(1 2)(tij + tji) = tji + tij and P(1 2)(tij − tji) = tji − tij = −(tij − tji)

That means, tij + tji are symmetric tensors and tij − tji are alternating tensors for all 1 ≤ i, j ≤ n.

The set {tij + tji | i ≤ j} is a basis for S2(V ) and {tij − tji | i < j} is a basis for A2(V ). Hence

dimS2(V ) = n(n+ 1)
2

and
dimA2(V ) = n(n− 1)

2
Therefore

T 2(V ) = S2(V ) ⊕A2(V ).
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Definition 3.3.7 Symmetrizer and alternator on T p(V )

Consider the following linear transformations on T p(V ):

Sp = 1
p!

∑
σ∈Sp

Pσ and Ap = 1
p!

∑
σ∈Sp

sgn(σ)Pσ.

The mappings Sp and Ap are called respectively the symmetrizer and the alternator on T p(V )

Proposition 3.3.8

(1) For any τ ∈ Sp, we have

PτSp = SpPτ = Sp and PτAp = ApPτ = sgn(τ)Ap

(2) Sp2 = Sp and A2
p = Ap.

(3) Let t ∈ T p(V ). We have

(a) t ∈ Sp(V ) ⇐⇒ Sp(t) = t.

(b) t ∈ Ap(V ) ⇐⇒ Ap(t) = t.

(4) If p > 1, then ApSp = SpAp = 0.

(5) for all p > 1, we have
Sp(V ) ∩Ap(V ) = {0}.

Proof. (1) For fixed τ ∈ Sn, we have

PτSp = Pτ

( 1
p!

∑
σ∈Sp

Pσ

)
= 1
p!

∑
σ∈Sp

PτPσ

= 1
p!

∑
σ∈Sp

Pστ

= 1
p!

∑
σ∈Sp

Pσ (because {στ | σ ∈ Sn} = Sn)

= Sp.
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Similarly, we can show that SpPτ = Sp.

PτAp = Pτ

( 1
p!

∑
σ∈Sp

sgn(σ)Pσ
)

= 1
p!

∑
σ∈Sp

sgn(σ)PτPσ

= 1
p!

∑
σ∈Sp

sgn(σ)Pστ

= 1
sgn(τ)

1
p!

∑
σ∈Sp

sgn(στ)Pστ

= sgn(τ) 1
p!

∑
σ∈Sp

sgn(στ)Pστ

= sgn(τ) 1
p!

∑
σ∈Sp

sgn(σ)Pσ

= sgn(τ)Ap.

Similarly, we can show that ApPτ = sgn(τ)Ap.

(2) Using (1), we obtain

Sp2 = 1
p!

∑
σ∈Sp

PσSp

= 1
p!

∑
σ∈Sp

Sp

= Sp,

and similarly, we get Ap
2 = Ap.

(3) Let t ∈ Sp(V ). We have

(a) Assume that t ∈ Sp. Then by definition Pσ(t) = t for all σ ∈ Sn. Therefore

Sp(t) = 1
p!

∑
σ∈Sp

Pσ(t) = 1
p!

∑
σ∈Sp

t = t.

Conversely, if Sp(t) = t, then for all τ ∈ Sn, we have

Pτ (t) = PτSp(t) = Sp(t) = t.

Hence t ∈ Sp.
(b) Use the same ideas as in (b).

(4)

ApSp = 1
p!

∑
σ∈Sp

sgn(σ)PσSp

= 1
p!

∑
σ∈Sp

sgn(σ)Sp

= 1
p!

( ∑
σ∈Sp

sgn(σ)
)

Sp.
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Since p > 1, the number of odd permutation equal the number of even permutation, we get∑
σ∈Sp

sgn(σ) = 0.

Therefore, ApSp = 0

(5) Let t ∈ Sp(V ) ∩ Ap(V ), then Sp(t) = t . Apply Ap on both sides, ApSp(t) = Ap(t), so 0 = Ap(t),
therefore t = 0 because Ap(t) = t. Hence

Sp(V ) ∩Ap(V ) = {0}.

Corollary 3.3.9

We have
Im(Sp) = Sp(V ) and Im(Ap) = Ap(V ).

In particular, for any t ∈ T p(V ), Sp(t) is a symmetric tensor and a Ap(t) is an alternating tensor.

Proof. Clearly form the equivalence t ∈ Sp(V ) ⇐⇒ Sp(t) = t, we have

Sp(V ) ⊆ Im(Sp).

Conversely, let t ∈ Im(Sp), then Sp(t′) = t for some t′ ∈ T p(V ), apply Pσ both sides and since PσSp = Sp,
we get Sp(t′) = Pσ(t), so t = Pσ(t), and hence t ∈ Sp(V ). Similarly we show that Im(Ap) = Ap(V ).

Lemma 3.3.10
Let V be a F-vector space , where F = R or C. If v1, . . . , vk are vectors in V such that vi = vj for
some i and j in {1, ..., k}, then

Ap(v1 ⊗ · · · ⊗ vk) = 0

Proof. Let τ be the transposition (i j). By using Proposition 3.3.8 (1), we have

ApPτ (v1 ⊗ · · · ⊗ vk) = sgn(τ)Ap(v1 ⊗ · · · ⊗ vk).

That means
Ap(v1 ⊗ · · · ⊗ vk) = −Ap(v1 ⊗ · · · ⊗ vk)

Hence Ap(v1 ⊗ · · · ⊗ vk) = 0.

Proposition 3.3.11

Let V be a F-vector space , where F = R or C. Then for any p > n = dimV , Ap(V ) = {0}.
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Proof. Let v1, . . . , vn be a basis for V . We know that, the set

{vi1 ⊗ · · · ⊗ vip | 1 ≤ ik ≤ n}

form a basis for T pq (V ). Using that fact that Ap(V ) = ImAp, we obtain

Ap(V ) = span{Ap(vi1 ⊗ · · · ⊗ vip) | 1 ≤ ik ≤ n}.

Apply Lemma 3.3.10, we get (when p > n) :

Ap(vi1 ⊗ · · · ⊗ vip) = 0 for all 1 ≤ ik ≤ n.

Then Ap(V ) = 0.

Proposition 3.3.12

Let {v1, . . . , vn} be a basis for a vector space V over a field F. Then the set

{Sp(vi1 ⊗ vi2 ⊗ · · · ⊗ vip) | 1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ n}

form a basis for Sp(V ). Furthermore

dimSp(V ) = Cn+p−1
p = (n+ p− 1)!

(n− 1)!p! .

Proposition 3.3.13

Let {v1, . . . , vn} be a basis for a vector space V over a field F. For all p ≤ n, the set

{Ap(vi1 ⊗ vi2 ⊗ · · · ⊗ vip) | 1 ≤ i1 < i2 < · · · < ip ≤ n}

form a basis for Ap(V ). Furthermore

dimAp(V ) = Cnp = n!
(n− p)!p! .

3.4 Tensor algebras and their properties

Definition 3.4.1 Direct product / Direct sum of vector spaces

Let
(
Vi

)∞

i=1
be infinitely collection of F-vector spaces.

• A direct product
∞∏
i=1

Vi is the set of all sequences (v1, v2, ...) where each vi ∈ Vi with usual pointwise

addition
(v1, v2, . . . ) + (w1, w2, . . . ) = (v1 + w1, v2 + w2, . . . ),

and scalar multiplication
λ(v1, v2, . . . ) = (λv1, λv2, . . . )
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• The direct sum
∞⊕
i=1

Vi is the set of all sequences (v1, v2, ...) where each vi ∈ Vi such that

{i | vi ̸= 0} is finite

with usual pointwise addition and scalar multiplication.

If we identify

vi ∈ Vi (0, . . . , 0, vi, 0, . . .) ∈
∞⊕
i=1

Vi

ith term

then Vi can be considered as a subset of
∞⊕
i=1

Vi.

If v = (v1, v2, ...) ∈
∞⊕
i=1

Vi, there exists an integer i0 such that vi = 0 for all i > i0. Thus we can write

the element v as

v =
i0∑
i=1

vi.

