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Introduction

This course is an introduction to multilinear algebra which builds on the idea of linear algebra. We study
the properties of mappings of several variables that are linear in each variable separately.

Chapters one and two are reviews of vector spaces, linear transformations and the inner product spaces.
Then we discuss bilinear forms in chapter three. Afterward some applications about symmetric forms and
quadratic forms are given in chapter four.

Chapter five treats the Hermitian forms and their classifications and finally, in chapter six the fundamental
properties of alternating forms and their exterior product are discussed.
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1.1  Vector spaces

Definition 1.1.1 QRgEls

A Field is a set F # () with two operations + and - satisfying the following properties
(1) z+y=y+aforall z,y in F.

(2) (z+y)+z=2+(y+2) for all z,y,z € F.

(3) there is a unique element 0 (zero) in F such that = + 0 = x for every z in F.

(4) to each z in F there corresponds a unique element (—z) in F such that z + (—z) = 0.
(5) zy = yx for all z,y in F.

(6) (zy)z = x(yz) for all z,y,z € F.

(7) There is a unique non-zero element 1 (one) in F such that 1 = x, for every = € F.

(8) To each x # 0 in F there corresponds a unique element =1 in F such that zo=! = 1.

DISiTiale I I Characteristic of a Field

The smallest positive whole number n such that the sum of the multiplicative identity added to itself
n times equals the additive identity. If no such n exists, the field is said to have characteristic zero.

Definition 1.1.3 [REE skl

A vector space over a field F is a set V' with two operations + and - satisfying the following properties
for all u,v,w € V and a,b € F:

1) u+veV.

(2) u+tv=v+u.

3) (u+v)+w=u+ (v+w).

(4) there is a special vector Oy € V such that u + 0y = v for all u in V.
(5) for every u € v there exists w = —v € V such that v + w = Oy.

(6) a-veV.

(7) (a+b)-v=a-v+b-v.

®) a-(u+v)=a-u+a-v.

(9) (ab) - v=a-(b-v).

(10) 1-v=vforallveV.

C. BEDDANI




1.2 Some examples of vector spaces

Let F be a field.

(A) The set F* = {(a1,...,a,) | a; € F} is a vector space over F:
(a1y...yan) + (b1y...,bn) = (a1 +b1,...,an + by);
blay,...,an) = (bay,...,bay).
(B) The set F[X] of polynomials with coefficients in F is a vector space over F.

(C) The set F,[X] of polynomials of degree less than or equal n form a vector space over F.

(D) The space of functions from a set to a field. let S be any non-empty set. Let V be the set of all functions
from the set S into F. The sum of two vectors f and ¢ in V is the vector f + g, i.e., the function from
S into F', defined by

(f +9)(s) = fs) +g(s).
The product of the scalar ¢ and the function f is the function cf defined by

(cf)(s) = cf(s).

1.3 Vector subspaces

Definition 1.3.1

Let V be a vector space. A non empty subset U of V is a subspace if and only if U is closed under the
addition and scalar multiplication on V. That is:

(1) Forall uy € Uyug € U, uy +ug €U

(2) For any scalar k e Fandu e U, ku e U.

Proposition 1.3.2

Let V be a vector space over a field F and let U be a subset of V. Then U is a subspace of V if and
only if U is also a vector space over F under the operations of V.

Example 1.3.3

(1) If V is any vector space, V is a subspace of V; the subset {0y} consisting of the zero vector alone
is a subspace of V, called the zero sub?space of V.

(2) In F™, the set of n-tuples (z1,...,x,) with 1 = 0 is a subspace of F".
(3) In F™, the set of n-tuples (z1,...,2,) with 1 = 1 is not a subspace of F".

(4) The space of polynomial functions over the field F is a subspace of the space of all functions from
F into F.
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Proposition 1.3.4

Let V be a vector space. Then
(1) Oy € U for every subspace U of V.

(2) The intersection of any collection of subspaces of V' is a subspace of V.

Definition 1.3.5

If S1, Ss, ..., Sk are subsets of a vector space V', the set of all sums

v+ v2 AU

of vectors v; in S; is called the sum of the subsets S1, Sa, ..., Sk and is denoted by or S; +S2+ - -+ Sk

or

Proposition 1.3.6
If Wy, Ws, ..., W}, are subspaces of V', then the sum
W=W; +Wy+---+ W,

is a subspace of V' which contains each of the subspaces W;.

DT il I oA | incar combination

Any summand of the form ayvy + --- + a,v, is called a linear combination of vy, ..., v,.

Definition 1.3.8 [BlENL

Let V be a vector space over F and let wvi,...,v, be elements of V. Then the subset

{aqv1 + ... + apvy, | a1,...,a, € F} is called the subspace of V' spanned by vy,...

denoted by span{vy,...,v,}.

If spanf{vy,...,v,} =V, we say that {vy,...,v,} spans V.

DIl iate) IR M Linearly independent

A set of vectors is said to be linearly dependent over the field F' if there are vectors vy, ...
and elements aq,...,a, from F, not all zero, such that

av1 + -+ apv, = 0.

A set of vectors that not linearly dependent over F' is called linearly independent.
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Example 1.3.10

The most basic linearly independent set in F™ is the set of standard unit vectors e; = (1,0,0,...,0),e2 =
(0,1,0,...,0),...,en, = (0,0,0, ..., 1).

These vectors span F™ since every vector v = (x1,x2,...,%,) in F” can be expressed as v = xie; +
Toeg + - -+ + Tne, which is a linear combination of ey, es, ..., e,.
n
F™ = span{ey,es, ..., e}

1.4 Basis, dimension and coordinates

DA N Basis

Let V be a vector space over F'. A subset B of V is called a basis for V if B is linearly independent
over F' and every element of V' is a linear combination of elements of B.

Proposition 1.4.2

All bases of the same vector space have the same size.

DTl BRI Dimension

A vector space V that has a basis consisting of n elements is said to have dimension n. We write
dimV =n.

For completeness, the trivial vector space {0} is said to be spanned by the empty set and to have dimension
0.Every vector space has a basis. A vector space that has a finite basis is called finite dimensional; otherwise,

it is called infinite dimensional.

DA XM Coordinate

Let V is a n-dimensional vector space over F and B = {v1,...,v,} is an ordered basis for V.

Given a vector v in V| there is a unique n-tuple (ay, ..., a,) of scalars in F such that:

n
v = E (67X
i=1

The n-tuple is unique, because if v we also have

n
U= Z Biv;
i=1

We obtain:

n

> (i — Bi)vi =0,

=1

and the linear independence of the «; tells us that «; = ;) for each i.
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The vector (ay,...,q,) in F™ is called the coordinate vector of v relative to B; it is denoted by
(’U)B = (Otl, 555k an).
or

[vlp =

(&7

I A [ncomplete basis theorem

Let V be an n-dimensional vector space. Suppose that the family of vectors S = {uy,usa,...,u,}
is linearly independent. Then there exist in V vectors {u,41,uri2,...,un} such that the family
{u1, ug, ..., upn} is basis for V.

Proof. Suppose that dim V' = n. If S is a linearly independent set that is not already a basis for V', then S
fails to span V, so there is some vector u,41 in V that is not in span(S). We can insert u,;1 into S, and the
resulting set S’ will still be linearly independent. If 8’ spans V, then S’ is a basis for V, and we are finished.
If S’ does not span V', then we can insert an appropriate vector u,4 o into 8’ to produce a set 8" that is
still linearly independent. We can continue inserting vectors in this way until we reach a set with n linearly
independent vectors in V. This set will be a basis B = {u1, ug, ..., u, } for V. O

1.5 Linear Transformations

DI WA Linear Transformation (Linear map)

Let V, W be two vector spaces over the same field F. A function T: V — W is called a linear
transformation from V to W if the following hold for all vectors w,v in V' and for all scalars k € F.

(1) T(u+v) =T(u) + T(v) (additivity)
(2) T'(ku) = kT (u) (homogeneity)

Note 1.5.2

We denote the set of all such linear transformations, from V' to W, by L(V, W) .

DI iaf MMl Linear operator

If V and W are the same, we call a linear transformation from V to V a linear operator. We denote
the set of all such linear operator on V, by L(V) .
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[SCeTolel el N WX/ | incar transformation

A function T: V. —> W is a linear transformation if and only if for all vectors vy, vs in V and for any
scalar k we have
T(k U1 + ’02) = k‘T(’Ul) + T(Ug)

SETNICHM NN [dentity and zero transformations

If V is any vector space, the identity transformation I, defined by I(v) = v, is a linear operator on
V. The zero transformation O, defined by O(v) = 0 for all v € V, is a linear operator on V.

Proposition 1.5.6

If T is a linear transformation, then
(a) T(0) =0
(b) T(~v) = ~T(v)
(c) T(u—v) = T(u) — T(v)

DA Al Composition (or product) of two linear transformations

Let S € L(U,V) and T € L(V,W) where U is another F-vector space. The composition T'S is given
by
(ST)(u) = S(T(u)) forall welU

ST

DI il I BRIl |nvertible linear transformation

Let T € L(V,W). We say T is invertible provided there exists some S € L(W,V) so that ST : V —
V is the identity map on V and T'S : W —> W is the identity map on W. We call S an inverse of T'.

As a consequence of the next lemma, we are able to refer to the inverse of T' which we denote by T '.

Lemma 1.5.9
Let T € L(V,W). If T is invertible, then its inverse is unique.
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Proof. Assume S and S’ are both inverses for 7. Then
S=SIy =STS =I5 =9

where Iy and Iy are the identity maps on V and W respectively. O

R R Dimension of L(V, W)

Let V' be an n-dimensional vector space over the field I, and let W be an m-dimensional vector space
over F. Then the space L£(V,W) is finite-dimensional and has dimension mn:

dim L(V, W) = (dim V) x (dim W).

Proof. Let B = {v1,vs,...,0,} be a basis for V and B’ = {wy,wa,...,w,} a basis for W.

For all 1 <p <mnand 1< g <m. Consider the linear transformation f, , € L(V, W) defined by:

0 if i#p
wy if i=p

fo.q(vi) = {

That means:
Ip.a(vi) = dipwy,

0 if i#p
5ip: . .
1 if i1=p

where

The claim is that the mn transformations f, , form a basis for £L(V, W).

Let T be a linear transformation from V' into W, and a1, ..., Gy, the coordinates of the vector T'(v;) in the
ordered basis B’.
That means:

T(vj) =Y agjw,
q=1

Let

m n

U= Z Z AgpSp.a

g=1p=1

We wish to show that: T'=U.
For all j = 1,...,n, we have:

U(v;) = Z Apq.fp,a(V5)

g=1p=1

Then T' = U. This shows that the linear transformations f, ; span L(V, W).
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We must prove that they are independent. Assume that:

Z Z kqpfpq =0

g=1p=1

Then for all j =1,...,n
> kgjwg =0
q=1

and the independence of the basis B’ implies that k;; =0 forall j=1,...,nand ¢ =1,...,m.

Hence the set

{fp,q} 1<p<n
1<g<m

form a basis for L(V,W).

Finally
dim L(V, W) =nm = (dim V') x (dim W).

1.6 Kernel and range of a transformation

DI ate G Kernel and range of a linear transformation

Let T: V — W is a linear transformation.

o The set ker T of all vectors v in V for which T'(v) = 0 is called the kernel (or Null Space) of
T.
kerT ={v eV |T(v) =0}

o The set R(T) of all outputs (images) T'(v) of vectors in V' via the transformation 7" is called the
range of T
rangT = {T(v) |v eV}

Clearly ker T is a vector subspace of V' and rangT is a vector subspace of W.

DIt ol Nullity and rank

If V and W are finite dimensional vector spaces and T: V' —> W is a linear transformation, then we
call

e dimkerT = nullity of T

e dimrangT = rank of T

Theorem 1.6.3

If V and W are finite-dimensional vector spaces and T: V' —> W is a linear transformation, then

rank (T') + nullity (7)) = dim(V)
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DT iate I AGI/M One-to-one, onto, bijective
e A function f: X — Y is called one-to-one (or injective) if f(z) = f(2’) imply « = 2’.

e A function f: X — Y is called onto (or surjective ) if for every y in Y there is at least one = in X
such that f(z) = y.

e A linear transformation that is both injective and surjective is called isomorphism (or bijective).

Proposition 1.6.5

e A linear transformation T': V.— W is one-to-one if and only if ker(7T') = {0}.

e A linear transformation T: V' —> W is onto if and only if rangT = W.

Definition 1.6.6

We say two vector spaces V and W are isomorphic and write V' = W, if there exists T' € L(V, W)
which is both injective and surjective. We call such a 7" an isomorphism.

Theorem 1.6.7

Two finite-dimension vector spaces V and W are isomorphic if and only if they have the same dimension.

Proof. Assume V and W are isomorphic. This means there exists a linear map 7' : V. — W that is both
surjective and injective. Theorem 1.6.3 immediately implies that dim V' = dim W. For the reverse direction,
let By = {v1,...,v,} be a basis for V and By = {w1,...,w,} be a basis for W. As every vector v € V can
be written (uniquely) as

V=a1v1+ -+ apv,

for a; € F, we may define a function T': V — W by
Tv=aiwy + -+ apwy,.

Observe that the uniqueness of our representation of v implies that T is a well-defined function. Moreover, a
straightforward check reveals that T is indeed a linear map. It only remains to show that 7" is an isomorphism.
To see that T is injective, let that v € nulT and let b; € F be such that

v=>b1v1 + -+ b,Un.

This means
Ow =Tv =bywy + - + bywy,.

Since By is an independent set, it follows that all our scalars b; must be 0 and, in turn, v = 0. This shows
that ker T' = {0y }, i.e., T is injective.
To see that T is also surjective, note that any vector w € W can be written as

W= Clwi + -+ CpWpm,
for some choice of scalars ¢; (why?). Now consider the vector ¢ijv; + -+ + ¢vm € V and observe that
T(civ1 4+ epvm) = crwy + -+ + Cpwy, = w.

This shows that T is surjective. O
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1.7 Direct-Sum

Definition 1.7.1

Let Uy,...,U, be subspaces of V. and W a subspace of V. We say that W is sum of the U;’s, and
write

W=U+---+U,
provided that for every w € W there exist u; € U;, 1 <14 < n, with

n
w = E Wy -
i=1

Example 1.7.2

Consider the subspaces of R?:

Uy ={(z,0,2) | z,z € R} and U; ={(0,y,2) | y,z € R}.

Remark that every vector v = (r,y,z) € R3 can be written as sum of a vector in U; and a vector in
U,, for example:

v:(xay72):(x?0)2)+(07ya0) or v:(x7y7z):(x’070)+(07y’2)'

Therefore R® = U; + Us

Definition 1.7.3

Let Uy, ...,U, be subspaces of V and W a subspace of V. We say that W is direct sum of the U;’s,
and write .
w=u,
i=1

provided that for every w € W there exist unique u; € U;, 1 < i < n, with

n
i=1

Example 1.7.4

Let V=R? U; = {(x,z) | z € R} and Us = {(y, —y) | y € R}.
(1) Show that R? = U; + Us.

(2) s R2 = Uy & Uy?

solution

(1) Let (a,b) € R?, we will find (z,2) € Uy and (y, —y) € U, such that

(a)b) = ($,$) + (ya _y) (11)
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That is
a=z+yandb=x—y

Adding and subtracting the two equation we obtain
2r=a+b and 2y=a-—0»

Then we can divide by 2 to obtain the solution z = QT'H’ and y = “T_b. So for all (a,b) € R?:

(a,b) = (a—2|—b7a—2|—b)+(a;b7b;a).

Hence R? = U; + Us.

(2) As the equation (1.1) has a unique solution, R* = U; & Us.

1.8 A formal definition of the determinant of a matrix

DT Al R R N Permutation

A permutation of the set {1,...n} is any ordered way to write down the symbols {1,...n}. We denote
the set of all this permutations by S,,.

Example 1.8.2

The collection of all permutations of the string (1,2, 3) is the set
83 =1(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1).

Given a permutation 7, we refer to the k-th entry of 7 by writing 7 (k). For example, if 7 = (2, 3,4, 1),
we would interpret 7(2) to be the second entry of w, which is 3.

Note 1.8.3

Take any permutation. We claim that it can be created by the following process:

(1) Start with the permutation (1,2,3,...n).

(2) Repeatedly pick pairs of elements in the permutation we have, and swap them.

(3) By carefully choosing the pairs in step 2 above, we can get to any other permutation.

The signature of the permutation sgn(o) is defined as follows:

sgn(c) 1 If the total number of swaps is even
1el =
= —1 If the total number of swaps is odd.
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Example 1.8.4

The permutation (2, 3,4, 1) has signature
sgn(2,3,4,1) = —1.

Remark that

switch 1,2 switch 1,3 switch 1,4
(1,2,3,4) ——> (2,1,3,4) ——> (2,3,1,4) —— (2,3,4,1).

Definition 1.8.5

Let A be a n X n matrix, of the form

aiy ... Qin

Anl ... QAnpn

det(A) = Z Sgn(o)al,a(l) TA2.5(2) " QAn,o(n)-
oESy

Example 1.8.6

If A is a square matrix of order 3 x 3 , then

det A =sgn(1,2,3) - aj1az2a33 + sgn(1,3,2) - aj1as3a32 +sgn((2,1,3)) - ajasiass
+sgn(2,3,1) - a1zaz3a31 +sgn(3,1,2) - aizasiasz +sgn(3,2, 1) - a1zazzas,

which if you calculate the signatures is just

det A =1 ar1a92a33 + (—1) - a11a23a32 + (—1) - a12a21a33

+1 - aiza23a31 + 1 - a13az1a32 + (—1) - a13a22031.

Hence

det A = aj1a22a33 — -a11a23a32 — A12021033 + -A12023031 + 13021032 — (13022031

1.9 Matrix of a linear transformation
Consider the following data:
e An n-dimensional vector space V over F with a basis B = {uy,us,...,un}.
o An m-dimensional vector space W over F with a basis B’ = {v1,va,...,0m}.

o A linear transformation T: V — W.
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Definition 1.9.1

The matrix for T relative to the bases B and B’ is the m x n matrix [T]z g defined by

[Tlsr.5 = [[T(w1)le | [T(u2)]s |- | [T(un)]s]

Relative to these bases.
More precisely, we have the following relation:

7)), = [Tlsz - ol

Theorem 1.9.2

Let A be a square matrix and and let T4 : R® — R™ be the matrix transformation T4 (z) = Az.
Then the following statements are equivalent:

(1) A is invertible.

(2) The columns of A

(8) Az = b has a unique solution for each b in R™.
(4) Az = 0 has a unique solution z = 0.

(5) T4 is invertible.

(6) T4 is one-to-one.

(7) T4 is onto

Example 1.9.3

Let T : R? — R? be defined by T(z,y) = (22 — 3y, x + 2y).
Compute the matrix A of T relative to standard basis S = {ej, ea} of R2.
Solution We have

T(el) = T(]-’O) = (25 1)

and
T(e2) =T(0,1) = (-3,2),

so the standard matrix for 7T is

T o Totinfe MW/ Bl | incar isomorphisms on finite-dimensional dimension vector spaces

Let V and W be two finite-dimensional vector spaces over a field F of the same dimension. If T: V —
W is a linear trnasformation and if B is (resp B’)a basis for V (resp. W), then the following are
equivalent:

(a) T is one-to-one.

(b) T is onto.
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(c) T is bijective.
(d) [T)p B is invertible,
(e) det[T]p 5 # 0.
Moreover, if these conditions hold, then

[Tﬁl] B,B" = [T] z;/l,zs

1.10 Transition matrix

T CuE BN Change of coordinates formula

Let B = {v1,...,v,} and B’ = {v],... v} be two ordered bases of V. Then there is a unique,
necessarily invertible, n X n matrix P with entries in F such that for all vector v € V:

(i) [v]s = Py —nv]s
(ii) [v]s = Ps—p/[v]B

The columns of Py, 5 are given by [v}]s.

The matrix
Py = [lvils | [vals [---] [v,]].

is called the transition matrix from B’ to B.

~—
Remark 1.10.2. Remark that : (Pg—p') X (Pg—p) = In.

Example 1.10.3

Consider the bases B = {uj,us} and B’ = {u},ub} for R? where u; = (1,0),us = (0,1),u} =
(1,1),uy = (2,1)

(a) Find the transition matrix Pg/, 5 from B’ to B.

(b) Find the transition matrix Ps_, 5 from B to B'.

c) Let v be a vector in R? such that [v]g = =9 . Find [v]5.
5

Solution.
1 2 -1 2
PB’—»B = |:1 1:| and PB—»B/ = |: 1 _1]

[v]s = (Psr—5)[v]s = B]

C. BEDDANI




1.11 Exercises set

Exercise 1.11.1

Determine whether the vectors
vy =(1,2,2,—-1),v2 = (4,9,9,—4) and w3 = (5,8,9,—5)

are linearly dependent or linearly independent in R%.

Solution. The linear independence or dependence of these vectors is determined by whether the vector
equation
kv, + kovg + k3vg = 0.

Equating corresponding components on the two sides yields the homogeneous linear system

k1 44k +5k3 =0
2k1 + 9k +8ks =0
2k + 9k +9k3 =0
—ky —4ky —bks =0
This system has only the trivial solution k; = 0, ks = 0, ks = 0. We conclude that vi,v5, and vs are
linearly independent.

Exercise 1.11.2

Determine whether the vectors v; = (1,—2,3),v2 = (5,6,—1) and w3 = (3,2,1) are linearly inde-
pendent or linearly dependent in R3.

Solution. The linear independence or dependence of these vectors is determined by whether the vector
equation
kivi + kovo + k3vg =0

Equating corresponding components on the two sides yields the homogeneous linear system
ki1 4+ 5ko+3k3 =0

—2ky + 6k + 2k3 = 0
3k, —k2+ ks =0

Thus, our problem reduces to determining whether this system has nontrivial solutions. There are various
ways to do this; one possibility is to simply solve the system, which yields k1 = %t, ko = %t, ks =t.

This shows that the system has nontrivial solutions and hence that the vectors are linearly dependent.

Exercise 1.11.3

Let V be a vector space of dimension n over a field F, and B = {vy,...,v,} a basis of V. Show that
the map ¢ : V.—> F™ defined by ¢(v) = [v]g is an isomorphism
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Solution. First we show that ¢ is linear. Let A € F and u,w two vectors in V. As B is a basis for V, the
vectors u and v can be written uniquely as

n n
u = E a;v; and w = E Biv;
i—1 i=1

Then

n

A+ w = Z()\ai + Bi)vi

i=1
Hence

P(Au+w) = [Au+ w)p

Aag + B
)\a2 + o

Aoy, + Bn

=/\¢( )+1/J( )-

Since V' and F™ has the same dimension (dimV = dimF"” = n), to prove that ¢ is bijective, it suffices to
prove for example that is injective.

Let u = Zaivi € V. We have:

=1
a1 0
(6%) 0
Y(u) = Opn <= | =
Qg 0
< ar=ay=--=qa, =0
<~ u=0.

So Ker(¢) = {0} and hence v is injective. Therefore it is an isomorphism of vector spaces.

Exercise 1.11.4

Let f € L(U,V) and g € L(V,W) where U, V, W are F-vector spaces. Show that gf € L(U, W).

Solution. Let o € F and uy1,us € U. We have:

(9f)(Auy + uz) 29( )\Ul +U2)

= g(Mf(ur) + f(uz))
—/\g( (ul)) ( ( ))
= Mg f)(u1) + (9f)(u2).
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Exercise 1.11.5

Consider the bases B = {uj,us} and B’ = {u},ub} for R?, where u; = (1,0),us = (0,1),u) =
(1,1),u = (2,1)

(a) Find the transition matrix Pg/—, g from B’ to B.
(b) Find the transition matrix Pg_, 5 from B to B'.

-3

(c) Let v be a vector in R? such that [v]s = [ 5

]. Find [v]5.

Solution.

1 2 -1 2
PB’—»B = |:1 1:| and PB—»B’ = |: 1 _1:|

[v]s = (Ps—5)[v]s = B]

Exercise 1.11.6

Let T : R?® —> R3 be the linear operator given by:
T(z,y,2) = 2z + 2,2z +y,—x+ 2y + 2).
(1) What is the matrix of T with respect to the standard basis S of R? ?
(2) What is the matrix of T with respect to the ordered basis B = {v1,vs,v3}, where
v =(1,0,1) , vo = (1,1,0) , vz = (0,1,1) .
(3) Find [T5,s the matrix for T relative to the bases S and B.

(4) Find [Ts p the matrix for T relative to the bases B and S.

Exercise 1.11.7

Show that the following maps 9,7 and L are linear:

(1) Let D be the vector space of all differentiable function f : R — R and F the space of all function
g : R — R. Define the map 9: D — F, by 0f = f.

(2) Let C be the space of continuous functions f : R — R . Define 7' : C — C by T(f) = = f(z).
(3) The map L : C — R given by
1
L)~ [ fd.

Solution. (1) Clearly 0 is a linear map since

oNf+9)=+9) =f+9g =0f+0g

and

d(af) = (af) = af’ = adf.
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In particular the map D form F[X] into F[X] defined by
D(ag+a X + -+ ap,X™) = a1 +2a2X + -+ +na, X" L.
Is a linear operator.

(2) Let C be the space of continuous functions f : R — R . An example of a linear map on this space is the
function T': C — C given by T(f) = zf(x).

(3) The map L :C — R given by
1
L(f) :/ f dx.
0

is linear.
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Chapter

Inner product spaces
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Throughout this chapter we consider only real or complex vector spaces, that is, vector spaces over the field
of real numbers or the field of complex numbers.

F=R or F=C

2.1 Inner Products

DSl NI Inner Products

Let V be a vector space over F. An inner product is a function (—,—): V x V — F such that for
all vectors v, u,w in V and scalars a, b in F:

(1) (v,v) > 0 with equality iff v = Oy .
(2) (v,u) = (u,v), where the bar denoting complex conjugation; Conjugate symmetric

3) (av+bu,w) = a{v,w) + b(u,w). Linearity in the first component
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« Notice that conjugate symmetry implies that (u,u) € R even if F = C since

(u,u) = (u,u).

Example 2.1.2

(1) R™ with the dot product:
<((L1,...7an),(b1,...,bn)> =a1by + -+ apby,.

(2) C™ with the standard inner product:

<((l1,...,an),(bl,...,bn)> :a151—|—~~—|—an5n.

(8) If W is a subspace of an inner product space V, then the inner product of V restricted to W gives
an inner product on W.

Example 2.1.3

(1) V =(C[0,1],C), the set of continuous complex valued functions on [0, 1] with inner product
1 —
(.9)= [ fe)grde,
0

(2) V =F"*" the space of all n x n matrices over F with inner product

(A,B) = Z AijBij.
4,J

DI Tiates IR A |nner product space

An inner product space is a real or complex vector space, together with a specified inner product on
that space.

¢ A finite-dimensional real inner product space is often called a Euclidean space.

e A complet inner product space is often referred to as a unitary space.

DA N Bl Norm of a vector

Let V be an inner product space. For all vector v, we define the norm of v by

[0l = V/{v,0).
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Theorem 2.1.6

If V is an inner product space, then for any vectors v,u in V and any scalar a € F, we have
(a) [lull =0

(b) llaul = laf [lull

(¢) JJul=0<u=0

(d) (Cauchy-Schwarz inequality):

[{w, v}

IN

[l floll -

(e) (Triangle inequality):
lu+ ol < [lull + o]

Proof. Statements (a), (b) and (c) follow immediately from the definition. Let v and v be two vectors in
V,and c € F:

(d) Consider u — cv and notice that

0< flu—ev|?
= (u — cv,u — cv)

2 2
= [Jull” = {cv,u) — (u, cv) + [lev||
= Jlul” — 2Re e (u, v) + [c[* [Jv]|*.

Notice that if we take ¢ = ﬁ then

o< fu? — 2l | Mol ol
[[] o] o]
Therefore
[, o) < [l o]
Hence

[{w, 0] < [l o]l
(e)

lu+o)|* =(u+v,u+v)
=(u,u) + (u,v) 4+ (v,u) + (v,v)
= [[ull® + (w,v) + (v, u) + o]
= [[ull* + (w,v) + (u,0) + [[o]|*
= [[ull* + 2Re (u,v) + [[v]®

Remark that a < va? + b? = |a + bi| and so Re (u, v) < [{u,v)| < |lu] [|v]| .

Therefore

2 2 2
[+ ol]" < lul” + 2 [Ju] o] + [Jv]|
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So ,
lu+o* < (fJull + [[o]l)?

Hence
lu+o| < [ull + vl

O

Apply the Cauchy-Schwarz inequality to the inner products given in Example 2.1.2 (2) and Example

2.1.3 (1), we get:
n n 1 n 1
2 2
e < (Lle?) (L)
i=1 i=1 i=1

]/ f(@)g(@)ds s(/ e I2dw>%</01f(x)|2dw)%

and

Definition 2.1.7

Let V be an inner product space.
o Vectors u and v in V are orthogonal (u L v) if (u,v) = 0.
e A subset S C V is orthogonal if any two distinct vectors in S are orthogonal.
o A vector u in V is a unit vector if |jul| = 1.

e A subset S C V is orthonormal if S is orthogonal and consists entirely of unit vectors.

Note 2.1.8

Note that :

o S ={u1,...,ux} is orthonormal iff (u;,u;) = d;;.

e We can make an orthonormal set from an orthogonal set by replacing each vector u by Hull
This will not change the orthogonality since <W’ m> = IIZHHyH (x,y) since ||y| € R. We call
this process normalizing the set.

Proposition 2.1.9

If V is an inner product space and S C V is orthogonal subset of nonzero vectors, then S is linearly
independent.

Proof. We first note that if S is not the set consisting only of zero, then zero cannot be in S. Suppose that

S = {ul, ...,uk}
and
arur + -+ apup = Oy
for scalars aq, ..., ax and vectors uq,...,u; in S.

C. BEDDANI




Then we see that
2
0= <a1u1 +-- 4+ ak”ka“i) = a; HU‘Z”

and since

[ug]|* # 0,

we must have a; = 0. This can be done for all 4.

2.2 Orthonormal bases

Definition 2.2.1

Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered
basis that is orthonormal.