Definition 3.4.2 F-algebras

Given a field, F, a F-algebra is a F-vector space A, together with a bilinear operation · : A×A GA A,
called multiplication, which makes A into a ring with 1. This means that · is associative and that
there is a multiplicative identity element, 1, so that 1 · a = a · 1 = a, for all a ∈ A.

Example 3.4.3

(1) The polynomial ring F[X,Y ] is a F-algebra.

(2) Mn×n(F) is a F-algebra, This is called a matrix algebra over F.

(3) The set L(V, V ) of linear maps of a F-vector space V to itself is a F-algebra under addition and
composition of linear maps.

Recall that if p, q, r, s be positive integers, we have the following isomorphism of F-vector spaces:
T pq (V ) ⊗ T rs (V ) ∼= T p+q

q+s (V ).
Let σ be the canonical mapping of the tensor product T pq (V ) ⊗ T rs (V ). We have :

T pq (V ) ⊗ T rs (V ) T pq (V ) ⊗ T rs (V ) T p+q
q+s (V )

(x, y) x⊗ y xy

σ ∼=

The image of (x, y) in T p+q
q+s (V ) is denoted by xy.
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Definition 3.4.4 Tensor algebra

We define the tensor algebra T (V ) of a F-vector space V by

T (V ) =
∞⊕
p=0

T p(V ).

Next, let us define the product of two elements of T (V ). We have the following bilinear mapping:

T p(V ) ⊗ T q(V ) T p+q(V )

(x, y) xy

Thus for t =
∞∑
i=1

ti and t′ =
∞∑
i=1

t′i be two elements in T (V ), where ti, t′i ∈ T i(V ), we define the product tt′ by

tt′ =
∞∑
i=1

∑
r+s=i

trts

From the associativity of tensor product, the multiplication thus defined satisfies the associativity law, i.e.,
for t, t′, t” ∈ T (V ), we have

t(t′t′′) = (tt′)t′′

If we consider 1 ∈ F = T 0(V ) as an element of T (V ), we have, for all t ∈ T (V ),

1t = t1 = t.

Definition 3.4.5 Homomorphism of associative algebras

Let R and S be two associative algebras over a field F. A linear mapping f from R to S of F-vector
spaces is called homomorphism of associative algebras if f(1R) = 1S . and

f(r · r′) = f(r) · f(r′) for all r, r′ ∈ R.

Theorem 3.4.6 Universal property of the Tensor Algebra T (V )

Let V be a F-vector space, R an associative algebra with the unit element 1R, and f a linear mapping
of V into R. There exists a unique associative algebra homomorphism F : T (V ) GA R such that
F (1F) = 1R and F ◦ ι = f , where ι denotes the natural inclusion mapping of V into T (V ).

V = T 1(V ) T (V )

R

ι

f
F

3.5 Exercise set
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Exercise 3.5.1

Let σ ∈ Sp and Fσ : V1 × · · · × Vp GA T p(V ) the mapping defined by

Fσ(v1, . . . , vp) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(p)

Show that Fσ is p-multilinear.

Solution. Linearity for the first variable: consider σ(1) = r. Then

Fσ(αv1, v2, . . . , vp) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(r−1) ⊗ αv1 ⊗ vσ−1(r+1) ⊗ · · · ⊗ vσ−1(p)

= α
(
vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(r−1) ⊗ vσ−1(r) ⊗ vσ−1(r+1) ⊗ · · · ⊗ vσ−1(p)

)
= αFσ(v1, v2, . . . , vp)

In addition

Fσ(v1 + v′
1, v2, . . . , vp) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(r−1) ⊗ (v1 + v′

1) ⊗ vσ−1(r+1) ⊗ · · · ⊗ vσ−1(p)

= vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(r−1) ⊗ v1 ⊗ vσ−1(r+1) ⊗ · · · ⊗ vσ−1(p)

+ vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(r−1) ⊗ v′
1 ⊗ vσ−1(r+1) ⊗ · · · ⊗ vσ−1(p)

= Fσ(v1, v2, . . . , vp) + Fσ(v1 + v′
1, v2, . . . , vp).

Similarly, we can show that Fσ is linear for all of each variable.

Exercise 3.5.2

Show that, the set of symmetric tensors Sp(V ) and that of alternating tensors Ap(V ) are vector
subspaces of TP (V ).

Solution. Recall that:
(1) An element t ∈ T p(V ) is called a symmetric tensor, if Pσ(t) = t for all σ ∈ Sp.

(2) An element t ∈ T p(V ) is called an alternating tensor, if Pσ(t) = sgn(σ)t for all σ ∈ Sp.
Clearly 0 ∈ Sp(V ), because Pσ(0) = 0 for all σ ∈ Sp. Let t1, t2 ∈ Sp(V ). Then

Pσ(t1) = t1 and Pσ(t2) = t2 for all σ ∈ Sp.

Since Pσ is linear, for all σ ∈ Sp and α ∈ F,

Pσ(t1 + αt2) = Pσ(t1) + αPσ(t2)
= t1 + αt2.

Hence t1 + αt2 ∈ Sp(V ). Therefore Sp(V ) is a vector subspace of T p(V ).

Similarly, we have 0 ∈ Ap(V ), because Pσ(0) = 0 = sgn(σ)0 for all σ ∈ Sp. Let t1, t2 ∈ Ap(V ). Then

Pσ(t1) = sgn(σ)t1 and Pσ(t2) = sgn(σ)t2 for all σ ∈ Sp.

Since Pσ is linear, for all σ ∈ Sp and α ∈ F,

Pσ(t1 + αt2) = Pσ(t1) + αPσ(t2)
= sgn(σ)t1 + αsgn(σ)t2
= sgn(σ)(t1 + αt2).

Hence t1 + αt2 ∈ Ap(V ). So Ap(V ) is a vector subspace of T p(V ).
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Exercise 3.5.3
Let V be a vector space. Show that

S1(V ) = A1(V ) = T 1(V ) = V.

Solution. By definition T 1(V ) = V . The set of permutations S1 contains one element σ = Id with signature
equals 1. We have, for all v1 ∈ V

Pσ(v1) = vσ−1(1)

= v1

= sgn(σ)v1.

Hence
S1(V ) = A1(V ) = V.

Exercise 3.5.4

Let V be a F-vector space of dimension n, B = {v1, . . . , vn} a basis for V , and

tij = vi ⊗ vj for all 1 ≤ i, j ≤ n.

(1) Show that,

(a) tij + tji ∈ S2(V ) for all 1 ≤ i, j ≤ n.
(b) tij − tji ∈ A2(V ) for all 1 ≤ i, j ≤ n.
(c) B1 = {tij + tji | i ≤ j} form a basis of S2(V ).
(d) B2 = {tij − tji | i < j} form a basis of A2(V ).

(2) Deduce that

dimS2(V ) = n(n+ 1)
2

and
dimA2(V ) = n(n− 1)

2

Solution. Let t =
∑
i,j αijtij ∈ S2(V ). Then P(1 2)(t) = t. So∑

i,j

αijtij =
∑
i,j

αijtji

αij = αij

t =
∑
i

αiitii +
∑
i<j

αij(tij + tji)

dimS2(V ) = n+ (n− 1) + · · · + 1 = n(n+ 1)
2

and
dimA2(V ) = (n− 1) + (n− 1) + · · · + 1 = n(n− 1)

2 .
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Exercise 3.5.5
Let v1, v2, v3 be three vectors in V . Show that

S3(v1 ⊗ v2 ⊗ v3) = S3(v1 ⊗ v3 ⊗ v2).

Solution. By definition, we have

S3(v1 ⊗ v2 ⊗ v3) = 1
3!

∑
σ∈S3

Pσ(v1 ⊗ v2 ⊗ v3).

Since S3 has six permutations {(1), (1 2), (2 3), (1 3), (1 2 3), (1 3 2)},

S3(v1 ⊗ v2 ⊗ v3) = 1
6

(
v1 ⊗ v2 ⊗ v3 − v2 ⊗ v1 ⊗ v3 − v1 ⊗ v3 ⊗ v2 − v3 ⊗ v2 ⊗ v1 + v2 ⊗ v3 ⊗ v1 + v3 ⊗ v1 ⊗ v2

)
.