Theorem 2.2.2

Let V' be an inner product space and S = {v1,vs,...,vr} be an orthogonal subset of V' consisting of
nonzero vectors. If w € Span S, then
<1U, Ui>

P <vivvi>

In addition, if S is orthonormal, then the denominators are all 1. That means:

k
w = Z (w, v;)v;.

i=1

V;.

i
M-

Proof. Since w € Span .S, we must have that there exist scalars aq, ..., ax such that

k
w = E a;V;.
i=1

We can now take the inner product with v; for j =1,...,k and find that

and so (since ||v;]| #0), a; =
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Corollary 2.2.3

Let vq,...,v, be an orthonormal basis of an inner product space V and v, w € V. Then:

o Parseval’s identity:
n

(v, w) = Z(v,vi>(vi,w).

i=1

o Bessel’s equality:

n
2
loll* = _Iv, va) .
i=1

Theorem 2.2.4

Let W be a finite dimensional subspace of the inner product space V. Then for a vector y € V, there
is a unique vector u € W that minimizes ||y — w||2 for all w € W.

Proof. Suppose there is a u € W such that (w,y —u) = 0 for any w € W. Then if w € W (and hence so is
u—w),

ly —wl* = u+ (y — w) —w||?
=u—w+(y—u),u—w+ (y—u))
= Jlu—wl|® + (u—w,y —u) + (y — v, u — w) + ||y — u|*
= llu—w|® + [ly —
> [y —ul®.

We can do this if W is finite dimensional using the following theorem. O

Definition 2.2.5

The orthogonal complement of W, written W+ (pronounced “W perp”), is the set of all vectors v € V'
such that (v, w) =0 for all w € W.

Proposition 2.2.6

W is a vector space.

Proof. Tt is straightforward to see that (Oy,w) = 0 for all w € W, so Oy € W+.
Let v,u € Wt and ¢ € F.

Then
(v + u,w) = ¢ (v,w) = (u,w) =0
So)
cv+uec Wt
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S U@ Gram-Schmidt process

Let V be an inner product space and S = {wy, ..., w,} be a linearly independent subset of V. Define
={vy,...,v,} by v1 = w; and
k— 1
(W, vj)
= wy — Z k J
— (v5,5)
Jj=1
for k=2,...,n. Then S’ is an orthogonal set of nonzero vectors such that Span S’ = Span S.
Proof. We show inductively that vg41 is orthogonal to vy, ..., vg. It is clear that

<’U2,1)1> = <w2 - <<u)2;vl>’()1,1}1> = <’U)2,’Ul> — M <1)1,’U1> =0.

We then can use the inductive hypothesis to assume (v;,v;) = 0 for ¢, j < k and see that

(vi, ;)

k—l
’LUk Vi Wk, V;
(vk, vi) = <wk - Z 7 J y»%> = (Wi, vi) — 0, 84) (vi,v;) = 0.

Jj=1

Thus S’ is orthogonal. Hence S’ is linearly independent and since each element of S’ is in the span of S,
Span S’ C Span S, and hence Span S’ = Span S (since they have the same dimension). O

Theorem 2.2.8

Suppose that S = {v1,...,v;} is an orthonormal set in a n-dimensional inner product space V. Then
(1) S can be extended to an orthonormal basis {v1, ..., vk, Vgt1, ..., vn} for V.

(2) If W = Span S, then S; = {vj41,...,v,} is an orthonormal basis for W+.

(3) If W is any subspace of V, then dim V' = dim W + dim W+.

Proof. By the replacement theorem, S can be extended into a basis, and then the Gram-Schmidt process
can be used to turn this into an orthogonal set. Then normalizing gives an orthonormal set. S; is clearly a
linearly independent subset of W+. Since {v1,...,v,} is a basis, any vector in W+ can be written as a linear
combination of these vectors. However, since w € W+ satisfies (w,v;) =0 for i = 1,...,k, w is in the span
of S1, hence Sp is a basis. The dimension statement is clear now that we know that S is a basis for S, S’ is
a basis for W+, and {v1,...,v,} is a basis for V. O

ST o Tetinfe I Il Polarization Identities for real inner product spaces

Let V be a real inner product space and v, w two vectors in V. We have:

1 1
(,0) = 7 o+ wl? = 7 o= wl?
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TN IR VI Polarization |dentities for complex inner product spaces

Let V be a complex inner product space and v, w two vectors in V. We have:

) X | |
(v,0) = 7o+ wl* = 7o = wl* + 7 o+ iw]* - £ lo - iw|.

Proof. Exercise for students. Hint.
[ £ w]|* = [|v]]* + 2 Re (v, w) + [|w]*.

and
Im(v,w) = Re —i(v,w) = Re(v,iw)

2.3 Exercises set

Exercise 2.3.1
Let F = C. Show that if (—, —) is an inner product, then

(v,au+bw) = a{v,u) + b{v,w).

Solution. By definition, we know that for all u,v € V and a,b € F, we have

(v,u) = (u,v).

(v,au+bw) = {au+bw,v)
a{u,v) +blw,v)

a(u,v)+b{w,v)

alv,u) +b(v,w).

Exercise 2.3.2

For u = (uy,us) and v = (v, ve) in R2, let
(u,v) = u1v; — ugvy — UV + dusvs.

Show that this function define an inner product on R2.

Solution. Let u = (uy,u2) and v = (v1,vs) in R? and a,b € R. Then
(1) (v,v) =v? —vov; — v1vg + 403 = (v; —v2)? + 303 >0
Clearly
(v,0) =0 <= (v —v2)? + 302 =0

— (1 —1)?=0 and 3v3=0
<= v —v3=0 and v, =0
< v1=0 and vy =0
+— v=0.
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(2)

(v,u) = viu) — vauy — ViU + 4vous
= UV — UV1 — U1V + 4ugvy
= <U’U>

= (u,v).

(3) Let w = (wy,ws) in R?. Then av + bu = (avy + buy, avy + buy). Therefore

(av + bu,w) = (avy + buy)wy — (ave + bug)wy — (avy + buy )ws + 4(avy + buz)ws
= auiwi — AUaW1 — aviws + 4davows + bwiuy — buswy — bugws + 4buswsy
=a(v,w) + blu,w).

Hence, the function (—, —) define an inner product on R?.

Exercise 2.3.3

Apply Cauchy-Schwarz inequality to show that for all 1, z2,y; and ys in R,

|z1y1 + zays| < \/(x% + 23) (13 + 43).

and

|21yt — z2y1 — 212 + 4ways| < \/(x% — 2z122 +423) (17 — 25192 + 4y3).

Solution. Consider on R? the following real inner product : for u = (21, 72) and v = (y1,92) in R?,
(u,v) = z1y1 + 2292

By Cauchy-Schwarz inequality :
[(w, 0)| < Jull [Jv]]-

Hence

|[T1y1 + w2y2| < \/(%’f +a3)(yf + v3)-
Similarly, when we consider the following real inner product on R?:
(u,v) = z191 — 221Y2 + 4T2Y2

we get :

|z1y1 — Z2y1 — T1Y2 + 4z2ys| < \/(35% — 2x120 + 423) (Y7 — 2y1y2 + 493).

SN I Y Il Polarization ldentities for real inner product spaces

Let V' be a real inner product space and v, w two vectors in V. Prove that:

1 1
(v,w) = 7 o+ wll” = 5 llv = wl.
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Solution. For all v, w two vectors in V| we have

lo+w|* = (v+ w,v+w)

=(v,v)+ (v,w)+ (w,v) + (w,w)

2 2 —
= [[olI” + lwll” + (v, w) + (v,w)

Since the inner product is considered real, (v,w) = (v, w). Therefore
2 2 2
o+ w|” = lvlI” + [[w]]” + 2(v,w).
Replacing w by —w in the previous equality, we obtain:
2 2 2
o —w||” = lvlI” + [[w]]” = 2(v,w).

From (2.1) and (2.2), we obtain
2 2
4(v,w) = [lv+w|” = [l —w]|”.
Consequently,
I”

1 1
(,w) = 7 o+ ol = 5 llv = wl®.

SN T Polarization ldentities for complex inner product spaces

Let V' be a complex inner product space and v, w two vectors in V. Prove that:

) X | |
(v,w) = 7 o +wl® = 5 v —wl® + 7 llo +iwl® - 7 o —w|?.

Solution. Clearly for v,w in V, we have
lv+w|® = [[o]|* + 2Re (v, w) + [[w]*
{nv — ] = loll® - 2Re (v,w) + ]l
Therefore
4Re (v, w) = [[v+w||* — [Jv - w|?
Replacing w by iw in the equation (2.3), we get

lo -+ dwl|* = [|o]|* + 2Re (v, iw) + [liw]
lo = dw]|* = [|o]|* + 2Re (v, —iw ) + | —iw||”

lo+ iwl® = Jo]* + 2Re —i{ v, w) + [lw]®
lo = iwl® = Jo]* + 2Rei{v, w) + |lw]®

Using the fact that
Im(v,w) = Re—i{v,w) = Re(v,iw)

we obtain

[+ dwl|* = [[o]* + 2Tm( v, w ) + [Jw]?

. 2 2 2

o —dwl|” = ||v]|” = 2Im(v, w) + [Jw]".

Hence
4Tm (v,w) = [Jo + iw|® — [jv - iw||?
Form (2.4) and (2.5), we obtain
4Re (v,w) 4+ 4ilm (v,w) = v+ w|* = [[v — w|]* + i Jv + iw|* — i |Jv — iw]|* .
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Exercise 2.3.6

Suppose V is a real inner product space.
(1) Show that (u+v,u —v) = ||lu||*> — ||lv||? for any u,v € V.

(2) Show that if ||u|| = ||v]|, then u + v is orthogonal to u — v.

Solution. (1) For any u,v € V, (u +v,u —v) = (u,u) — {(u,v) + (v,u) — (v,v) = ||ul|®> — ||v]*.

(2) If |Jul| = ||v]|, since (u+v,u —v) = ||Ju||?> — ||[v||* = 0,u + v is orthogonal to u — v.

Exercise 2.3.7

Let B = {u1, us,u3} be a basis for the Euclidean inner product space R?, where
ur =(1,-2,1), wue=(1,0,1) and wug=(-2,0,1).
(1) Use the Gram-Schmidt process to transform the basis B into an orthogonal basis B’ = {vy, va, v3}.

(2) Normalize the basis B’ to obtain an orthonormal basis B” = {wy, ws, w3} for R3.

(3) Find B”* the dual basis of B”.

Solution.
(1) Apply Gram-Schmidt process to obtain an orthogonal basis for R3.

V1 = U1 = (1,—2, 1)

< Ug,v1 >
UQZUQ——2U1
[[o]]
1
= (1,0,1) - 5(1,-2,1)
(222
- \373'3
< uz,v; > < ug,vg >
U3 = U3z — 2 1= 2 V2
[[o1]] [[v]]
1 2/3.2 2 2
= (=2,0,1) 4+ =(1,-2,1) + L2(Z, = =
(200 +5L-2D+ G5
1 1
:(_270a1)+6(17_2’1)+§(13131)

-3 3
-(703)

=213 - (09
|

(2) Normalize the basis B’

[[oa]

wy V2 _V3(222) (V3 V3 V3
el 2 \3'33) \373" 3
vs  V2(-3 3 -2 V2
w3:_:_ _707_ = _707_
Jos ~ 3\ 22 2 2
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(3) Using Theorem 2.2.2, for all v = (x1, z2,23) € R3:

v = (xlax27x3) = <va1 >'ZU1 + <’U,’U.)2 >w2 + <’U,’1U3 >’UJ3

= ?(xl — 2y + x3)wy + g(xl + 22 + 23)ws + 72(_1'1 + x3)ws
Then B"* = {f, f2, f3} where:
fi(z1,22,23) = ?(xl — 279 + 13)
fa(z1, 22, 23) = ?(m + x4 x3)
f3(z1, w2, 73) = g(*wl +z3)

Exercise 2.3.8

Let V = M,,»«,(R) be the real vector space of n x n matrices. Consider the following inner product
on V defined by
(A,B) = tr(A* B).

- S, ={AeV]|A'=A} and A,={AecV|A' =-4}

(1) Show that forall AeV: A'+ Ae S, and A— At € A4,.

(2) Show that, every matrix A € V can be written as A= X +Y where X € S,, and Y € A4,,.
(3) Deduce that V =38, ® A,.

(4) Show that S;- = A,.

(5) Using Cauchy-Schwarz inequality, show that for all matrix A € V: tr(A4) < \/n \/tr(AtA).
(6) Deduce that, if A € V' is an orthogonal matrix, then tr(4) < n.

Solution. (1) for all A € V, we have (A*+ A)' = (A")'+ A' = A+ A' so A*+ A € S,, and similarly we
have A — At € A,,.
(2) Clearly
A= %(AtJrA)Jr%(A—At).
X Y

(3) From the previous question, we get V = S,, + A,,. Since the square matrix which is both symmetric and
anti-symmetric matrix is the zero matrix, we obtain V =8,, ® A,,.

(4) Let A€ A,,. For all B € S,,, we have
(A,B) =tr(A*B) = tr(A B).
On other hand, we have
(A,B) =(B,A) =tr(B* A) = tr(—BA) = —tr(AB).
Therefore (A, B) =0 for all B € S,,. Hence A,, C S;-

From (3), we obtain
dim A,, = dim S;.
Therefore
St=A,.
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(5) Using Cauchy-Schwarz inequality, we get for all matrix A € V:
(In, A) < [ In ]l 1Al

Hence

tr(A) < vn/tr(AtA).
(6) As A € V is an orthogonal matrix, A'A = I,,. So tr(A4) < /n+/tr(I,). That means

tr(A) < n.
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We study, in this chapter, the bilinear forms on finite dimensional vector spaces over a field F. Moreover, we
discussed to symmetric forms and their reduction of to a diagonal form in the case when F = R or C.

3.1 Linear Functionals

DMl Al Linear Functional (or 1-form)

Let V be a vector space. Define V* = L(V,F). V* is called the dual space of V. The elements of V*
are called linear functional. So a linear functional ¢ on V is a linear transformation ¢ : V.—> F.

Example 3.1.2

Let F be a field and let aq, ..., a, be scalars in F. Define a function f : F"* — F by

flxr,xy) = a1z + -+ + anay,.
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Then f is a linear functional on F™.
Every linear functional on F™ is of this form, for some scalars a;, ..., ay.

That is immediate from the definition of linear functional because:

f(wlv coc amn) = f(leez)
=1

= Z f(ziei)

=a121+ -+ apTn.

Example 3.1.3

Let n be a positive integer and F a field. The trace function tr : F**" — F is a linear functional.
Recall that if A = (a;;) € F**"™

tI‘(A) = aii —+ as2 + -+ Qpyn -

Example 3.1.4

Let [a,b] be a closed interval on the real line and let C([a, b]) be the space of continuous real-valued
functions on [a,b]. Then the function L : C([a,b]) — R defined by

b
Mﬁ=/f@ﬁ

is a linear functional.

S (elolo il ICHIBMI Dimension of V*

Suppose that B = {v1,...,v,} is a basis for the finite dimensional vector space V. Define f; € V* by

1 ifi=j
0 ifij

Then, the set B* = {fi1, f2,..., fn} form a basis for V*. Therefore dim V* = dim V.

filv;) = 6i5 = {

Proof. See Exercise 3.8.1.
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DT A I NG Dual basis

The set B* in the previous proposition is called the dual basis of B.

Theorem 3.1.7

Let V be a finite-dimensional vector space over the field F, and let B = {v1,...,v,} be a basis for V.
Let B* = {f1, ..., fn} be the dual basis of B:

filv;) = by;.

Then, for each linear functional f on V we have

and for each vector v in V we have

v = Z fi(v)v;.
i=1

Proof. We have, for all j =1,..,,n:

O F)fi)(wy) =D ) filvy) =D Fwi)di; = f(v;)

i=1 i=1 i=1
Then .

F=> @i
i=1
Let v € V, then this vector can be expressed as v = c1v1 + -+ - + ¢pv,. Then for all j =1,..,,n, we have:
fi(0) = filervr + -+ enon) = e fi(vr) + - + ¢ f5(0) + -+ enfi(on) = ¢5,

Hence

v = Z fi(v)v;.
i=1

Proposition 3.1.8

Let V' be an n-dimensional vector space and x1,...,x; € V linearly independent vectors with k < n.
Then there exists f € V* and y & span{xy,...,x;} such that

flyy=1 and f(z)=0 forall =z € span{zy,...,xx}.

3.2 Bilinear maps
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DS IV Bilinear maps

Let U, V, W be vector spaces over a field F. A map f: U x V — W is bilinear if it is linear in each
variable:

flauy + uz,v) = af(ui,v) + f(usz,v)
flu,avy +v2) = af(u,v1) + f(u,vs),

for all u,uy,us € U, v,v1,v3 € V and a € F.

We will sometimes write (u,v) for f(u,v) if f is clear from context.

Note 3.2.2

We denote the set of all F-bilinear map f : U x V. — W by Bilp(U x V, W).

Example 3.2.3

(1) Matrix multiplication is bilinear:

(A, B) —> AB : Myxn(F) x Myscio(F) —> Mnsi(F).

(2) Composition of maps is bilinear:

(¢, 0) —> o : LIUW) x LIV,U) — LV, W).

Proposition 3.2.4

For any bilinear map f: U x V — W, we have:
fw,0) = f(0,v) =0, forall weUandveV.

Indeed,

and similarly for f(0,v).

DTl BRIl Dilinear pairing

Let U and V' be vector spaces over a field F. A bilinear map U x V' —> F is called a bilinear pairing.

DIl eI Bilinear form

Let V' be vector spaces over a field F. A bilinear map V x V' —> T is called a bilinear form.
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Example 3.2.7

Consider the functions S, T : R x R — R defined as follows: for any z,y € R,
S(z,y)=xz+y, T(z,y)=uay.

Clearly S is linear but not multilinear, and T is multilinear and not linear.

Note 3.2.8

We denote the set of all F-bilinear forms on V' by Bilg(V).

Example 3.2.9

(1) Evaluation (f,v) —> f(v) : V* x V — F is a bilinear pairing.
(2) Let A € My, xn(F). Then mapping By : F™ x F* — F by
fa(z,y) = 2" Ay
is a bilinear pairing.
We denote by Bil(V, V) the set of all bilinear forms on V. Note that any scalar multiple of a bilinear form or

any sum of two bilinear forms is again a bilinear form. This gives Bil(V, V') the structure of a vector space
over F.

DY iTalidle): IO Special important bilinear forms

Let f:V x V — F be a bilinear form. We say that f is:

(1) Nondegenerate if f(u,v) =0 for all w € V implies that v = 0.

(2) Symmetric if f(u,v) = f(v,u) for all u,v € V.

(3) Anti-symmetric (skew-symmetric) if f(u,v) = —f(v,u) for all u,v € V.

(4) Alternating if f(v,v) =0for allv e V.

Example 3.2.11

(1) V =R2. The following map

T 1
] T
<< Lo ) ( Yo )) > T1Y1 T T2Y2

is a symmetric form on R? x R2.
(2) Let V. =C([-1,1],R). The map

C([-1,1,R) x C([-1,1],R) — R

1
(Fog) — / gt
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is a symmetric form.

(3) In general, every real inner product is a symmetric bilinear form.

3.3 Bilinear forms and matrices

Definition 3.3.1

Let V be a vector space over F with basis B = {v1,...,v,} and let f : V x V — F be a bilinear form.
The matrix of f with respect to B is A = (a;j) € My« (F) given by

Q5 = f(viuvj))

for 1 <i,j<n.

Note 3.3.2

Let V' be a vector space over F with basis B = {v1,...,v,} and let f : V xV — F be a bilinear form.
We denote [f]g to the matrix of f with respect to the basis B.

Proposition 3.3.3

Let f : V x V — F be a bilinear form with matrix A with respect to B = {v1,...,v,}. Then f is

n n
completely determined by A: if v = Z z;v; and w = Z y;v; then
i=1 j=1

n
flv,w) = Z LilYjQig,
i,j=1
Proof. Using the bilinearity of f:

Flo,w) =" wyif(viv) = > wiysa.

ij=1 ij=1

Example 3.3.4

Let V =R? and B = {e1, ez} the standard basis of V. Consider the following symmetric form

f:R?2xR? >R

(( o > 9 ( an >> > 3x1y1 — 2%2Y2 + T1Y2 + Tay1
x2 Y2
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The matrix of f relative to the standard basis B is

3 1
ne= (% )
Proposition 3.3.5

Let V be a vector space over a field F and f € Bilg(V) , and B an ordered basis of V. Then,
(1) []s:Bilg(V) — M,,(F) is an isomorphism of F-vector spaces.

(2) Let A e M, (F) and fa € Bilp(F™) be the bilinear form defined by the matrix A. Then [fa]s = 4,
where S is the standard basis of F™.

(3) Let f € Bilg(F") and A = [f]s, then, f = fa .

Proof. This is a homework.

Definition 3.3.6

Let f be a symmetric bilinear form on a vector space V.
(1) We say that u,v € V are orthogonal with respect to f if f(u,v) = 0.

(2) If W C V is a subspace of V, we define the orthogonal complement of W in V to be

Whi={veV : f(v,w)=0forallwe W}

Lemma 3.3.7

Let f € Bilg(V') and B = {vy,...,v,} an ordered basis of V. Then, for any u,v € V, we have

[u]i [f]B [v]B = f(u,v).

Moreover, if A € M(F) is such that
[u]il:? A [U]B = f(u7 U)v
then A = [f]g.

Proof. Let u,v € V and suppose that

u = Zaivi and v = ZBJUJ
i=1 j=1
so that
B
[u]tB = [a17 e 7an] and [’U]B = ,
Br

Then, we have
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= f(iaﬂ%, iﬁj%’)
wt(on 3m)

Z zﬁjf(vi’ Uj)
j=1

Il
MS nmg

1

o
Il

Also, we see that

b1

[u]i [f]B [v]s = a1, an] [f]s | ¢

Bn

= ZZ ;B f(vi, vj).
=1 j=1

Let A = (a;j) € My (F) such that

Then for all ¢ and j, we have
[vils A[vi]s = f(vi,v)),
Hence
ej Aej = f(vi,vy),
Finally, we get a;; = f(v;,v;), that means A = [f]z.

SICOTo e[ IR Il Bilinear form: change of basis formula

Let V be finite-dimensional vector space over a field F and f € Bilg(V). If B and B’ be two ordered
bases of V', then

P [fls P = [fls,
where P = Pg/__, 3.

Proof. Let u,v € V,and P = Pg'_, 5.

We know that
[u]g = Plulpr and [v]g = Plv]p

We have:
fu,v) = [ulz [f]5 [v]s
= (Pluls)" [f]P [v]s
= [ulz (P*[f]sP) [v]s
Therefore

3.4 Rank and radical
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DA /N Radical

Let f:V x V — F be a symmetric bilinear form. The radical rad f of f is the vector subspace of V'
given by
rad f:={v €V | f(v,v') =0, forall v’ € V} = VL.

Definition 3.4.2 JRELS

Let f: V xV —> F be a symmetric bilinear form such that V is finite-dimensional, we define the rank
of f by
rank f =: dim V — dimrad f.

Here is how to understand both the rank and the radical of f.

STt N Bl Bilinear symmetric form and dual space

Let f be a bilinear symmetric form on a vector space V. Define the map oy : V —> V* by
of(v)(w) = f(v,w),

for v,w € V. Then

(1) of(v) € V* since f is linear in the second slot.

(2) oy : V — V* is linear since f is linear in the first slot.

erof =V € or(v) = SRS v,w) =0 tor all w € =rad f.
3) keroy Viog 0 VIf 0 for all 1% df
Thus rad f <V and rank f = rank oy when V is finite-dimensional.

Moreover f is non-degenerate if and only if o one-to-one or, when V' is finite-dimensional, is an
isomorphism.

(4) Let f have matrix A = (a;;) with respect to a basis v1,...,v, of V. Then
op(vs)(vi) = flvj, vi) = azi = aij,
where we used the symmetry of A in the last equality. It follows that

n
or(v;) = asv}
=1

so that A is the matrix of oy with respect to the dual bases {v1,...,v,} and {v],...,v}} of V
and V™.

Lemma 3.4.4

Let f:V xV — F be a symmetric bilinear form on a finite-dimensional vector space V with matrix
A with respect to some basis of V. Then rank f = rank A. In particular, f is non-degenerate if and
only if det A # 0.

C. BEDDANI




Example 3.4.5

We contemplate some symmetric bilinear forms on F3:

(1) f(z,y) = 2191 + x2y2 — w3y3. With respect to the standard basis, we have

A:

OO =
o = O
=

so that rank f = 3.

(2) g(z,y) = z1y2 + x2y1. Here the matrix with respect to the standard basis is

A:

S = O
OO =
o O O

so that g has rank 2 and radical span{es}.

3.5 Classification of symmetric bilinear forms

In this section, we consider that F is a field of characteristic not equal 2, (i.e. 1+ 1 # 0).

Lemma 3.5.1

Let f:V x V — T be a symmetric bilinear form such that f(v,v) =0, for all v € V. Then f = 0.

Proof. Let v,w € V. We show that f(v,w) = 0. We know that f(v+ w,v+ w) = 0 and expanding out gives
us
0= f(v,v) +2f(v,w) + f(w,w) = 2f(v,w).

Since 2# 0 in F, f(v,w) = 0. O

N ol Diagonalization Theorem

Let f be a symmetric bilinear form on a finite-dimensional vector space over F. Then there is a basis
B ={vy,...,v,} of V with respect to which the matrix of f is diagonal:

f(vi,v;) =0, forall 1<i#j<n.

We call {v1,...,v,} a diagonalising basis for f.

Proof. We will prove this theorem by using the proof by induction on dim V.
(1) Clearly the hypothesis holds if dim V' = 1.

(2) Now suppose it holds for all vector spaces of dimension at most n — 1 and that f is a symmetric bilinear
form on a vector space V with dim V' = n.

There are two possibilities: if f(v,v) = 0, for all v € V| then, by the previous lemma, f(v,w) = 0, for
all v,w € V, and any basis is trivially diagonalizing.
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Otherwise, there is v1 € V' with f(v1,v1) # 0 and we set
U:=spanvy, W:={v]| f(v,v) =0} <W.
We have:

(a) UNW ={0}: if Av; € W then 0 = f(v1, Av1) = Af(vy,v1) forcing A = 0.
(b) V=U+W: forv eV, write

— f(ui,) _ Ji,v)
V= f('ull,vl)vl —+ (’U f(u11’v1)1)1).

The first summand is in U while
f('Ulvv - f&ifl))vl) = f(v1,v) = f(v1,v) =

so the second summand is in W.

We conclude that V = U @ W. We therefore apply the inductive hypothesis to f|;, . (the restriction
of fon W x W) to get a basis {va,...,v,} of W with f(v;,v;) =0, for 2 <i# j<n.

Now {v1,...,v,} is a basis of V and, further, since v; € W, for j > 1, f(vi,v;) = 0 so that
f(vi,v;) =0, forall 1<i#j<n.

Thus the inductive hypothesis holds at dim V' = n and so the theorem is proved. O

—

Remark 3.5.3. We can do a little better if F is C or R: when B(v;, v;) # 0, either

(1) If F = C, replace v; with v;/+/f(v;,v;) to get a diagonalising basis with each f(v;,v;) either 0 or
1.

(2) I F =R, replace v; with v;/+/|f(vi,v;)| to get a diagonalising basis with each f(v;,v;) either 0,
1or —1.

Example 3.5.4

Let f : R3 x R® — R be a symmetric bilinear form such that its matrix in the standard basis of R? is
1 2 1
A=12 0 1
1 1 0

Find a diagonalising basis for f.
Solution: First notes that A;; # 0 so take v; = e;. We seek vy among y such that

0=f(v,y)=(1 0 0)Ay=(1 2 1)y=uy1+2y2+ys.
We try v = (1,—1,1) for which
flog,y)=(1 —1 1)Ay=(0 3 0)y=3y

In particular, f(ve,ve) = —3 # 0 so we can carry on.
Now seek vz among y such that f(v1,y) = f(va,y) = 0, that is:

y1+2y2 +y3 =0
3y2=0.
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A solution is given by vz = (1,0, —1) and f(vs,vs) = —1.
We have therefore arrived at the diagonalising basis

{(1,0,0),(1,-1,1),(1,0,—1).}

We can verify that:

1 0 O 1 2 1 1 1 1 1 0 0
1 -1 1 2 01 0 -1 0 |]= -3 0
1 0 -1 1 10 0o 1 -1 0 0 -1

Note that: starting from a different v; would give a different, equally correct answer.

3.6 Sylvester’s Theorem

Let f be a symmetric bilinear form on a real finite-dimensional vector space. We know that there is a
diagonalising basis vy, ..., v, with each f(v;,v;) € {£1,0} and would like to know how many of each there
are. We give a complete answer.

DI iate CIG M Positive and negative definite symmetric bilinear forms

Let f be a symmetric bilinear form on a real vector space V.
Say that f is positive definite if f(v,v) > 0, for all v € V' \ {0}.
Say that f is negative definite if f(v,v) < 0 is for all v € V' \ {0}.

DIl Tiate eIl Signature of symmetric real bilinear forms

If V is finite-dimensional real vector space, the signature of f is the pair (p, q) where

p=max{dimU | U <V with f|,,, positive definite}
g =max{dim W | W <V with f|,, . negative definite}.

We write sgn(f) =p —q..

Remark 3.6.3. A symmetric bilinear form f on V is positive definite if and only if it is an inner
product on V.

I U Sylvester's Law of Inertia

Let f be a symmetric bilinear form of signature (p, q) on a finite-dimensional real vector space Then:
(a) p+q =rank f;

(b) any diagonal matrix representing f has p positive entries and g negative entries.
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Proof. Set K =rad f, r =rank f and n = dim V' so that dim K =n — r.

Let U <V be a p-dimensional subspace on which B is positive definite and W a ¢-dimensional subspace
on which f is negative definite.

First note that U N K = {0} since f(k,k) =0, for all k € K. Thus, by the dimension formula,

dm(U+ K) =dimU +dimK =p+n—r.