Interchanging v2 and v3, we get form the previous equality

S3(v1 ⊗ v3 ⊗ v2) = 1
6

(
v1 ⊗ v3 ⊗ v2 − v3 ⊗ v1 ⊗ v2 − v1 ⊗ v2 ⊗ v3 − v2 ⊗ v3 ⊗ v1 + v3 ⊗ v2 ⊗ v1 + v2 ⊗ v1 ⊗ v3

)
.

Hence S3(v1 ⊗ v2 ⊗ v3) = S3(v1 ⊗ v3 ⊗ v2).

Exercise 3.5.6

Let {v1, . . . , vn} be a basis for a vector space V over a field F. Show that dimAn(V ) = 1 and give a
generator of An(V ).

Solution. Using the formula
dimAp(V ) = Cnp = n!

(n− p)!p! ,

we get dimAn(V ) = 1. and
Ap(V ) = span{v1 ⊗ · · · ⊗ vn}.

Exercise 3.5.7

Let {v1, . . . , vn} be a basis for a vector space V over a field F and p < n. Show that

dimAp(V ) = dimAn−p(V ).

Solution. Using the formula
dimAp(V ) = Cnp = n!

(n− p)!p! ,

we get
dimAn−p(V ) = Cnn−p = n!

p!(n− p)! .
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4.1 Symmetric algebra
Recall that if V is a F-vector space, then for any permutation σ ∈ Sp, we have a linear mapping

Pσ : T p(V ) GA T p(V ),

such that for all v1, . . . , vp ∈ V ,

Pσ(v1 ⊗ · · · ⊗ vp) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(p)

The vector space of symmetric tensor is

Sp(V ) = {t ∈ T (V ) | Pσ(t) = t}

It known that
S0(V ) = F and S1(V ) = V.

Consider the F-vector space

S(V ) =
∞⊕
i=0

Sp(V ) = F ⊕ V ⊕ S2(V ) ⊕ · · ·

Clearly S(V ) is a vector subspace of T (V ).
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We will define a multiplication for which S(V ) becomes an associative algebra. Let t ∈ Sp(V ) and t′ ∈ Sp(V ),
then t ⊗ t′ ∈ T p+q(V ) is not necessarily a symmetric tensor, but Sp+q(t ⊗ t′) is symmetric regarding the
proposition 3.3.8, where Sp+q is the symmetrizer transformation on T (V )

Sp = 1
(p+ q)!

∑
σ∈Sp+q

Pσ.

Hence we can define the multiplication ⊙ on S(V ) by

t⊙ t′ = Sp+q(t⊗ t′) = 1
(p+ q)!

∑
σ∈Sp+q

Pσ(t⊗ t′),

for all t ∈ Sp(V ) and t′ ∈ T q(V ).

In general, for t =
∞∑
p=0

tp and t′ =
∞∑
q=0

tq
′ (tp ∈ Sp(V ) and t′q ∈ Sq(V )) , define

t⊙ t′ =
∑
p,q

tp ⊙ t′q =
∞∑
k=0

 ∑
p+q=k

Sk(tp ⊗ t′q)

=
∞∑
k=0

Sk

 ∑
p+q=k

tp ⊗ t′q

 . (4.1)

Example 4.1.1

Let v1, v2 be two vectors in V and α ∈ F. Then v1 and v2 are symmetric tensors in S1(V ) and

v1 ⊙ v2 = 1
2!

∑
σ∈S2

Pσ(v1 ⊗ v2).

Since S2 has two permutations {σ1 = (1), σ2 = (1 2)}, v1 ⊙ v2 = 1
2
(
Pσ1(v1 ⊗ v2) +Pσ2(v1 ⊗ v2)

)
. Hence

v1 ⊙ v2 = 1
2

(
v1 ⊗ v2 + v2 ⊗ v1

)
.

We conclude that , If we take v1 = v2 = v ∈ V , then

v ⊙ v = v ⊗ v.

We have, also, if α ∈ S0(V ) and v ∈ S1(V ) are symmetric tensor, and

α⊙ v = α⊗ v.

Example 4.1.2

Let v1, v2.v3 be two vectors in V . Put r = 1
2

(
v1 ⊗ v2 + v2 ⊗ v1

)
and s = v3. Then

s⊙ r = 1
3!

∑
σ∈S3

1
2

(
Pσ(v1 ⊗ v2 ⊗ v3) + Pσ(v2 ⊗ v1 ⊗ v3)

)
= 1

3!
∑
σ∈S3

Pσ(v1 ⊗ v2 ⊗ v3).

Since S3 has six permutations {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)},
Hence

r ⊙ s = 1
6

(
v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3 + v1 ⊗ v3 ⊗ v2 + v3 ⊗ v2 ⊗ v1 + v2 ⊗ v3 ⊗ v1 + v3 ⊗ v1 ⊗ v2

)
.
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Proposition 4.1.3

Let tp ∈ T p(V ) and tq ∈ T q(V ). Then

Sp+q( Sp(tp) ⊗ tq ) = Sp+q( tp ⊗ Sq(tq) ) = Sp+q(tp ⊗ tq).

Proof. For all σ ∈ Sp, we denote σ̃ ∈ Sp+q the permutation defined by

σ̃(i) =
{
σ(i) if 1 ≤ i ≤ p

i if p+ 1 ≤ i ≤ p+ q

Sp+q( Sp(tp) ⊗ tq ) = 1
p!

∑
σ∈Sp

Sp+q( Pσ(tp) ⊗ tq ).

But Sp+q( Pσ(tp) ⊗ tq ) = Sp+q( Pσ̃(tp ⊗ tq) ) = Sp+q(tp ⊗ tq) (see Proposition 3.3.8 (1)) . Therefore

Sp+q( Sp(tp) ⊗ tq ) = 1
p!

∑
σ∈Sp

Sp+q( tp ⊗ tq )

= Sp+q( tp ⊗ tq )

The product defined in (4.1) is commutative, bilinear and associative.

Commutativity: this product is commutative, because for all tp ∈ Sp(V ) and tq ∈ Sq(V ), we have∑
σ∈Sp+q

Pσ(tp ⊗ tq) =
∑

σ∈Sp+q

Pσ(tq ⊗ tp).

Bilinearity: by the definition of the multiplication in (4.1), we have clearly

(tp + tq) ⊙ tl = tp ⊙ tl + tq ⊙ tl for all (tp, tq, tl) ∈ Sp(V ) × Sq(V ) × Sl(V ).

and for all α ∈ F, we have

(αtp) ⊙ tq =
∑

σ∈Sp+q

Pσ(αtp ⊗ tq)

=
∑

σ∈Sp+q

αPσ(tp ⊗ tq)

= α
∑

σ∈Sp+q

Pσ(tp ⊗ tq)

= α(tp ⊙ tq).

Associativity: for all (tp, tq, tl) ∈ Sp(V ) × Sq(V ) × Sl(V ), we have

(tp ⊙ tq) ⊙ tl = Sp+q(tp ⊗ tq) · tl
= Sp+q+l(Sp+q(tp ⊗ tq) ⊗ tl)

= Sp+q+l

(
(tp ⊗ tq) ⊗ tl

)
By Proposition 4.1.3 (1) (4.2)
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Similarly, we can show that

(tp ⊙ ⊙(tq ⊙ tl) = Sp+q+l

(
(tp ⊗ (tq ⊗ tl)

)
(4.3)

Since tp ⊗ (tq ⊗ tl) = (tp ⊗ tq) ⊗ tl, we obtain from (4.2) and (4.3),

(tp ⊙ tq) ⊙ tl = tp ⊙ (tq ⊙ tl).

Definition 4.1.4 Symmetric algebra S(V )

The associative algebra S(V ) is called the symmetric algebra of V .

4.2 Exterior algebras
Recall that if V is a F-vector space of dimension n, then the vector space of alternating tensor is

Ap(V ) = {t ∈ T (V ) | Pσ(t) = t}

It known that
A0(V ) = F and A1(V ) = V.

Consider the F-vector space

A(V ) =
∞⊕
i=0

Ap(V ) =
n⊕
i=0

Ap(V ) = F ⊕ V ⊕A2(V ) ⊕ · · ·An(V ).

Clearly A(V ) is a vector subspace of T (V ).