Moreover, if v =u+k € U + K, with w € U and k € K, then f(v,v) = f(u+k,u+k) = f(u,u) > 0.
From this we see that W N (U + K) = {0}: if w € WN (U + K) then f(w,w) > 0 by what we just proved
but also f(w,w) < 0 since w € W. Thus f(w,w) = 0 and so, by definiteness on W, w = 0. Thus

dmW+ U+ K)=dmW +dim(U+ K)=qg+n+p—r <dimV=n

so that p+q <.

Now let vy, ..., v, be a diagonalising basis of f with p positive entries on the diagonal of the corresponding
matrix representative A of f and § negative entries. Then f is positive definite on the p-dimensional space
spanv; | f(v;,v;) > 0 (exercise!). Thus p < p. Similarly, § < q.

However r = rank A is the number of non-zero entries on the diagonal, that is » = p + §. We therefore
have

r=p+¢<ptq=r

sothat p=p,g=g¢andp+qg=r. =

Find the rank and signature of f = f4 where
1 2 1
A=1(2 0 1
110

Solution: we have already found a diagonalising basis v; = (1,0,0),vs = (1,—1,1),v3 = (1,0, —1) so we
need only count how many f(v;, v;) are positive and how many negative. In this case, f(v,v1) =1 >0
while f(vs,v2) = —3 < 0 and f(v3,v3) = —1 < 0. Thus the signature is (1, 2) while rank f =1+2 = 3.

Remark 3.6.6.

(a) Here is a useful sanity check: symmetric bilinear B of signature (p, q) on an n-dimensional V' has
p,¢,p+ q < n (since p,q,p + ¢ are all dimensions of subspaces of n-dimensional V' or V*).

(b) A symmetric bilinear form of signature (n,0) on a real n-dimensional vector space is simply an
inner product.

3.7 Nondegenerate bilinear forms

We will now introduce the important notion of nondegeneracy of a bilinear form. Nondegenerate bilinear
forms arise throughout mathematics. For example, an inner product is an example of a nondegenerate bilinear
form.
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DI ate Al Nondegenerate bilinear form

Let V be a finite dimensional F-vector space, f € Bilp(V). We say that f is nondegenerate if the
following property holds:

fu,v) =0foreveryu e V. — v =_0y.

If f is not nondegenerate, then we say that f is degenerate.

Lemma 3.7.2

f € Bilg(V) and B = {vy,...,v;} be a basis for V. Then, f is nondegenerate if and only if [f]z is an
invertible matrix.

Proof. Suppose that f is nondegenerate. We will show that A = [f]z is invertible by showing that ker Ty =
{0}. So, suppose that x € K" is such that
Ax = 0.

Then, for every y € K" we have
0=y"0=y'Ax = fa(y,x).

As [-]p : V — K" is an isomorphism we have x = [u]p for some unique v € V. Moreover, if y € K" then
there is some unique u € V' such that y = [v]g. Hence, we have just shown that

0= fA(Ya X) = [u}%[f]g[’l}]g = f(u,v),
Therefore, since f is nondegenerate
flu,v) =0, for every u € V= v = 0y,

Hence, x = [u]z = 0 so that ker T4 = {0} and A must be invertible. Conversely, suppose that A = [f]z is
invertible. We want to show that f is nondegenerate so that we must show that if

f(u,v) =0, for every u €V,
then v = Oy . Suppose that f(u,v) =0, for every u € V. Then, by Lemma 3.1.6, this is the same as
0= f(u,v) = [u]zAv]s, for every u € V.
In particular, if we consider e; = [v;]5 then we have
0 = el Av]p, for every i = Alv]s = 0.

As A is invertible this implies that [v]g = 0 so that v = Oy, since [—]z is an isomorphism.

Proposition 3.7.3

Let V be a F-vector space, f € Bilg (V') a nondegenerate bilinear form. Then, f induces an isomorphism
of F-vector spaces
o5 : V—V"v+— ogs(v),

where
of(v) : V — F;ur— ¢ (v)(u) = f(u,v).
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Proof. Clearly oy is well-defined, ie, that oy is F-linear and o¢(v) € V*, for every v € V.

Since we know that dim V' = dim V* it suffices to show that o is injective. So, suppose that v € keroy.
Then, oy(v) =0 € V*, so that o;(v) is the zero linear form. Hence, we have o;(v)(u) = 0, for every u € V.
Thus, using nondegeneracy of f we have

0=o0f(v)(u) = f(u,v), for every u € V,= v = 0y.
Hence, o is injective and the result follows. O

e

Remark 3.7.4.

(1) We could have also defined an isomorphism
Gr:V—V",

where
Gf(v)(u) = f(v,u), for every u € V.

(2) If f is symmetric then we have oy = 65
e converse of the previous proposition : suppose that oy induces an isomorphism
3) Th f the previ iti that o ind i hi
of:V—V™

Then, f is nondegenerate. This follows because o is injective.

DA BN Left (right) f-complement

Let f € Bilp(V). Let E C V be a nonempty subset. Then, we define the (right) f-complement of E
in V' to be the set
Ef ={ve V| f(u,v) =0 for every u € E}

this is a subspace of V'

Similarly, we define the (left) f-complement of E in V to be the set

Ef ={veV| f(v,u) =0, for every u € E};

Remark 3.7.6. It’s clear that if f is symmetric or anti-symmetric, we have
Ef = EL.

In this case we write E+.

Proposition 3.7.7

Let f € Bilg (V) be (anti-)symmetric and nondegenerate, U C V a subspace of V. Then,

dim U + dim U+ = dim V.
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Proof. As f is nondegenerate we can consider the isomorphism
op:V—V",
We will show that
o (U*+) = anny+ (U) = {a € V* | a(u) = 0, for every u € U}.
Indeed, suppose that w € UL. Then, for every v € U, we have
op(w)(u) = f(u,w) = 0,

so that o¢(w) € anny -« (U). Conversely, let o € anny«(U). Then, o = oy(w), for some w € V, since oy is an
isomorphism. Hence, for every u € U, we must have

0= a(u) =op(w)(u) = f(u,w),
so that w € U+ and a = o¢(w) € oy (U*). Hence,

dim U+ = dimop (U") = dimanny«(U) = dimV — dim U.
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3.8 Exercises set

Exercise 3.8.1

Suppose that B = {v1,...,v,} is a basis for the finite dimensional vector space V. For all 1 <14 < n,
let f; € V* = L(V,F) given by

1 ifi=j

0 ifi#j.

(1) Show that B* ={f1, f2,..., fn} form a basis for V*.

fivy) = 045 = {
(2) Deduce that dim V* = dim V.

Solution. (1) Let a,...,a, be scalars such that

n
Z a; f; = 0.
i=1
Then for all r € {1,...,n}, we have
n
Z Otifi(’Ur) =0.
i=1
So

En: aiéij =0.
i=1

So a;, = 0. Therefore the set {f1,..., fn} is linearly independent. In addition, for all h € V*, we have

i=1

(2) From (1), we obtain
dimV* = |B*| = |B] = dim V.

Exercise 3.8.2

Let f: U x V — W be a bilinear mapping. Show that
f(u,0) = £(0,0) =0

forallue U and v e V.

Solution. Let u € U and v € V' be two arbitrary vectors. Then

f(u,O) :f(uv0+0):f(uv0)+f(u70)a

and

f(0,v) = f(0+0,v) = f(0,v) + f(0,v).
Hence f(u,0) = f(0,v) =0.
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Exercise 3.8.3

Show that the following are bilinear maps:

(1) Matrix multiplication M : My,xp(F) X : Mpxm(F) — Myxm(F), M(A, B) = AB.
(2) Evaluation mapping: E: V* xV — F, E(f,v) = f(v).

(3) T: M2(Q) x M2(Q) — Q, T(A, B) = tr(AB).

Solution. (1) Clearly, for all @ € F, A1, Ay € My, «p(F) and By, BoMpxm (F), we have:

(
M(Al -|—OéA2,Bl) (Al +04A2)Bl
(AlBl + (OZAQ)Bl
= (A1B1 + a(A2By)

= M(Al,Bl) + OZM(A27Bl)

Similarly, we have:
M(Al, B]_ + QBQ) = M(Al, Bl) —|— O{M(Al, BQ)

(2) Foralla« € F, u,v € V and f,g € V*, we have:

E(u+av, ) = f(u+av)
— f(u) + af(v)
= E(u, f) + aE(v, ),

and

E(u, f+af) = (f + af)(u)

f(u) + (af)(u)
fw) + a(f(u)
E(u, f) + aE(u,g).

Exercise 3.8.4

Let V and W be F-vector spaces. For f € V* and g € W*, we consider the mapping ¢ : V x W — F
defined by

p(v,w) = f(v)g(w).
Show that ¢ is bilinear form on V' x W.

Solution. For all o € F, v1,v2 € V, and w;,ws € W, we have:

¢(v1 + av%wl) = f(vl + av2)g(w1)
= (f(v1) + af(v2))g(wr)
= f(v1)g(w1) + af(v2)g(wr)
= ¢(v1,w1) + ad(ve, wy).

Similarly,
P(v1, w1 + awz) = ¢(vi, w1) + ad(vi, ws).
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SN o o composition between linear and bilinear is bilinear

Let U, V, Wy and W be vector spaces over a field F, and f : U x V — W a bilinear mapping. Show
that for each linear map g : W3 —> W5 the composition g o f is bilinear.

Solution. Let F=go f:U x V — Ws. Then for all uy,us € U, v1,v2 and o € F:

F(uy + aug,v1) = (g o f)(u1 + aus,vy)
= g(f(u1 + oz, v1))
= g(f(ur,v1) + af (uz,v1))

= g(f(ur,v1)) + ag(f(uz,v1))
= F(uy,v1) + aF (ug, v1).

Similarly, we can prove the linearity fir the second argument, that means:

F(uy,v1 + avy) = Fluy,v1) + aF (ug,v9).

Exercise 3.8.6

Let V and W be vector spaces over a field F, and f : V x V — W is both bilinear and linear. Show
that f is the zero map.

Solution. For all v1,v, € V', we have:

f(?)l,’UQ) = f(’l)l + 0, 0 + ’1)1) = f((’l)l,O) + (0,1)2))

Using the linearity of f, we get
f(v1,v2) = f(v1,0) + f(0,v2).

Since f is considered bilinear f(vy,0) = f(0,v3) = 0 (see Exercise 3.8.2). Therefore f(v1,v2) = 0 for all
v1,v9 € V. Hence f = 0.

Exercise 3.8.7

Let B = {v1,...,v,} be a basis for a finite-dimensional F-vector space V, and f € Bilg(V'). Show that
f is symmetric if and only if

f(viavj):f(vjavi)) for all IS'LaJSna

Solution. Let B = {vy,...,v,} be a basis for V. By definition, it’s clear that, if f is symmetric, then
f(vi,v;) = f(vj,v;) forall 1<4,j<n.

Conversely, let u and v be two vectors in V', then

n n
u = E a;v; and v = E Biv;.
i=1 j=1
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Using the bilinearity of f, we get

= f(i:oéﬂh‘, zn:ﬁjvj)
i=1 j=1

(alvl, Zﬁﬂ)ﬂ)

7 (i, B0;)

I
NgE HM:

o
Il
-
<.
I
-

I
M: (]

o
Il

—
<.
Il

-

a;f; f(vi, vj)

Similarly, we can show that
n

flv,u) ZZﬁjazf vj; ;)

j=1:i=1

Since f(vs,v;) = f(vj,v;), for all 1 <4, j < n, we obtain f(u,v) = f(v,u).

Exercise 3.8.8

Consider the bilinear form f : R? x R? — R is given by

where z = <x1> and y = <y1>
L2 Y2

Let S = {e1, e} be the standard basis of R?, and B = {v;, v2} such that

=) o)

(1) Find [f]$7 [f]B and P = Ps 5.

f(z,y) = 2z191 + 3T1Y2 + Y122

(2) Verify that
Pt [fls P = [fls,

Solution. (1) Let us write the matrix of f in the standard basis.

fler,e1) =2, f(er,e2) =3, f(ez,e1) =1, f(ez,e2)=0

hence the matrix of f in the standard basis is

Similarly,
f(vi,v1) =6,  f(vi,v2) =3, f(v2,v1) =5, f(vz,v2) =2

Hence
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(2) By definition
Pp_,s = [[v1]s | [va]s] = G (1))

pore—(ree) - (0 2)
rier =0 ) E 20 A)=0 D0 )= 0 -

Consider the bilinear form

Therefore

So

f:Q°xQ® — Q;(z,y) — 2192 + 3y2 + 21

Is f nondegenerate?

Solution. We have

A=|fls=

o = O
_ O =
o O O

which is non-invertible. Hence f is degenerate.

Exercise 3.8.10

Let V = P3(R) be a vector space over R of polynomials of degree at most 2 with coefficients in R. For
f,g € V define the bilinear form ¢ : V x V —> R by:

¥(f.9) = / /(@) d

(1) Is v non-degenerate or degenerate?

(2) Give the matrix A associated to v relative to the standard basis B = {1,z,2?} of V.
(3) Find a basis of V for which the matrix associated to ¢ is diagonal.

(4) Find the rank and signature of 1.

Solution. (1) Let f = a+ bz + ca? € V such that 1 (f, g) = 0 for all g € V. Then

That means

1 1 1
/ azx + bx? + cad dx =0, / az? +bax® + cxt dz =0, and / az’ + bzt + ca® dx = 0.
-1 -1 -1

Therefore
2 _
3
2 2 _
35 =0
2 _
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So b= 0 and 3¢ = —5a. Take for example (a,b,c) = (—3,0,5), that means f = —3 + 522. Then
Y(=34+52%,9)=0 forallgeV.
Hence v is degenerate.