We define now a multiplication on A(V ). Let t ∈ Ap(V ) and t′ ∈ Aq(V ). Then, t⊗ t′ ∈ T p+q(V ). Therefore
Ap+q(t⊗ t′) is an alternating tensor in Ap+q(V ), where

Ak = 1
k!

∑
σ∈Sk

sgn(σ)Pσ.

We define exterior product ∧ of t and t′ by

t ∧ t′ = Ap+q(t⊗ t′).

In general, for t =
∞∑
p=0

tp and t′ =
∞∑
q=0

tq
′ (tp ∈ Ap(V ) and t′q ∈ Aq(V )) , define

t ∧ t′ =
∑
p,q

tp ∧ t′q =
∞∑
k=0

 ∑
p+q=k

Ak(tp ⊗ t′q)

=
∞∑
k=0

Ak

 ∑
p+q=k

tp ⊗ t′q

 . (4.4)

Example 4.2.1

Let v1, v2 be two vectors in V and α ∈ F. Then v1 and v2 are alternating tensors in A1(V ) and

v1 ∧ v2 = 1
2!

∑
σ∈S2

sgn(σ)Pσ(v1 ⊗ v2).
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Therefore,
v1 ∧ v2 = 1

2
(
v1 ⊗ v2 − v2 ⊗ v1

)
.

We conclude that:

(1) for all v1, v2 ∈ V , v1 ∧ v2 = −(v2 ∧ v1)

(2) for all v ∈ V , v ∧ v = 0.

Example 4.2.2

Let v1, v2.v3 be two vectors in V . Put r = v1 ∧ v2 = 1
2(v1 ⊗ v2 − v2 ⊗ v1) and s = v3. Then

s ∧ r = 1
3!

∑
σ∈S3

1
2sgn(σ)

(
Pσ(v1 ⊗ v2 ⊗ v3) − Pσ(v2 ⊗ v1 ⊗ v3)

)
= 1

3!
∑
σ∈S3

sgn(σ)Pσ(v1 ⊗ v2 ⊗ v3).

Since S3 has six permutations {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)},
Hence

r ∧ s = 1
6

(
v1 ⊗ v2 ⊗ v3 − v2 ⊗ v1 ⊗ v3 − v1 ⊗ v3 ⊗ v2 − v3 ⊗ v2 ⊗ v1 + v2 ⊗ v3 ⊗ v1 + v3 ⊗ v1 ⊗ v2

)
.

Proposition 4.2.3

Let tp ∈ T p(V ) and tq ∈ T q(V ). Then

Ap+q( Ap(tp) ⊗ tq ) = Ap+q( tp ⊗ Aq(tq) ) = Ap+q(tp ⊗ tq).

Proof. For all σ ∈ Sp, we denote σ̃ ∈ Sp+q the permutation defined by

σ̃(i) =
{
σ(i) if 1 ≤ i ≤ p

i if p+ 1 ≤ i ≤ p+ q

Ap+q( Ap(tp) ⊗ tq ) = 1
p!

∑
σ∈Sp

sgn(σ)Ap+q( Pσ(tp ⊗ tq) ) = 1
p!

∑
σ∈Sp

sgn(σ)Ap+q( Pσ̃(tp ⊗ tq) )

Apply Proposition 3.3.8 (1), for any τ ∈ Sp+q, we have

PτAp+q = Ap+qPτ = sgn(τ)Ap+q.

Hence

Ap+q( Ap(tp) ⊗ tq ) = 1
p!

∑
σ∈Sp

sgn(σ)sgn(σ̃)( Ap+q(tp ⊗ tq) )

= 1
p!

∑
σ∈Sp

Ap+q(tp ⊗ tq)

= Ap+q(tp ⊗ tq).
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The product defined in (4.4) is bilinear and associative.

Bilinearity: by the definition of the multiplication in (4.4), we have clearly

(tp + tq) ∧ tl = tp ∧ tl + tq ∧ tl for all (tp, tq, tl) ∈ Ap(V ) ×Aq(V ) ×Al(V ).

and for all α ∈ F, we have

(αtp) ∧ tq =
∑

σ∈Sp+q

sgn(σ)Pσ(αtp ⊗ tq)

= α
∑

σ∈Sp+q

sgn(σ)Pσ(tp ⊗ tq)

= α(tp ∧ tq).

Associativity: for all (tp, tq, tl) ∈ Ap(V ) ×Aq(V ) ×Al(V ), we have

(tp ∧ tq) ∧ tl = Ap+q(tp ⊗ tq) ∧ tl

= Ap+q+l(Ap+q(tp ⊗ tq) ⊗ tl)

= Ap+q+l

(
(tp ⊗ tq) ⊗ tl

)
By Proposition 4.2.3 (4.5)

Similarly, we can show that

tp ∧ (tq ∧ tl) = Ap+q+l

(
(tp ⊗ (tq ⊗ tl)

)
(4.6)

Since tp ⊗ (tq ⊗ tl) = (tp ⊗ tq) ⊗ tl, we obtain from (4.5) and (4.6),

(tp ∧ tq) ∧ tl = tp ∧ (tq ∧ tl).

Definition 4.2.4 Exterior algebra A(V )

The associative algebra A(V ) is called the exterior algebra of V .

Proposition 4.2.5

For all t ∈ Ap(V ) and ′ ∈ Aq(V ), we have

t ∧ t′ = (−1)pq t′ ∧ t.

Proof. Since ∧ is bilinear, it suffices to prove the result for{
t = Ap(v1 ⊗ · · · ⊗ vp) = v1 ∧ v2 ∧ · · · ∧ vp

t′ = Aq(vp+1 ⊗ · · · ⊗ vp+q) = vp+1 ∧ vp+2 ∧ · · · ∧ vp+q.
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We have

t ∧ t′ =
(
v1 ∧ v2 ∧ · · · ∧ vp

)
∧

(
vp+1 ∧ vp+2 ∧ · · · ∧ vp+q

)
= (−1)q

(
v1 ∧ v2 ∧ · · · ∧ vp−1

)
∧

(
vp+1 ∧ vp+2 ∧ · · · ∧ vp+q

)
∧ vp

= (−1)q(−1)q
(
v1 ∧ v2 ∧ · · · ∧ vp−2

)
∧

(
vp+1 ∧ vp+2 ∧ · · · ∧ vp+q

)
∧ vp−1 ∧ vp

...
= (−1)q(−1)q · · · (−1)q︸ ︷︷ ︸

p factors

(
vp+1 ∧ vp+2 ∧ · · · ∧ vp+q

)
∧

(
v1 ∧ v2 ∧ · · · ∧ vp

)
= (−1)pq

(
vp+1 ∧ vp+2 ∧ · · · ∧ vp+q

)
∧

(
v1 ∧ v2 ∧ · · · ∧ vp

)
= (−1)pq(t′ ∧ t).
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4.3 Exercise set

Exercise 4.3.1

Let B = {e1, e2, e3} be the standard basis of the real vector space V = R3.

(1) Give the dimension of the following vector spaces: T 3(V ), S3(V ) and A3(V ).

(2) Let u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) be three vectors in R3. Show that:

(a) u ∧ v = (u1v2 − u2v1)e1 ∧ e2 + (u1v3 − u3v1)e1 ∧ e3 + (u2v3 − u3v2)e2 ∧ e3

(b) u ∧ v ∧ w =

∣∣∣∣∣∣
u1 v1 w1
u2 v2 w2
u3 v3 w3

∣∣∣∣∣∣ e1 ∧ e2 ∧ e3.

Solution.

u ∧ v = (u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3)
= u1v1 e1 ∧ e1 + u1v2 e1 ∧ e2 + u1v3 e1 ∧ e3

+ u2v1 e2 ∧ e1u2v2 e2 ∧ e2 + u2v3 e2 ∧ e3

+ u3v1 e3 ∧ e1 + u3v2 e3 ∧ e2 + u3v3 e3 ∧ e3

= u1v2 e1 ∧ e2 + u1v3 e1 ∧ e3 + u2v1 e2 ∧ e1 + u2v3 e2 ∧ e3 − u3v1 e1 ∧ e2 − u3v2 e2 ∧ e3

= u1v2 e1 ∧ e2 + u1v3 e1 ∧ e3 − u2v1 e1 ∧ e2 + u2v3 e2 ∧ e3 − u3v1 e1 ∧ e3 − u3v2 e2 ∧ e3

= (u1v2 − u2v1)e1 ∧ e2 + (u1v3 − u3v1)e1 ∧ e3 + (u2v3 − u3v2)e2 ∧ e3

Hence

u ∧ v =
∣∣∣∣u1 v1
u2 v2

∣∣∣∣ e1 ∧ e2 +
∣∣∣∣u1 v1
u3 v3

∣∣∣∣ e1 ∧ e3 +
∣∣∣∣u2 v2
u3 v3

∣∣∣∣ e2 ∧ e3.

u ∧ v ∧ w = (u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3) ∧ (w1e1 + w2e2 + w3e3)

=
(

(u1v2 − u2v1)e1 ∧ e2 + (u1v3 − u3v1)e1 ∧ e3 + (u2v3 − u3v2)e2 ∧ e3

)
(w2e2 + w3e3)

= (u1v2w3 − u2v1w3)e1 ∧ e2 ∧ e3 + (u1v3w2 − u3v1w2)e1 ∧ e3 ∧ e2 + (u2v3w1 − u3v2w1)e2 ∧ e3 ∧ e1

= (u1v2w3 − u2v1w3)e1 ∧ e2 ∧ e3 − (u1v3w2 − u3v1w2)e1 ∧ e2 ∧ e3 + (u2v3w1 − u3v2w1)e1 ∧ e2 ∧ e3

= (u1v2w3 − u2v1w3 − u1v3w2 + u3v1w2 + u2v3w1 − u3v2w1)e1 ∧ e2 ∧ e3

=

∣∣∣∣∣∣
u1 v1 w1
u2 v2 w2
u3 v3 w3

∣∣∣∣∣∣ e1 ∧ e2 ∧ e3.

Exercise 4.3.2
Let V be a vector space of dimension n. Show that

dimA(V ) = 2n.

Hint. Use Newton’s Binomial Theorem.
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Solution. Since A(V ) =
∑n
p=1 A

p(V ),

dimA(V ) =
n∑
p=1

dimAp(V ) =
n∑
p=1

Cnp .

By Newton’s Binomial Theorem, we now that

(x+ y)n =
n∑
p=1

Cnp x
pyn−p.

Therefore
2n =

n∑
p=1

Cnp .

Consequently,
dimA(V ) = 2n.

Exercise 4.3.3
Let

σ =
(

1 2 · · · p
i1 i2 · · · ip

)
be a permutation in Sp, and v1, . . . , vp be elements in a vector space V . Show that

vi1 ∧ vi2 ∧ · · · ∧ vip = sgn(σ)
(
v1 ∧ v2 ∧ · · · ∧ vp

)
.

Solution.

vi1 ∧ vi2 ∧ · · · ∧ vip = Ap(vi1 ⊗ vi2 ⊗ · · · ⊗ vip)
= Ap

(
Pσ−1(v1 ⊗ v2 ⊗ · · · ⊗ vp)

)
= sgn(σ−1)Ap

(
v1 ⊗ v2 ⊗ · · · ⊗ vp

)
= sgn(σ)

(
v1 ∧ v2 ∧ · · · ∧ vp

)

Exercise 4.3.4

Let t ∈ Ap(V ), where p is odd number. Show that

t ∧ t = 0.

Solution. We now that, for all t ∈ Ap(V ) and ′ ∈ Aq(V ),

t ∧ t′ = (−1)pq t′ ∧ t.

Hence
t ∧ t = (−1)p

2
t ∧ t.

If p = 2k + 1 is odd, then p2 = 2(2k2 + 2k) + 1 is odd, so

t ∧ t = −t ∧ t.

Therefore
t ∧ t = 0.
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Exercise 4.3.5

Let V = R2, e1 =
(

1
0

)
, e2 =

(
0
1

)
. Show that, if v1 = ae1 + be2 and v2 = ce1 + de2, where a, b, c and

d are real numbers, then v1 ∧ v2 = (ad− bc)(e1 ∧ e2).

Solution.
(a, b) ∧ (c, d) = (ax+ by) ∧ (cx+ dy)

= ac(x ∧ x) + ad(x ∧ y) + bc(y ∧ x) + bd(y ∧ y)
= 0 + ad(x ∧ y) + bc(y ∧ x) + 0
= ad(x ∧ y) − bc(y ∧ x)
= (ad− bc)(x ∧ y)

Exercise 4.3.6

Let t ∈ Ap(V ) and t′ ∈ Aq(V ), where p and q are odd numbers. Show that

t ∧ t′ = − t′ ∧ t.

Solution. We now that, for all t ∈ Ap(V ) and ′ ∈ Aq(V ),

t ∧ t′ = (−1)pq t′ ∧ t.

Since p and q are odd numbers, pq is odd. Hence

t ∧ t = − t ∧ t.

Exercise 4.3.7

Let v and v′ be vectors in V . Show that

v ∧ v′ = 0 ⇐⇒ v and v′ are linearly dependent

Solution. If v and v′ are linearly dependent, then v′ = αv for some scalar α ∈ F, so

v ∧ v′ = v ∧ αv = α(v ∧ v) = 0.

Conversely, if v and v′ are linearly independent and can be extended to a basis, but then v ∧ v′ is a basis
vector and so is non-zero.

Exercise 4.3.8
Let v1, . . . , vk be vectors in a finite dimensional F-vector space V . Show that,

v1 ∧ v2 ∧ · · · ∧ vk = 0 ⇐⇒ the vectors v1, . . . , vk are linearly dependent.
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Solution. Assume that the vectors v1, . . . , vk are linearly dependent. Without loss of generality, suppose
that :

vk =
k−1∑
i=1

civi,

where c1, ..., ck−1 ∈ F. Then

v1 ∧ v2 ∧ · · · ∧ vi ∧ · · · ∧ vk = (v1 ∧ v2 ∧ · · · vk−1) ∧ vk

= (v1 ∧ v2 ∧ · · · ∧ vk−1) ∧
k−1∑

1
civi

=
k−1∑
i=1

ci (v1 ∧ v2 ∧ · · · ∧ vi ∧ · · · ∧ vk−1) ∧ vi︸ ︷︷ ︸
=0

= 0.

Conversely, suppose that the vectors v1, . . . , vk are linearly independent. Then we can extend it to a basis
v1, . . . , vn of V . This means the elements

vi1 ∧ vi2 ∧ · · · ∧ vik where 1 ≤ i1 < i2 < · · · < ik ≤ n

form a basis for Ak(V ), and since v1 ∧ v2 ∧ · · · ∧ vi ∧ · · · ∧ vk is an element of this basis,

v1 ∧ v2 ∧ · · · ∧ vk ̸= 0.

Exercise 4.3.9
Let v1, v2 and v3 be vectors in V . Show that

(v3 ∧ v1 ∧ v2) + (v2 ∧ v3 ∧ v1) = 2(v1 ∧ v2 ∧ v3).

Solution. Clearly

v3 ∧ v1 ∧ v2 = −v1 ∧ v3 ∧ v2 = −(−v1 ∧ v2 ∧ v3) = v1 ∧ v2 ∧ v3,

and
v2 ∧ v3 ∧ v1 = −(v2 ∧ v1 ∧ v3) = −(−v1 ∧ v2 ∧ v3) = v1 ∧ v2 ∧ v3.

Then
(v3 ∧ v1 ∧ v2) + (v2 ∧ v3 ∧ v1) = 2(v1 ∧ v2 ∧ v3).

Exercise 4.3.10

Let v be a nonzero vector in V and t ∈ Ak(V ). Show that v ∧ t = 0 if and only if t = v ∧ t′ for some
t′ ∈ Ak−1(V ).

Solution. Clearly, if t = v ∧ t′ for some t′ ∈ Ak−1(V ), then

v ∧ t = v ∧ (v ∧ t′) = (v ∧ v) ∧ t′ = 0 ∧ t′ = 0.

Conversely, assume that v ∧ t = 0. Extend v to a basis v1, . . . , vn for V , with v1 = v. Write

t =
∑

cJvJ ,
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where the sum runs over all strictly ascending multi-indices 1 ≤ j1 < · · · < jk ≤ n, and vJ = vj1 ∧vj2 ∧· · ·∧vjk
.