(2) Let f1 =1, fo = x and f3 = 2. By definition

/w(flvfl) w(fl»fQ) w(flvfé)
A=[lp= (1/}(f27f1) Y(fa, f2) ¢(f27f3))
V(f3, f1)  (fss f2) Y(f3, f3)

After calculation, we get

b

Il

=

oy

|
—
Qwihn O
o O wiro

Sulv O
\_/

(3) The matrix A is denationalization :

0 2 0 1 00\ /0 2 0\ /100
20 2)=(0 10|20 2](0o 10
0 2 0 00 1/\0o 2 0/\0 01
Replace Ry — 3Ry, Ry, — 15R; and R3 — 5R;
0 20 30 0\ /0 2 0\ /1 00
10 06)]=(0 15 0][2 0 2](0o 1 0
0 20 00 5/\0 2 0/\0 00
Replace C; — 3C4, Cy —> 15C; and C3 —> 5C4
0 30 0 3.0 0\ /0 2 0\ /3 0 0
30 0 30|=(0 15 0)(2 0 Z|](0 15 0
0 30 0 o o 5/\0 2 0/\0o 0 5
Replacing Rg — R3 + (—1)R;:
0 30 0 30 0\ /0 2 0\ /3 0 0
30 0 30)=(0 15 0|2 0 2||0 15 0
0 0 0 -3 0 5/ \0 2 0/ \0 0 5
Replacing C5 — C3 + (—1)C1:
0 30 0 30 0\/0 2 0\ /3 0 -3
30 0 0)J=(0 15 02 0 2|0 15 0
0 0 0 -3 0 5/\0 2 0/\0 0 5

Replacing C; — Cy + Cs:

30 30 0 3 0 0
30 0 0)]=(0 15 O
0 0 O -3 0 5

Replacing Ry — Ry + Ras:

60 30 O 3 15 0
30 0 0]=10 15 O
0 0 O -3 0 5

gl O Wi

ol O wliN
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(4)

Replacing Cy —> Cy — (1/2)Cy:

60 0 0 3 15 0\ /0 2 0\ /3 _g?’ -3
30 =15 0f={0 15 0][2 0 2|15 £ o
0 0 0 -3 0 5/ \0 2 0 0 0 5
Replacing R — Rs — (1/2)Ry:
60 0 0 3 15 0\ /0 2 0 3 *E?’ -3
0 15 0f=(3 22 o2 0o 2|15 & o0
0 0 0 -3 0 5/\0 2 0/\0o 0 5
Replacing Ry —> 2Rs:
60 0 0 3 15 0\ /0 2 0\ /3 *ES -3
0 =30 0f=(-3 15 0]([2 0 2|15 £ o
0 0 0 -3 0 5/\0 2 0/\0o 0 5
Replacing Cy —> 2C5:
60 0 0 3 15 0\ /0 2 0\ /3 -3 -3
0 —60 0|=(-3 15 0] |2 0 2| (15 15 0
0 0 0 -3 0 5/\0 2 0/\0o 0 5
N—————
D Pt P
Hence
D = P*AP.
Let
¢ =3+15z, ¢ =-34+15z, and g¢3=—3+ bz

If we take B = {q1, ¢2, g3}, then the matrix of ¢ relative to this basis is:

60 0 0
Ws=[0 —60 0
0 0 0

Verify that ¢(Q17Q1) = 60a 1/’((12, QQ) = _60a 1[}((]3,(]3) = Oa and 1/)(('11’ (J2) = d)(qQa Q3) = T/J(l]h Q3) =0.

We have already found a diagonalising basis B’ = {q1, ¢2, ¢35}, so we need only count how many (g;, g;)
are positive and how many negative. In this case, ¥(q1,¢1) = 60 > 0 while ¢(g2,¢2) = —60 < 0 and
(g3, q3) = 0. Thus the signature is (1,1) while ranky =141 = 2.

Exercise 3.8.11

C. BEDDANI

Consider the bilinear form
[ M2(Q) x M2(Q) — Q; (X, Y) — tr(XY).
(1) Show that f is nondegenerate.
(2) FInd the matrix of f relative to the standard basis of M3(Q)
(3) Find a basis of V for which the matrix associated to f is diagonal.

(4) Find the rank and signature of f.




Solution. (1) Let

0 0
0 1)’

0 1 00 4 e
0 0/ @@= \1 o) ¢ A=

>a €2

10
0 0
be the standard basis of M3(Q).

o

Suppose that

T12
72) e Ma(@)

T11
Z21

F(X,Y) =0, for every Y € M»(Q).

such that

Then, in particular, we have

f(X,e)=0,i€{1,2,3,4}

Hence,

S o S o
I (|

—~ ~~ —~

So that X =0, € MQ(Q)

(2)

(3) We have

Replacing Ry — Ry + R3:

Replacing Cy —> Cs + Cj:

Replacing R3 — 2R3 and C3 — 2C'3 :
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Replacing R3 — Rs + (—1)R»

S o o~

S o N O

O - — O

— O O O

S o O

o - O O

o o~ O

— O O O

S O O

O~ — O

Replacing C5 — C3 + (—1)Cq

Pt

Put

Then the matrix of f relative to the basis {wq, wa, w3, wys} is D.

The signature of f is (3,1) while rank f =3+ 1 =4.

Exercise 3.8.12

fa :R* x R* — R where

Consider the following symmetric bilinear form B

S = AN O

— O O AN

N O O

=D.

Find a matrix P and a diagonal matrix D such that P*AP

Solution. Method 1:

Replacing Ry — R; + R3

Replacing Cy — C + C3
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Replacing Ry — Ry + (—1)R;

\J
— — — —
e e e I N 7~ N — — (@] — — —
— ~ co o~ oo — ER =R coe - coe e - ! ! e -
oo o - —
— A
oo - o co - o co ™o co ™o | ©— o | © = O _I_AOIO | ©— o 0%20
— — — — — —
— — — — —
— O — O
N—— — O — O — O — O — O — O —_ o - o —_ o - o o - o —_ o - o oo
— N~ ~ _
o — o < ~ — ~ — —~ — — —
A Rl e~ S g
—_ o oo™
— o o™ — o oo — o o™ — oo oo~ e e oo~ e e
No o~
N o~ N o~ N o o — N o~ o o
=R )
S~——— N . N > o™ — O oN — O R, o~ O o a o
— <~ X _
oo o~ ~ ~ — —~ — — —
\I/
oo o~ co o~ a—— oo o~ A
A}
— — O — N O — — O — — —
| | f — = == 1_I_A11_. — e 14‘2_I_A
o~ oo
o—o o o— oo oo o
o— oo oo o —
_ L oo o o~ o 011_‘0
—
1_00 1‘I_AOO 1_00 17 70 1110 1111 o =
S~ ~ P NG _ ~ _ (. [ =770 - o _ -
: w " — —— N~ | | lfo_
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I Il Il I I | :
\'} — — —
— —
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-
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(I\
[a] 20 bl el
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3} Q 3} g :
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5 5 & v " o 5
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Replacing Ry —> (—2)R4 and Cy — (—2)Cy

0 0 0
-2 0 2
0 0 -6
2 -6 -8

O O oW

|

Replacing Ry — R4 + R»

0 0 0
-2 0 2
0 0 -6
0 -6 —6

—
O O O N

Replacing Cy — Cy + Cy

2 0 0 0 1
0 -20 ol [-1
0 0 6 0] [-1
0 0 0 —6 1

Method 2:

0 1 0 0 2 10 1 -1 0 2
1 -1 0 2 0 01 0o 1 -1 0
-1 2 0 1 0 0 2 1 -1 2 2
0 2 =2 01 2 0 0 0 0 -2
0 1 0 0 2 10 1 -1 0 2
1 -1 0 2 0 01 0o 1 -1 0
-1 2 0 1 0 0 2 1 -1 2 2
1 1 -2 01 2 0 0 O 0 -2
0 1 0 02 10 1 -1 0 1
1 -1 0 2 0 01 0 1 -1 1
-1 2 0 1 0 0 2 1 -1 2 1
1 1 -2 01 2 0 0 O 0 -2
1 0 0 2 10 1 -1 0 1
1 -1 0 2 0 01 0o 1 -1 1
-2 1 2 1 0 0 2 1 -1 2 1
1 1 -2 01 20 0 0 0 -2
0 1 0 0 2 10 1 -1 -1 1
1 1 0 2 0 01 0o 1 -2 1
-2 1 2 1 0 0 2 1 -1 1 1
1 1 -2 01 2 0 0 O 2 =2

We need to start with v; with B (v1,v1) # 0. Those diagonal zeros say that none of the standard basis
will do so let us try v = (1,1,0,0) for which B (vy,v1) = 4.

Now seek vy among the y with
0=B(v,y=(1 10
We take vy = (0,0,1, —1) with

B(ug,y)=(0 0 1 -1

0)Ay=(2 2 1 1)y=2y1+2y2+y3+a.

JAy=(1 -1 =2 2)y=uy —yo—2ys+ 2ya.

We need to start with v; with f(vy,v1) # 0. Those diagonal zeros say that none of the standard basis
will do so let us try v = (1,1,0,0) for which f(vy,v1) = 4. Now seek v among the y with

0= f(v1,y) = (1100)Ay = (2211)y = 241 + 242 + 43 4 34.

We take vo = (0,0,1, —1) with

B(va,y) = (001 — 1)Ay = (1 —1 —22)8 = 11 — 42 — 243 + 241.

Then B (vs,v2) = —4 and we seek vz among the y with B (v1,y) = B (ve,y) = 0, that is:
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2y1 +2y2 +ys +ya =0
Y1 — Y2 — 2y3 + 2y4 = 0.



One solution is v3 = (—3,5, —4,0) with
B(vs,y)=( -3 5 —4 0)Ay=3(2 -2 -1 —1)y=32y1—2y2—y3—a).
Thus B (vs,v3) = —36 and we need to find vy = y with B (v1,y) = B (ve,y) = B (vs,y) =0 :
21 +2y2+ys+ya =0
Y1 — Y2 —2y3s +2ys =0
2y1 —2y2 —ys —ya = 0.

A solution is vy = (0,4, —5, —3) with B (v4,v4) = 36. We now have a diagonalising basis with B (v;,v;) =
4,—4,-36,36 so B has signature (2,2) and so has rank 4.

After all this linear equation solving it is probably good to check our answer: let P have the v; as columns
and check that PT AP is diagonal:

1 1 0 0 0 210 1 0 -3 0 4 0 0 0
0 0 1 -1 2 0 01 1 0 5 4 10 -4 0 0
-3 5 -4 0 10 0 2 01 -4 -5 [0 0 =3 0
0 4 -5 =3 01 2 0 0 -1 0 =3 0 0 0 36

Exercise 3.8.13

Let f:V x V — F be a symmetric bilinear form. Show that
rad f:={v eV | f(v,0')=0forall v’ € V}.

is a vector subspace of V.

Solution. Since f(0,v) =0forallv € V,0 €rad f, so rad f # 0. Let v1,v9 € rad f and o € F. Then for all
veV

f(v1 4+ ave,v) = f(v1,v) + af(ve,v) = 0.

Hence v + avy € rad f.

Exercise 3.8.14

Let V' be a finite-dimensional vector space over a field F and f € Bilp(V). Show that, if f is
nondegenerate, then
flu,v) =0 foreveryveV = u=0y.

Solution. Let B = {v1,...,v,} be a basis of V. We know that f is nondegenerate if and only if det[f]g # 0.
Assume that f is nondegenerate, and let g the bilinear form on V' defined by

g(u,v) = f(v,u) forall u,v e V.

Clearly g is a symmetric bilinear form and
9] = [f]5-
Therefore det[g]p = det[f]|} = det[f]s # 0. That means g is nondegenerate, and hence

g(v,u) =0 foreveryv eV = wu=0y.

Which is give the requested implication.
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Exercise 3.8.15

Let E C V be a nonempty subset and f € Bilp(V') be (anti-)symmetric. Show that

E+ = (Spang E)*.

Solution. Obviously, we have
(Spang E)* c B+,

since if f(u,v) = 0, for every u € Spany(F), then this must also hold for those u € E. Hence,
v € Spang(E)t = v € B+,

Conversely, if v € E*+, so that f(e,v) = 0, for every e € E, then if w = cje; + ... + crei, € Spang(FE) for
some e; € F, then

flw,v) = f(crer +...cpep,w) =c1f (e1,v) + ...+ e f (e, w) =0+...4+0=0.

Exercise 3.8.16

Let V be a F-vector space and f € Bilp(V'). Suppose that B = {v,...,v,} C V is an ordered basis of
V and B* = {vf,...,v}:} C V*is the dual basis. Define the linear mapping o¢ : V. —> V*;0 —> 04 (v),
by

or(v)(u) = f(u,v) for all u,v € V.

Show that [of]5 = [f]s.

Solution. By definition,
ol = [loy w)]g. -+ [o5 (a)]g.] -

Now, for each ¢, 0 (v;) € V* is a linear form on V' so we need to know what it does to elements of V. Suppose
that
v=MANv1+...+ M\, €V

Then,
op (vi) (v) = f (Z Ak”ka”i) = Nif (vi, v)
k=1 k=1
and

Zf(vjavi)v; (v) = Zf(”javi)v; (Z /\kvk> =3 Nf (vr,0i)

so that we must have

Hence, )
lofls = fls

It is now clear that B is nondegenerate precisely when the morphism op is an isomorphism.
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This chapter gives the basic properties of Hermitian and quadratic forms.

4.1 Real and complex symmetric bilinear forms

Throughout this section we consider only real or complex vector spaces, that is, vector spaces over the field
of real numbers or the field of complex numbers.

F=R or F=C

RITO Tetinfe I Ml Polarisation identity

Let f € Bilp(V) be a symmetric bilinear form. Then, for any u,v € V, we have

Fluo) = 5 ( flutvu+v) = fuw) = f,0)).

Proof. Left as an exercise for the reader. O
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Corollary 4.1.2

Let f € Bilp(V) be a nonzero symmetric bilinear form. Then, there exists nonzero v € V' such that

f(v,0) #0.

Proof. Suppose that the result does not hold: that is, for every v € V' we have f(v,v) = 0. Then, using the
polarisation identity, we get, for every u,v € V,

Flu,) = 5(f(ut v, 0,) = flu,) = fw,0) = 5(0-0-0) =0,

Hence, we must have that f = 0 is the zero bilinear form, which contradicts our assumption on f. Hence,
ther must exist some v € V such that f(v,v) # 0. O

I Ul Classification of nondegenerate symmetric bilinear forms over C

Let f € Bilg(V) be symmetric and nondegenerate. Then, there exists an ordered basis B C V such
that

(fls = Lgimv -

Proof. By the previous corollary, there exists some nonzero v; € V such that

f (1)1,1)1) 7é 0

(we know that f is nonzero since it is nondegenerate).

Let
E; = Spang {v1}

and consider
Ef ={we V| f(w,v) =0}

We have
EyNE; = {0y}

indeed, let = € By N Ei-. Then, x = cvy, for some ¢ € C. As z € Ei- we must have
0= f(z,v1) = f(cv1,v1) = cf (v1,v1)
so that ¢ =0 (as (f (v1,v1) # 0)). Thus, by Proposition 3.7.7, we obtain
V =E, @ Ef.
Moreover, f restricts to a nondegenerate symmetric bilinear form on Ei- : indeed, the restriction is

fies : Bf x B —> C; (u,u') —> f (u,2),

and this is a symmetric bilinear form. We need to check that it is nondegenerate. Suppose that w € Ei is
such that, for every z € Ei- we have

fz,w) =0.

Then, for any v € V, we have v = cvy + 2,2 € Ef-,c € C, so that

fo,w) = f(cv1 + z,w) = cf (vi,w) + f(z,w) =04+ 0= 0,
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where we have used the assumption on w and that w € Ei-. Hence, using nongeneracy of f on V we see that
w = 0. Hence, we have that f is also nondegenerate on Eji-.
As above, we can now find ve € Ef- such that f (v2,vs) # 0 and, if we denote Eo = Spang {vs}, then

Eif = B>, @ Ey,
where Ej3- is the f-complement of F, in Ei-. Hence, we have
V=E ®F,oE;.

Proceeding in the manner we obtain
V=EFE & --®k,

where n = dim V, and where E; = Spang {v;}. Moreover, by construction we have that

f(vi,v;) =0, for i # j.

Define 1
bi = —F=0;

f (via vi)

we know that the square root /f (v;,v;) exists (and is nonzero) since we are considering C-scalars. Then, it
is easy to see that

L, i=7,

Finally, since
V' = Spanc {b1} & --- & Spanc {bn},

we have that B = {b1,...,b,} is an ordered basis such that

[f]B = I,.

Corollary 4.1.4

Let A € GL,(C) be a symmetric matrix. Then, there exists P € GL,(C) such that

P'AP = I,.

Since A is an invertible matrix the bilinear form f4 € Bile (C™) is symmetric and nondegenerate.