In the sum
v ∧ t =

∑
J

cJ v ∧ vJ

all the terms α ∧ vJ with j1 = 1 vanish, since v = v1 . Hence,

0 = v ∧ γ =
∑
j1 ̸=1

cJ v ∧ vJ .

Since (v ∧ vJ)j1 ̸=1 is a subset of a basis for Ak+1(V ) it is linearly independent, and so all cJ are 0 if j1 ̸= 1.
Thus,

t =
∑
j1=1

cJvJ = v ∧

 ∑
j1=1

cJvj2 ∧ · · · ∧ vjk

 = v ∧ t′,

where
t′ =

∑
j1=1

cJvj2 ∧ · · · ∧ vjk
.
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Appendix

A Permutations

Appendix contents
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A.1 What is a permutation?

Definition A.1.1
A permutation of a set S is a function from S to S that is both one-to- one and onto. A permutation
group of a set S is a set of permutations of S that forms a group under function composition.

Although groups of permutations of any nonempty set S of objects exist, we will focus on the case where S
is finite. Furthermore, it is customary, as well as convenient, to take S to be a set of the form {1, 2, 3, · · · , n}
for some positive integer n.

For example, we define a permutation σ of the set {1, 2, 3, 4} by specifying

σ(1) = 2, σ(2) = 3, σ(3) = 1, σ(4) = 4.

A more convenient way to express this correspondence is to write it in array form as

σ =
(

1 2 3 4
2 3 1 4

)
.

Composition of permutations in the set of permutation is a binary operation. As an example, let

σ =
(

1 2 3 4 5
2 4 3 5 1

)
and τ =

(
1 2 3 4 5
5 4 1 2 3

)
.
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Then

τσ(1) = τ(σ(1)) = τ(2) = 4
τσ(2) = τ(σ(2)) = τ(4) = 2
τσ(3) = τ(σ(3)) = τ(3) = 1
τσ(4) = τ(σ(4)) = τ(5) = 3
τσ(5) = τ(σ(5)) = τ(1) = 5,

that is, τσ =
(

1 2 3 4 5
4 2 1 3 5

)
.

A.2 Symmetric Group
The symmetric group is one of the most important examples of a finite group, and we will spend quit a bit
of time investigating its properties. It will arise as a special case of the set SX of bijections from a set X
back to itself.

Before we can proceed, we need some preliminaries on functions. We will need some of these facts later on
when we discuss homomorphisms, so we will work a little more generally than is absolutely necessary right
now.

Now let’s formally define SX , the set of bijections from X to itself. We will then produced prove that
SX is a group under composition.

Definition A.2.1
Let X be a set. We define

SX = {f : X GA X : f is a bijection}

Note that SX is closed under composition of functions. In other words, the composition operation on SX is
associative (Exercise for student).

The composition is not commutative operation. To see this, let for example X = {1, 2, 3}, and define f
and g by the following diagrams:

X X

1
2
3

1
2
3

f
X X

1
2
3

1
2
3

g

Then
g ◦ f(1) = g(f(1) = g(2) = 3,

but
f ◦ g(1) = f(g(1)) = f(1) = 2,

so
g ◦ f ̸= f ◦ g

Thus SX will provide a new example of a nonabelian group.
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To finish checking that SX is a group, we need to verify the existence of an identity and inverses. For the
first one, recall that any set X has a special bijection from X to X, namely the identity function IdX :

Idx(x) = x

for all x ∈ X. note for any f ∈ SX , we have
f ◦ IdX(x) = f(IdX(x)) = f(x)

and
IdX ◦ f(x) = IdX(f(x)) = f(x)

for all x ∈ X. Thus IdX◦f = f◦IdX = f for all f ∈ SX , so IdX serves as an identity for SX under composition.

Finally, if f ∈ SX and y ∈ X, there is an x ∈ X such that f(x) = y, since f is onto. But f is also
one-to-one, so this x is unique. Therefore, we can define f−1(y) = x. You can check that

f ◦ f−1(y) = f(f−1(y))
= f(x)
= y

= IdX(y).
and

f−1 ◦ f(x) = f−1(f(x))
= f−1(y)
= x

= IdX(x).
so f−1 really is an inverse for f under composition. Therefore, by making all of these observations, we

establishes the following result:

Proposition A.2.2

SX forms a group under composition of functions.

If X is an infinite set, then SX is fairly hard to understand. One would have to either very brave or very
crazy to try to work with it. Things are much more tractable (and interesting) when X is finite.

Definition A.2.3 Symmetric group

Sn is the set of all permutations of the set {1, 2, · · · , n} and it is called the symmetric group of n
letters.

Pictorially, we represent the following bijection σ of {1, 2, 3} defined by
σ(1) = 2, σ(2) = 1 and σ(3) = 3,

with the following diagrams:

S S

1
2
3

1
2
3

σ

or σ =

 1 2 3

2 1 3

 .
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Proposition A.2.4

The order of the symmetric group Sn is n!.

How many permutations of {1, 2, · · · , n} are there? In order to define a permutation f of {1, 2, · · · , n}, we
need to determine where to send each integer. There are n choices for σ(1), and there are n− 1 choices for
σ(2). There are n− 2 choices for σ(3), and so on, until we reach σ(n), for which we only have one choice. In
other words, we have observed that the total number of permutations of {1, 2, · · · , n} is n(n−1)(n−2) · · · 2.1
Phrased in the language of group theory, we have shown that |Sn| = n!.

Example A.2.5

Suppose that σ ∈ S3 is given by the picture that we considered earlier, i.e. σ(1) = 2, σ(2) = 1, and
σ(3) = 3. Then we have

σ =
(

1 2 3
2 1 3

)
.

Of course if we are going to represent permutations in this way, it would help to know how multiplication
works in this notation. As an example, let

τ =
(

1 2 3
2 3 1

)
.

Then remember that multiplication is really just composition of functions:

στ =
(

1 2 3
2 1 3

) (
1 2 3
2 3 1

)
=

(
1 2 3

σ(τ(1)) σ(τ(2)) σ(τ(3))

)

=
(

1 2 3
σ(2) σ(3) σ(1)

)
=

(
1 2 3
1 3 2

)
.

On the other hand, what τσ?

τσ =

 1 2 3

2 3 1

  1 2 3

2 1 3

 =

 1 2 3

3 2 1



In other words, one moves right to left when computing the product of two permutations. First one
needs to find the number below 1 in the rightmost permutation, then find this number in the top row
of the left permutation, and write down the number directly below it. Repeat this process for the rest
of the integers 2 and 3.

In example above, note that στ ̸= τσ, we have actually verified that S3 in nonabelian.

Proposition A.2.6

For n ≥ 3, Sn is nonabelian group.

Proof. Let σ, τ ∈ S3 be defined as in the example, and suppose that n > 3. Define σ̄, τ̄ ∈ Sn by

σ̄(i) =
{
σ(i) if 1 ≤ i ≤ 3,
i if i > 3
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Similarly for τ̄ , by

τ̄(i) =
{
τ(i) if 1 ≤ i ≤ 3,
i if i > 3.

We have σ̄, τ̄ ∈ Sn. Then the computation that we performed in S3 shows that σ̄τ̄ ̸= τ̄ σ̄, so Sn is nonabelian.

Definition A.2.7

For any permutation σ the unique permutation τ such that στ = τσ = (1) is called the inverse of σ
and is denoted by σ−1.

Example A.2.8 Symmetric group S3

If S = {1, 2, 3}, the possible permutations can be written as

e =
(

1 2 3
1 2 3

)
= (1) δ =

(
1 2 3
1 3 2

)
ρ =

(
1 2 3
2 3 1

)
γ =

(
1 2 3
3 2 1

)
ξ =

(
1 2 3
3 1 2

)
σ =

(
1 2 3
2 1 3

)
Thus, S3 = {e, ρ, σ, γ, δ, ξ}. The Cayley Table of S3 is given as:

o e ρ ξ σ γ δ

e e ρ ξ σ γ δ
ρ ρ ξ e γ δ σ
ξ ξ e ρ δ σ γ
σ σ δ γ e ξ ρ
γ γ σ δ ρ e ξ
δ δ γ σ ξ ρ e

The following table give the inverse of the permutations in S3:

Permutation Inverse Remarks

e =
(

1 2 3
1 2 3

)
e−1 = e e1 = (1)

δ =
(

1 2 3
1 3 2

)
δ−1 = δ δ2 = (1)

γ =
(

1 2 3
3 2 1

)
γ−1 = γ γ2 = (1)

σ =
(

1 2 3
2 1 3

)
σ−1 = σ σ2 = (1)

ρ =
(

1 2 3
2 3 1

)
ρ−1 = ξ ρ3 = (1)

ξ =
(

1 2 3
3 1 2

)
ξ−1 = ρ ξ3 = (1)
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Example A.2.9

Find the inverse of each of the following permutations:

1. σ =
(

1 2 3 4 5
3 1 2 5 4

)
.