S Ul Sylvester's law of inertia

Let V' be an R-vector space, f € Bilg(V') a nondegenerate symmetric bilinear form. Then, there is an
ordered basis B C V such that [f]z is a diagonal matrix

dy
do
[f]s = . :

where d; € {1,—-1}.
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Proof. The proof is similar to the proof of the previous theorem: we determine vy, ...,v, € V such that
V = Spang {v1} @ - - - @ Spang {v,, }
and with f (v;,v;) = 0, whenever i # j.

However, we now run into a problem: what if f (v;,v;) < 0 ? We can’t find a real square root of a negative
number so we can’t proceed as in the complex case. However, if we define

5 = /I (v, )], for every i

then we can obtain a basis B = (b1, ...,b,), where we define
1
bi = E’Ui

K3

Then, we see that
oy 0iFE]
f(bhbj) - { :|:1,i :j
and [f]p is of the required form.

T
Remark 4.1.6. If pis the number of 1’s appearing on the diagonal and ¢ the number of —1’s appearing
on the diagonal, then

sgn(f) =p—q.

4.2 Quadratic forms

DI Tiale I 2l Quadratic form

A quadratic form on a vector space V over F is a function @ : V. —> F of the form

Q(U) = f(vav)a

for all v € V, where f: V x V — F is a symmetric bilinear form.
T
Remark 4.2.2. Forv eV and A € F,

QW) = f(hv, \) = \?Q(v)

so (Q is emphatically not a linear function!

Example 4.2.3

Here are two quadratic forms on F3:

(1) Q(z) = 22 + 23 — 23 = fa(z,x) where

S

Il
oo
oo

o
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(2) Q(x) = 2122 = fa(z,x) where

0 2 0
A=[3 0 0
0 0 0

RCeTeleI Nl I 2Rl Polarisation of quadratic forms

Let Q : V — T be a quadratic form with Q(v) = f(v,v) for a symmetric bilinear form f. Then
flv,w) = 3(Q(v +w) - Qv) — Q(w)),

for all v,w € V. f is called the polarisation of Q.

Proof. Expand out to get
Q(’l) + ’U}) - Q(’l)) - Q(w) = f(U,U)) + f(w,v) = 2f(v,w).

Here is how to do polarisation in practice: any quadratic form @ : F* — F is of the form

1

q11 34ji
Qz) = Z qijTiT; = xT r =z Ax
lsisjsn %qz’j Gnn

so that the polarisation is f4 where

i ifi=7;
Aj=A;=<1" 7
595 if 4 <.

Example 4.2.5

Let Q : R?> — R be given by
Q(z) = 22 4 222 + 2x129 + 1 3.

Let us find the polarisation f of @, that is, we find A so that f = fa: we have ¢11 = 1. g2 = 2,
g12 = 2 and ¢13 = 1 with all other g;; vanishing so

11 3
A=1{1 2 0
100

DI ate I 2N Rank and signature of quadratic forms

Let @ be a quadratic form on a finite-dimensional vector space V over F.
The rank of @ is the rank of its polarisation.
If F = R, the signature of @ is the signature of its polarisation.
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Theorem 4.2.7

Let @Q be a quadratic form with rank r polarisation on a finite-dimensional vector space over F.

(1) When F = C, there is a basis {v1,...,v,} of V such that
Q(Z%”Ui) =zi+- +a2.
=1

(2) When F =R and @ has signature (p, q), there is a basis {vy,...,v,} of V such that

n
2 2 _ 2 2
Q(mei) ST T~ Tpn — T Tpyg
i=1

Example 4.2.8

Find the signature of @ : R3 — R given by
Q(z) = 23 + 23 + x5 + 2173 + 4273
Q has polarisation f = f4 with

A:

_ O =
N = O

1
2
1

Solution: exploit the zero in the (1,2)-slot of A to see that ej,es,y = (—1,—2,1) is a diagonalising
basis and so gives us a diagonal matrix representing f with Q(e;) = Q(e2) =1 >0and Q(y) = -4 <0
along the diagonal. So the signature is (2, 1).

Here are two alternative techniques:

(1) Orthogonal diagonalisation yields a diagonal matrix representing B with the eigenvalues of A down the
diagonal so we just count how many positive and negative eigenvalues there are.

In fact, A has eigenvalues 1 and 1 + V5. Since /5 > 2,1 — Vb < 0 and we again conclude that the
signature is (2, 1).

(2) Write @ as a linear combination of linearly independent squares and then count the number of positive
and negative coefficients. In fact,

Q(x) =z} + 23 + 23 + 21123 + dagas
= (21 +23)> + 25 + dwows = (z1 + 23)° + (w2 + 223)° — 423,

But now we need to check that x; 4+ x3, 5 + 23, x5 are linearly independent linear functionals on R3.
Here comes to the rescue and says we only need show that (ker zq 4+ z2) N (ker x2 + 2x3) N (ker z3) = {0}.
But 23 =0 = 21 + 23 = x2 + 23 rapidly implies that each z; = 0 and we are done. The coefficients of
these squares are 1,1, —4 and so, once more, we get that the signature is (2, 1).

Example 4.2.9

Determine the rank and signature of the quadratic form @ : R3 — R given by

Q(z,y,2) = 2zy + 2y=.
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by reducing it to its canonical form.

Solution:
Clearly

(@+y+2?—@-y+2?)

N | =

Q(z,y,2) = 2zy + 2yz =

Hence, the matrix for the canonical form is

i 0 0
A=|0 -1 o0
0 0 0

So, the rank is 2. Further, the signature is (1,1) and sgn(Q) =0 .

4.3 Hermitian forms

DA e Hermitian form

Let V' be a C-vector space. A function H : V x V — C is called a Hermitian form on V if
(HF1) for any u,v,w € V and A € C, H(u + M, w) = H(u,w) + A\H (v, w),

(HF2) for any u,v € V, we have H(u,v) = H(v,u), (Hermitian symmetric).

Where the bar denoting complex conjugation, that means if z = a + bi is a complex number
(i? = —1), then by definition z = a — bi.

Note 4.3.2

We denote the set of all Hermitian forms on V' by Herm(V).

Example 4.3.3

(1) The function H; : C" x C™ —> C defined by
Hl(Z,w) = Z Z’imv
i=1

21 wq
where z = : and w =

Zn w2
is a Hermitian form on C™.

(2) The function Hj : C% x C2 —> C defined by

HQ(Z,%U) = z1wq + izowy — izwWs.

is a Hermitian form on C2.
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(3) The function Hz : C?> x C?> — C defined by

Hs(z,w) = zywy + zows

is not a Hermitian form on C2. Take for example z = G) and w = G)

H3(Z,’LU) =1+i

and

Hs(w,z)=1+i=1—i

H3(Zaw) 7é HB(wa Z)

So
DIl I R/ Il Hermitian matrix

Recall that a square matrix A = (a;;) is called Hermitian matrix if a;; = @;; for all for all indices i
and j,

DTl I R Rl Skew-Hermitian matrix

Recall that a square matrix A = (a;;) is called skew-Hermitian matrix if a;; = —aj; for all for all
indices i and j,

The conjugate transpose of a matrix A is denoted by A"

Remark 4.3.7.

(1) Let A be a complex square martix. Then

(a) A Hermitian <<= A"=A.
(b) A skew-Hermitian <<= A"=-A4

(2) If A is a real matrix, then

(a) A Hermitian <= A is symmetric (i.e. A' = A).
(b) A skew-Hermitian <= A is skew symmetric (i.e. A' = —A).
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Example 4.3.8

The following matrix A is Hermitian
1 1—i 2-3i
A= 1+i 4 2i
2431 —2i 0

The following matrix B is skew-Hermitian

because

SITO o Totinfe I NIl Hermitian properties of matrices

Let A, B € My(C) and A € C. Then

(1) (A+ B)" = Ah+ Bh

(2) (AA)h = AP,

(3) (AB)" = B" AP,

(4) (A" = 4.

(5) If A is invertible, we have (A")~1 = (4-1)".

[SICeTele TNl I SO Hermitian properties of matrices

(1) The sum of two Hermitian matrices is Hermitian.
(2) The inverse of an invertible Hermitian matrix is Hermitian as well.
(3) The sum of a square matrix and its conjugate transpose (A + Ah) is Hermitian.

(4) The difference of a square matrix and its conjugate transpose (A — Ah) is skew-Hermitian.
(5) The product of two Hermitian matrices A and B is Hermitian if and only if AB = BA.
(6) if A and B are Hermitian, then ABA is Hermitian.

Definition 4.3.11

Let V be a vector space over C with basis B = {v1,...,v,} andlet H : VxV — F be a Hermitian form.
We define [H]p the matrix of H with respect to B by [H]|g = (a;j) € Myxn(F) given by

aij = H(vi,v;), for 1<4,j<n.
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The Hermitian symmetric property of a Hermitian form implies that

t

[H]s = [H]s -

N
Remark 4.3.12. f V is a vector space over C with basis B = {v1,...,v,} and H: V xV — C a

Hermitian form with matrix A = [H|g with respect to B. Then H is completely determined by A: if

n n
v = E z;v; and w = E y;v; then
i=1 j=1

n n n
H(v,w) Z g H (vi,v5) = Z TY50i5 = Z Tjaijr; = oAy = y" Ax.

i,j=1 2,j=1 2,j=1

Lemma 4.3.13

Let H € Herm(V') and B = {vy,...,v,} an ordered basis of V. Then, for any u,v € V, we have
_ . _

H(u,v) = [uls [H]s [v]s = [v]5 [H]5 [u]s.

Moreover, if A € M,,(C) is such that

then A = [H]g.

SICOTeLe Tl I MBI Hermitian form and chage of basis

Let H € Herm(V), B, B’ two ordered bases of V. If P = Pg_,p is the change of coordinate matrix
from B to B’, then
P"H]s P = [H]z.

Proof. Let u,v € V,and P = Pr/_, ;3. We know that

[’LL]B = P[U]B/ and [U]B = P[U]B/

We have:
H(u,v) = [v]3[H]suls
= (Plo]s)"[H]sPluls
= [v]% P"[H]sPlu]p
Therefore

4.4 Classification of Hermitian forms
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DI nate WMl Nondegenerate Hermitian form

Let H € Herm(V). We say that H is nondegenerate if [H]z is invertible, for any basis B of V. The
previous lemma ensures that this notion of nondegeneracy is well-defined (ie, does not depend on the
choice of basis B).

AT R X Il Classification of Hermitian forms

Let V be a C-vector space, n = dimV and H € Herm (V') be nondegenerate Hermetian form on V.
Then, there is an ordered basis B of V' such that

dy
[H]s =
dn,
where d; € {1, —1}.
Corollary 4.4.3
If u,v € V with
U U1
ulp=| : and [v]p =
Uy, Un

, we have

H(u,v) = Z d;w;v;.
i=1

DI ate IR WMl Scsquilinear form

Let V be a C-vector space. A function H : V x V —> C is called a sesquilinear form on V if for any
u,v,w €V and X € C, we have

(1) Hu+ M, w) = H(u,w) + A\H (v, w),
(2) H(w,u+ M) = H(w,u) + XH(w,v),

DY ialidle): W B3 Positive and positive definite of Hermitian forms

Given a complex vector space V', a Hermitian form H € Herm(V) is called

(1) Positive if H(u,u) >0 forallu eV

(2) Positive definite if H(u,u) >0 for all u € V
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DA I W N3l Hermitian space (or unitary space)

A pair (V, H) is called Hermitian space, where V is a C-vector space and H is a Hermitian form on
V such that [H]p = I,,, for some basis B.

DSl B WAl Positive and positive definite of Hermitian forms

A Hermitian space (V, H ) is called:
(1) pre-Hilbert space if H is positive.

(2) Hilbert space if H is positive definite.
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4.5 Exercises Set

Exercise 4.5.1

Let B be a nonzero real symmetric bilinear form on V' with quadratic form Q. Show that Q(v) # 0
for some v € V.

Solution. For all u,v € V| we have
Q(u+v) = Q(u) + 2B(u,v) + Q(v).
If Q(v) =0 for all v € V, we get from previous equality
0=0+2B(u,v)+0 forall wu,veV.

Therefore B = 0.
0=Q(u+v)=Q(u) +2B(u,v) + Q(v) = 2B(2,v).

Which is a contradiction. So Q(v) # 0 for some v € V.

Exercise 4.5.2

Let V' be a complex vector space, and H : V x V —> C a nonzero Hermitian form on V. Let v1,v3 € V
such that ¢ = H(v1,v2) # 0. Let v3 = cvs.

(1) Show that H(vy,v3) is a nonzero real number.
(2) Show that, there exists v € V such that H(v,v) # 0.

Solution.
(1) H(vi,v3) = H(vy,cvg) =¢H(v1,v2) =cc € R\ {0}.
(2) We have
H(vy +vs,v1 +v3) = H(v1,v1) + H(v1,v3) + H(vs,v1) + H(vs,v3)

H(Ul,’l)l) + H(vl,v3) + H(Ul,’l}g) + H(’Ug,”l)g)
H(Ul,

v1) + 2H (vy,v3) + H(vs,v3) Because H(v1,v3) is a real number.

So
H(’Ul + V3, U1 + ’1)3) = H("Ul,’ljl) + 2H(’U1,"U3) + H(vg,vg)

Since the term 2H (v1,v3) isn’t zero, at least one of the three other terms in the last equation isn’t zero.

Exercise 4.5.3

Let B € Bilg(V) be a real nondegenerate symmetric bilinear form with quadratic form @ such that
Q(u) = 0 for some nonzero vector u € V.

(1) Show that there exists w € V such that B(u,w) = 3.

(2) Show that, for all z € R, Q(zu + w) = z + Q(w).

(3) Deduce that Q(V) = R.
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Solution. (1) Let u be a nonzero vector in V such that Q(u) # 0. As B is nondegenerate, there exists
wy € V such that B(u,w;) # 0. Let

1
v QB(u,wl)wl
50 1 1 1
B<U7W) = B(’LL, mwl) = mB(U,’U}l) = 5

(2) For all z € R,

Q(zu 4+ w) = B(zu + w, zu + w)
= 2%Q(u) + 22B(u, w) + Q(w)
=z + Qw).

(3) W deduce from (2) : for all z € R,
2= Q((x - Q)u + w).

Hence Q(V) =R.

SN Wl Hermitian form is anti-linear in the second argument

Show that, if H is a Hermitian form on V', then

H(u,v+bw) = H(u,v) + bH (v,w),

any u,v,w € V and b € C.

Solution. By definition, we know that for all u,v € V and b € F, we have

H(u,v +bw) = H(v + bw, u)
= H(v,u) + bH (w,u)
= H(v,u)+bH(w,u)
= H(u,v) + bH (u,w).

Exercise 4.5.5

Show that the determinant of a Hermitian matrix is a real number.

Solution. If A is Hermitian, then A = At so det(A) = det At. Therefore det A = det At. Since det A = det At,
we get det A = det A. Hence det A is a real number.

Exercise 4.5.6
Let H € Herm(V). Show that for all u,v € V and «, 8 € C, we have

H(au + v, au + fv) = |af* H (u, u) + 2R(aBH (u,v)) + [B]*H (v, v).
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Solution.

H(au + Bv,au + Bv) = aH (u, au + fv) + BH (v, au + Bv)
= aH(u,au) + aH (u, fv) + SH (v, au) + SH (v, fv)
= aaH (u,u) + afH (u,v) + faH (v,u) + BBH (v,v)
= aaH (u,u) + afH (u,v) + SaH (u,v) + SBH (v, v)
= |a*H (u,u) + 2R(aBH (u,v)) + |B|*H (v, v).

SN I WAl First polarization identities for sesquilinear form

Show that for any sesquilinear form H : V x V. — C, we have

4H (u,v) = Hu+v,u+v) — Hlu —v,u —v) +iH(u+ iv,u + iv) — iH(u —iv,u — iv),

Solution. Let ® be the quadratic form associated with H:
®(x) = H(z,z) forallzeV.
For any a, 8 € C, we have

®(az + By) = H(azx + By, azx + By)
= |a*®(z) + aBH(z,y) + aBH(y,x) + |3*®(y).

Using this equality subsequently for a = f=1;a=1and f=—-1l;a=1and f=4;a=1and § = —

we get
®(x +y) =0(x) + H(z,y) + H(y,z) + 2(y)

) =
—Q(z —y) =—P(z) + H(z,y) + H(y,z) — 2(y)
i®(z +iy) = i®(z) + H(z,y) — H(y, ) +i®(y)

—i®(x —iy) = —i®(x) + H(x,y) — H(y,z) — i®(y).

By adding these equalities we obtain:
4H (u,v) = Hu +v,u+v) — Hlu —v,u —v) + iH (v + iv,u +iv) — iH(u —iv,u — iv),

SN LK. Second polarization identities for sesquilinear form

Show that for any sesquilinear form H : V x V — C, we have

2H (u,v) = (1 +i)(H(u,uv) + H(v,v)) — Hu —v,u —v) — iH(u — iv,u — iv).

Solution. From Exercise 4.5.7 :

4H (u,v) = Hu +v,u+v) — Hlu —v,u —v) +iH (v + iv,u + iv) — iH(u — iv,u — iv).

Then
4H (u,v) = H(u,u) + H(u,v) + H(v,u) + H(v,v) — H(u —v,u — v)
+iH (u,u) + iH (u,iv) + iH (iv,u) + iH (v, iv) — iH(u—iv,u — iv)
= H(u,u) + H(u,v) + Hwya) + H(v,v) — H(u — v,u —v)
+iH (u,u) + H(u,v) — Hwra) +iH(v,v) —iH (u — iv,u — iv).
Hence

2H (u,v) = (1 +i)(H(u,u) + H(v,v)) — H(u — v,u —v) — iH(u — iv,u — iv).
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Exercise 4.5.9

Show that a sesquilinear form H : V x V — C is Hermitian if and only if H(v,v) € R for all v € V.

Solution. Clearly, if H is Hermitian, then for all v € V| H(v,v) = H(v,v). Therefore H(v,v) € R.
Conversely, suppose that H is a sesquilinear form such that H(v,v) € R for all v € V. To prove that H
is Hermitian, we need only to

H(u+v,u+v)=H(u,u) + H(u,v) + H(v,u) + H(v,v)

and
H(u—v,u—v)=H(u,u) — H(u,v) — H(v,u) + H(v,v)
So
H(u,v)+ H(v,u) =a € R. (4.1)
Also
H(iu,v) + H(v,iu) =beR
that is

iH(u,v)—iH(v,u) =b
Multiplying by i,

H(u,v) — H(v,u) =ib (4.2)
From (4.1) and (4.2), we get _
H(u,v) = a+1if
2
and .
H(v,u) = a —21ﬁ7

which means H(u,v) = H(v,u), for any u,v € V, as required.

Exercise 4.5.10

Let (V,H) be a Hermitian space. Show that for any linear map f € £(V) such that H(f(v),v) =0
for all v € V, then f = 0.

Solution. We have, for all u,v € V and a € C

0=H(f(u+ av),u+ av) = H(f(u) + af(v),u+ av)
=aH(f(u),v) + aH(f(v),u).

In particular, when o = 1 or a = i, we get
H(f(u),v)) + H(f(v),u) =0

and
iH(f(u),v)) —iH(f(v),u) =0

Therefore
H(f(u),v))=0 forallu,veV

Since H is nondegenerate, f(u) =0 for all u € V.
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Alternating Forms
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5.1 What is an Alternating Forms?

Definition 5.1.1

Let V be a vector space over a field F, and k a positive integer. An k-linear functional on V' (or k-form)
is a function

f:VxVx...xV —>TF
———— ———
k times

such that for all z1,...,z;,y,2 € V and all a, § € F, we have:
Off(xla"'axi—la aer,Bz, mi—i—l)'-'axk): af(xla"'axi—h Y, xi+17"~7$k)
—|—,8f(£1,‘1,...,$i_1, z, xi_,_l,...,xk).

fori=1,2,...,k.
We denote by T*(V) to the set of all k-form on V.
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DI ate Nl Symmetric multilinear form

An k-form on a vector space V is called symmetric with respect to its i-th and j-th arguments if, for
all z1,...,z, we have

f(xla"'7xi—17$i7z’i+17"'axj—lal‘jv:r’jw"7zk) = f('T'lv"'71‘i—1a'rj7xi+17'"7$j—1vxi7xj7"'axk)

The k-form is called symmetric if it is symmetric with respect to every pair of arguments.

DI ate LNl Antisymmetric multilinear form

An k-form on a vector space V is called antisymmetric with respect to its i-th and j-th arguments if,
for all z1,...,xx, we have

f(zlv"wxi—laxiami-‘rla"'axj—laxjvxjw"awk) = _f(xlv'"7xi—1amj7xi+17"'7xj—17xivxj7"'7'1:16)

The k-form is called antisymmetric if it is antisymmetric with respect to every pair of arguments.

DI iate LN Alternating multilinear form

An k-form on a vector space V alternates with respect to its i-th and j-th arguments if

f(x17"'axi—17xi7$i+17'"7xj—17xj;mja-'-7xk) =0

whenever x; = x;.

The k-form is called alternating if it alternates with respect to every pair of arguments.

S Ul Alternation and antisymmetry of multilinear forms

(1) Alternating k-forms are anti-symmetric.

(2) If char(F) # 2, an k-form is alternation if and only if it is antisymmetric.

Proof. Exercise 5.1.5 for students.

Proposition 5.1.6

If an k-form is alternates with respect to every pair of adjacent arguments, then it is an alternating
form. More general, a k-form f is alternating on V' if and only if for all z4,...,z, € V, we have

f(@oqy, s To(m)) = (sgno) f(z1,...,2,) forany o e S,.

Proof. Exercise for students.
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Theorem 5.1.7

The set of all k-forms is a vector space and the set of all alternating k-forms is a subspace of it.

5.2 Exterior product

DT Bl Exterior product

If f is an alternating k-form and g is a 1-form, then the exterior product of g and f is the (k+ 1)-form
g A f defined by

k1
gAf (@1, mig) = Y (1) g(@) f (@, - i1, Tigas - T

i=1

The expression g A f is often read g wedge f speaking.

Theorem 5.2.2

If f is an alternating n-form and g is a 1-form then g A f is an alternating (n + 1)-form.

Proof. We use the previous proposition. Assume that x = {z1,...,zr} be an k-vectors in V such that
z; = xj41. We will show that g A f(z) =0.
By definition,

k+1

gAf (@1, i) = Y (1) T (@) f(@n, o Tis1, Tigas o Th)

i=1

Every term in the sum except those for ¢ = j and for ¢ = j + 1 contains f with the equal arguments x; and
Zj4+1. Since f is an alternating form, this implies that the sum contains only two non-zero terms. These are:

(=17 g(z) f (@1, ety Tgts e -y Tog1) + (=17 g(0j00) F (@1, - 25 Tjray oo, T

They have opposite signs and are otherwise identical, because z; = x;4;. Hence the sum is zero. Finally
g A f s an alternating (n + 1)-form. O

Theorem 5.2.3

If f is an alternating k-form and if the set of vectors {zj,...,z;} are linearly dependent, then
f(.%‘]_,...,xk) :0

Proof. Assume that {z1,...,z;} are linearly dependent. Then there exist an index j, and scalars «; such
that
£L'j = Z ;5.
1#]
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Hence

@y, @) = f(xlv'"7mj—1vzaixiaxj+1vn'vxk)

i#]
= Zaif(xla 1, Ty Tt - - - Th)
1#]
- alf(xl,"',xj—17x17xj+la"'7xk)
+ a2, f(xh sy L1, T2, Tj41y - - - 71‘k)
+ Oékf(l'l, ey Ti—1, Ty Tl e - - ,$k)
=0
O
Corollary 5.2.4
If f is an alternating k-form and f(z1,...,25) # 0, then 1, ..., xy are linearly independent.
We will prove now the existence non-trivial k-forms for £k = 1,2,...,n for every n-dimensional vector

space.

Theorem 5.2.5

If V is an n-dimensional vector space and 1 < k < n, then there is at least one non-zero alternating
k-form.

Proof. We know that there are of non-zero 1-forms and we proceed inductively. All we need to show is that
if k < n and there is a non-zero alternating k-form, then there is an alternating k 4+ 1 form which does not
vanish identically.

Assume then that f is a non-zero alternating k-form and that k£ < n. Since f is not identically zero, there
are vectors x1,...,x such that

flz1,...,x5) #0.
Since k < n, the set vectors {x1,...,x;} cannot span the whole of V.
Using Corollary 5.2.4, the vectors x1, ..., 2y are linearly independent. Therefore there exists (see Proposition
3.1.8) 1-form d: V — F and a vector 41 not in span{xy,...,xx}. such that
d(z)=0 forall z€span{zy,...,zr} and d(zg41)=1. (5.1)
Put
g=dnf

By the previous theorem, g is an k + 1 alternating form on V. To complete the proof of this theorem, we
need only to show that g # 0. We have

k+1

dA f (:L’l, e ,{Ek+1) = Z(—l)i_ld(mi)f(xl, ey L1, L1y - - .,(Ek+1)
i=1

Using (5.1), we get

dAf (21,0 Tpg1) = (—1)kf($17~--,13k733z‘+1,--~7$k+1) # 0.
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5.3 Exercise Set

Exercise 5.3.1

Show that, every alternating form is antisymmetric.

Solution. Let f: Vx --- x V—> F be an alternating n-form. We will show that f is antisymmetric with
respect to its i-th and j-th arguments. Let for all vy,...,v, € V, we have

f(l]1, ceyVim1, U Vi, Vitly---5,05-1,0; + VjyVj41y--- ,Un) = f(’Ul, sy Ui—1, V5 Vig1y o o o5 V-1, U5, Ujga, - - .,’Un)
—|—f(vl,...,vi_l,vj,vi+1,...,vj_l,vi,vj_,_l,...,vn)
+ f(V1, 0 Vs 1, Vi Vig1s oo 3 V51, Uiy Ujig 1, -« -, Un)
+f(vla"'avi—lyvj7vi+la~"7vj—1vvj’vj+17"~vvn)
Since f is alternating n-form, we have
(Ui, 01,00 + 05, Vig1s 4, V21, 0+ U, V4, - V) =0

f(Ul, e ,1)2'_1,’1)1',2)“_1, - ,vj_l,vi,ij, - ,’Un) = 0

f(/Ula sy Vi—1,U5, Uity - o+ 5 Vj—1, U5, Ujp1y - - - ,’Un) =0.
Hence
f(l}l, - ,Ui_l,Ui,’Ui_;'_l, . ,’L)j_l,?)j,’l}j+1, - ,Un) = —f(’Ul, e 7'Ui—17Uj7'Ui+1a . ,’Uj_l,U,;,’Uj_i_l, . 7Un)~

Therefore f is antisymmetric.

Exercise 5.3.2

Show that, if an n-form is alternates with respect to every pair of adjacent arguments, then it is an
alternating form.

Solution. Suppoase that f: V x --- x V— F alternates with respect to every pair of adjacent arguments.
Then, for all vy, ...,v, and for all 1 < i < n, we have

f(l}l, ey Vi—1,0; + U7;+1,’L)7; + U7;+1,1}i+2, e ,’Un) = f(l}l, e ,Ui_l,vi,w,vi_i_g, e ,’Un)
+ f(’Ul, ey Vi1,V Vi1, Vig2,y - - - ,Un)
4 (U1, Vim1, Vi1, Uiy Vi 2y o vy Up)
—+ f(’l)l, ey Vi1, Ui+1, Vi4+1, U7;+2, e ,Un)
Since f alternates with respect to every pair of adjacent arguments, we get
f(’l)l, ey UVi—1,0; —+ ’UZ‘Jrl,Ui —+ ’UZ'+1,’UZ'+2, - ,’Un) = 0

Fo1y .o 021,05, Vi, Vigay ..oy 0n) =0

f(Ul, ey Ui—1, U415, Vi1, Ui425 - -+ ,’Un) =0.
Hence for all i, we have
f(’Ul, ey V-1, vi,vi+1,vi+2, e ,’Un) = —f(’Ul, e ,Ui_l,le,v,;,vi_,_z, e 7Un)
Form this, we can see that for all ¢ and j. we have
f(’l)l, ey Uiy Uig1y e e s ,Uj,?)j+1, N ,Un) = (—1)Sf(’l}1, N ,’Ui,Uj,Ui_;,_l, e ,Un).

Therefore
f(vi,...,v,) =0 when v; = v,.
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Exercise 5.3.3

Show that. if f is an n-form and g is an m-form on the same vector space V, then the function h
defined by

h(vi, - s Ungm) = f(V1, 3 0) 9(Vnst1y -« Ungm)
is an (m + n)-form.
Solution. Clearly, for all v1,...,vp4m,u,w € V and all o, 8 € F, we have: when ¢ < n.
h(vi,...,vi—1, Qu+ Bw, Vig1,-., Vntm ) =(V1,. .., Vi—1, Qu~+ Bw, Viz1,..., V5 )G(Vnt1s-- s Vntm)

Using the linearity of the function f is linear in the argument i, we get the linearity of the function h.
Similarly, we can show that A is linear in the argument 7, when i > n.

Exercise 5.3.4

Let V' be a vector space of dimension 2. Show that every alternating 3-form on V is identically zero.

Solution. Let f: V x V xV —> F be an alternating form on V. Since dim V' = 2, every subset {u,v,w} of
V is linearly dependent. Without loss of generality, we can assume that

w = au + [v.
Hence
£ v,w) = f(u, v, au + Bv)

=0.

Exercise 5.3.5

Let V' be a vector space over a field F of characteristic 2. Show that, every anti-symmetric bilinear
form on V' is symmetric and conversely.

Solution. Let f be any anti-symmetric bilinear form on V. Then
flu,v) = —=f(v,u) Vu,veV
Since F is a field of characteristic 2, we get 2f(u,v) = —2f(u,v) = 0 for all u,v € V. Hence
fu,v) = 2f(u,0) + f(u,v)
= 2f(u,v) = f(u,v)
= f(u,v).
Therefore f is symmetric. Conversely if f is symmetric. Then
flu,v) = f(v,u) Yu,vweV
So,
flu,v) = =2f(u,v) + f(u, v)
= —2f(v,u) + f(v,u)
= —f(v,u).

Therefore f is anti-symmetric.
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