2. τ =
(

1 2 3 4
3 4 1 2

)
.

Solution

1. The inverse of σ can be obtained by reading the array form the bottom row to the top row. For
example, 1 in the bottom row must map to the number above it, which is 2. Similarly for the other
numbers, so

σ−1 =
(

1 2 3 4 5
2 3 1 5 4

)
2. Similar to 1., we read the array form of τ from bottom-to-top to get the array form of τ−1 :

τ−1 =
(

1 2 3 4
3 4 1 2

)
.

Notice this is just τ itself. So τ is its own inverse.

Theorem A.2.10

For any σ ∈ Sn there exists an integer m ≥ 1 for which σm = (1).

Proof. Consider the list of powers:
σ, σ2, σ3, . . . .

Since there are only finitely many permutations of any finite set, there must be repetitions within the list.
Assume that σs = σr for some 0 < r < s. Then

σr−s = (1).

Definition A.2.11 Orbits

Let σ be a permutation on a set X. The equivalence classes in X determined by the equivalence
relation

a ∼ b if and only if b = σn(a), for all n ∈ Z

are the orbits of σ.

Example A.2.12

Find the orbits of the permutation

σ =
(

1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
.
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Solution. To find the orbit containing 1, we apply σ repeatedly

1
σ

−GA 3
σ

−GA 6
σ

−GA 1
σ

−GA 3
σ

−GA 6 · · ·

Since σ−1 would simply reverse the directions of the arrow in the chain, we see that the orbit containing
1 is {1, 3, 6}. We now choose an integer from 1 to 8 not in {1, 3, 6}, say 2, and similarly find the orbit
containing 2 is

2
σ

−GA 8
σ

−GA 2
σ

−GA 8 · · ·

that is {2, 8}. Finally, we find the orbit containing 4 is {4, 7, 5}. Since these three orbits include all
integers from 1 to 8. Hence the complete list of orbits of σ is

{1, 3, 6}, {2, 8}, {4, 7, 5}.

2

8

4

7 5

1

3 6

There is another notation commonly used to specify permutations. It is called cycle notation. Cycle
notation has theoretical advantages in that certain important properties of the permutation can be readily
determined when cycle notation is used.

Definition A.2.13 Cycle

A permutation σ ∈ Sn is a cycle if it has at most one orbit containing more that one element. The
length of the cycle is the number of elements in its largest orbit.

Example A.2.14

Let us consider the permutation

σ =
(

1 2 3 4 5 6
2 1 4 6 5 3

)
.

This assignment of values could be presented schematically as follows:

1

2

3

4 6

5

Instead, we leave out the arrows and simply write a

σ = (1 2)(3 4 6)(5) = (1 2)(3 4 6) = (3 4 6)(1 2).
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Example A.2.15

As a second example, consider
τ =

(
1 2 3 4 5 6
5 3 1 6 2 4

)
.

6

4

52

3 1

In cycle notation, τ can be written as

τ = (2 3 1 5)(6 4) = (4 6)(3 1 5 2).

Definition A.2.16

An expression of the form (a1, a2, · · · , am) is called a cycle of length m or an m-cycle.

Example A.2.17

To determine the cycle form of the permutation

σ =
(

1 2 3 4 5 6 7 8 9 10
5 1 6 8 4 10 7 2 9 3

)
start with the smallest number in the set, in this case it is 1. Since σ(1) = 5 we begin the cycle by
writing

(1, 5, · · · ) · · ·
Next, 5 maps to 4, so we continue building the cycle

(1, 5, 4, · · · ) · · ·

Continuing in this way we construct (1, 5, 4, 8, 2, · · · ) · · · , and since 2 maps back to 1 then we close off
the cycle:

(1, 5, 4, 8, 2) · · ·
Next, we pick the smallest number that doesn’t appear in any previously constructed cycle. This is
the number 3 in this case. We now repeat what we just did and construct the cycle involving 3:

(1, 5, 4, 8, 2)(3, 6, 10) · · ·

We now pick the smallest number that doesn’t appear in any previously constructed cycle, which is 7,
and construct the cycle to which it belongs. In this case 7 just maps to itself:

(1, 5, 4, 8, 2)(3, 6, 10)(7) · · ·

Finally, the only number remaining is 9 and it maps back to itself so the cycle for of σ is

(1, 5, 4, 8, 2)(3, 6, 10)(7)(9)

which simplifies to
σ = (1, 5, 4, 8, 2)(3, 6, 10)

since our convention is omit 1-cycles. Therefore, σ is the product of a 3-cycle and a 5-cycle.
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Definition A.2.18 Support

The support of a k-cycle σ = (a1, a2, . . . , ak), is the set of entries

supp(σ) = {a1, a2, . . . , ak} .

In particular the support of a 1-cycle (a1) is the one-point set {a1}.

Definition A.2.19 Disjoint cycles

Two cycles σ and τ in Sn are called disjoint if supp(σ) ∩ supp(τ) = ∅.

Proposition A.2.20 Inverse of a cycle

If σ = (s1 s2 . . . sk−1 sk) be a cycle of length k, then

σ−1 = (sk sk−1 . . . s2 s1)

Proof. Exercise for students.

Example A.2.21

• Let σ = (2 5 4 6), then supp(σ) = {2, 5, 4, 6} and σ−1 = (6 4 5 2).

• The cycles (1 2 5 6) and (4 3) are disjoint.

• The cycles (1, 2, 6) and (4, 3, 1) are not disjoint.

Theorem A.2.22 Products of disjoint cycles

Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

Definition A.2.23 Transposition

A cycle of length 2 is called a transposition.

Remark A.2.24.

1. If σ is a transposition, then σ−1 = σ. For example (2 5)−1 = (5 2) = (2 5).
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2. Every k-cycle (s1, s2, . . . , sk−1, sk) can be written as a product transposition:

(s1 s2 s3 · · · sk−1 sk) = (s1 sk) (s1 sk−1) · · · (s1 s3)(s1 s2).

1
2

or
(s1 s2 · · · sk−2 sk−1 sk) = (sk sk−1) (sk sk−2) · · · (sk s2)(sk s1).

2
1

Example A.2.25

Consider the cycle c = (1 4 2 3) ∈ S4:
14

2 3

Then σ can be written as : σ = (1 4 2 3) = (1 3)(1 2)(1 4) = (3 2)(3 4)(3 1)
= (2 3 1 4) = (2 4)(2 1)(2 3) = (4 1)(4 3)(4 2).

14

2 3

14

2 3

14

2 3

14

2 3

Theorem A.2.26

No permutation in Sn can be expressed both as a product of an even number of transpositions and as
a product of an odd number of transpositions.

Definition A.2.27 Even and odd permutations

A permutation that can be expressed as a product of an even number of transpositions is called an even
permutation. A permutation that can be expressed as a product of an odd number of transpositions
is called an odd permutation.

Definition A.2.28 Signature of permutations

The signature of a permutation σ is denoted sgn(σ) and defined as 1 if σ is even, and −1 if σ is odd.
That means:

sgn(σ) =
{

1 if σ is even
−1 if σ is odd
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Remark A.2.29.

1. Every transposition is an odd permutation.

2. The identity permutation e = (1) is even, because for example e = (1 2)(1 2).

Example A.2.30

Determine whether the following permutation is odd or even and find their signature?

1. σ =
(

1 2 3 4 5 6
2 1 4 6 5 3

)
.

2. τ =
(

1 2 3 4 5 6
5 3 1 6 2 4

)
.

Solution:

Since
σ = (1 2)(3 4 6) = (1 2)︸ ︷︷ ︸

1

(3 6)︸ ︷︷ ︸
2

(3 4)︸ ︷︷ ︸
3

,

is a product of 3 transpositions, σ is an odd permutation, and hence sgn(σ) = −1. For the second
permutation, we have:

τ = (1 5 2 3)(4 6) = (1 3)︸ ︷︷ ︸
1

(1 2)︸ ︷︷ ︸
2

(1 5)︸ ︷︷ ︸
3

(4 6)︸ ︷︷ ︸
4

.

So τ is a product of 4 transpositions. Therefore τ is even, and hence sgn(τ) = 1.

Proposition A.2.31

Let σ be a cycle of length k. Then
sgn(σ) = (−1)k+1.

Proposition A.2.32

Let σ and τ be two permutations in Sn. Then

sgn(στ) = sgn(σ) × sgn(τ).

Moreover
sgn(σ−1) = sgn(σ).

and
sgn(στ) = sgn(τσ).
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Appendix

B Graded algebras

Appendix contents
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B.1 Preliminaries

Definition B.1.1 F-algebras (associative algebras)

Given a field, F, a F-algebra (or associative algebra over F) is a F-vector space R, together with a
bilinear operation · : R×R GA R, called multiplication, which makes R into a ring with 1 = 1R. This
means that · is associative and that there is a multiplicative identity element, 1, so that 1 ·r = r ·1 = r,
for all r ∈ R.

Example B.1.2 Algebra of linear transformations

The vector space L(V ) of all linear transformations T : V GA V is an algebra, where in this algebra
the product fg of two linear transformations f, g ∈ L(V ) is defined to be their composition; that is,
fg is the linear transformation on V defined by

(fg)(v) = f(g(v)).

The identity map on V , which sends every v ∈ V to itself, is the identity element 1 ∈ L(V ), and if V
has dimension greater than 1, then L(V ) is a noncommutative algebra.
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Example B.1.3 Algebra of square matrices

Mn×n(F) is a F-algebra, This is called a matrix algebra over F, where in this algebra the product is
the matrix multiplication, and 1 = In the identity matrix.

Example B.1.4

The vector space of polynomial F[x] is a F-algebra, with polynomial multiplication. Thus, if

f(x) =
r∑
i=1

aix
i, g(x) =

s∑
j=1

bix
j ,

then fg is the polynomial

(fg)(x) = f(x)g(x) =
r+s∑
k=1

ckx
k

where
ck =

∑
i+j=k

aibj .

Definition B.1.5 Homomorphism of associative algebras

Let R and S be two associative algebras over a field F. A linear mapping f from R to S of F-vector
spaces is called homomorphism of associative algebras if f(1R) = 1S . and

f(r · r′) = f(r) · f(r′) for all r, r′ ∈ R.

Definition B.1.6 Subalgebra

A nonempty subset A of an associative algebras R over a field F is called subalgebra of R if it is a
vector subspace of R and a · a′ ∈ A for all a, a′ ∈ A.

Example B.1.7

The set

A =
{ a b 0

c d 0
0 0 0

 ∈ M3(F) | a, b, c, d ∈ F

}

is a subalgebra of M3(F).

Proposition B.1.8

The intersection of a family of sublagebras (Ai)i∈I of an algebra R is also a sublagebra of R.
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Proof. We know that, the intersection of a family of subspaces is a subspace. Let a, b ∈
⋂
i∈I

Ai, then a, b ∈ Ai

for all i ∈ I. Since Ai is a subalgebra, we get ab ∈ Ai for all i ∈ I. Hence ab ∈
⋂
i∈I Ai.

Definition B.1.9 Subalgebra generated by a set

Suppose that S is a nonempty subset of an algebra R. The subalgebra generated by the set S is
denoted by Alg(S) and is defined to be the smallest subalgebra of R that contains the set S. In terms
of S alone,

Alg(S) = span{s1 · · · sm | m ∈ N, s1, ..., sm ∈ S}.

Example B.1.10

Let V be a vector space over a filed F, and {v1, . . . , vn} a basis for V . Then

S = {1} ∪ {v1, . . . , vn}

S is a set of generators for the tensor algebra T (V ):

T (V ) = Alg({1} ∪ {v1, . . . , vn}).

Example B.1.11

F[x] = Alg({1, x}).

and
F[x, y] = Alg({1, x, y}).

More general, we have
F[x1, . . . , xn] = Alg({1, x1, . . . , xn}).

Definition B.1.12 Ideal

A subalgebra a of R is called an ideal of R if, for all a ∈ a, r ∈ R, we have

r · a ∈ a and a · r ∈ a

Example B.1.13

The set A = {P ∈ F[x] | P (0) = 0} is an ideal of F[x].

Proposition B.1.14

The intersection of a family of ideals (ai)i∈I of an algebra R is also an ideal.
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Proof. From Proposition B.1.8,
⋂
i∈I

ai is a subalgebra of R. Let a ∈
⋂
i∈I

ai and r ∈ R, so a ∈ ai for all i ∈ I.

Since ai is ideal, we obtain ra ∈ ai and ar ∈ ai for all i ∈ I. Therefore ra and ar are in
⋂
i∈I

ai.

Definition B.1.15 Factor algebra (or quotient algebra)

For any ideal a of R, we can define an equivalence relation on R by declaring x to be equivalent to y
if and only if x− y ∈ a. We denote the set of equivalence classes of elements of R by

R/a = {x, | x ∈ R}

and the equivalence class (or coset) of every element x ∈ R is indicated by x; thus,

x = {y ∈ R | y − x ∈ a} = x+ a.

Consider the factor space R/a defined by

R/a = {r = r + a | r ∈ R}

This set is a F-vector space with the following addition and scalar multiplication:

r1 + r2 = r1 + r2

and
α(r) = αr

In addition, the following multiplication

· : R/a × R/a R/a

(r1, r2) r1 · r2.

is well defined (independent of the choice of representative for (r1 and r2) and bilinear. Hence R/a is
an associative algebra, and it’s called the factor algebra of R by a.

B.2 Graded vector spaces

Definition B.2.1 Direct product / Direct sum of vector spaces

Let
(
Vi

)∞

i=0
be infinitely collection of F-vector spaces.

• A direct product
∞∏
i=0

Vi is the set of all sequences (v1, v2, ...) where each vi ∈ Vi with usual pointwise

addition
(v0, v1, v2, . . . ) + (w0, w1, w2, . . . ) = (v0 + w0, v1 + w1, v2 + w2, . . . ),

and scalar multiplication
λ(v0, v1, v2, . . . ) = (λv0, λv1, λv2, . . . )
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• The direct sum
∞⊕
i=0

Vi is the set of all sequences (v0, , v1, v2, ...) where each vi ∈ Vi such that

{i | vi ̸= 0} is finite

with usual pointwise addition and scalar multiplication.

If we identify

vi ∈ Vi (0, . . . , 0, vi, 0, . . .) ∈
∞⊕
i=0

Vi

ith term

then Vi can be considered as a subset of
∞⊕
i=0

Vi.

If v = (v0, v1, v2, ...) ∈
∞⊕
i=1

Vi, there exists an integer i0 such that vi = 0 for all i > i0. Thus we can

write the element v as

v =
i0∑
i=0

vi.

Definition B.2.2 Graded vector space

• The direct sum presented in the previous definition
∞⊕
i=0

Vi is called a graded vector space.

• Every element in vi ∈ Vi is called homogeneous element of degree i.

• Moreover, if w ∈
∞⊕
i=0

Vi such that w =
i0∑
i=0

wi, where wi ∈ Vi, then wi is called the homogeneous

component of w of degree i.

Definition B.2.3 Graded associative algebra

If a graded vector space R =
∞⊕
i=0

Ri is an associative algebra such that for all xi ∈ Ri and xi ∈ Rj , we

have xixj ∈ Ri+j , then R is called a graded associative algebra.

Example B.2.4

The tensor algebra T (V ) =
∞⊕
p=0

T p(V ) is a graded associative algebra.

F[x] =
∞⊕
p=0

Fxi = F ⊕ Fx⊕ Fx2 ⊕ Fx3 ⊕ · · · is a graded associative algebra, where Fxi = span(xi).
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