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Introduction

This course is an introduction to multilinear algebra which builds on the idea of linear algebra. We study
the properties of mappings of several variables that are linear in each variable separately.

Chapters one and two are reviews of vector spaces, linear transformations and the inner product spaces.
Then we discuss bilinear forms in chapter three. Afterward some applications about symmetric forms and
quadratic forms are given in chapter four.

Chapter five treats the Hermitian forms and their classifications and finally, in chapter six the fundamental
properties of alternating forms and their exterior product are discussed.



2C. BEDDANI



3C. BEDDANI

Chapter
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Review of vector
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1.1 Vector spaces

Definition 1.1.1 Field

A Field is a set F ̸= ∅ with two operations + and · satisfying the following properties

(1) x+ y = y + x for all x, y in F.

(2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ F.

(3) there is a unique element 0 (zero) in F such that x+ 0 = x for every x in F.

(4) to each x in F there corresponds a unique element (−x) in F such that x+ (−x) = 0.

(5) xy = yx for all x, y in F.

(6) (xy)z = x(yz) for all x, y, z ∈ F.

(7) There is a unique non-zero element 1 (one) in F such that x1 = x, for every x ∈ F.

(8) To each x ̸= 0 in F there corresponds a unique element x−1 in F such that xx−1 = 1.

Definition 1.1.2 Characteristic of a Field

The smallest positive whole number n such that the sum of the multiplicative identity added to itself
n times equals the additive identity. If no such n exists, the field is said to have characteristic zero.

Definition 1.1.3 Vector space

A vector space over a field F is a set V with two operations + and · satisfying the following properties
for all u, v, w ∈ V and a, b ∈ F:

(1) u+ v ∈ V .

(2) u+ v = v + u.

(3) (u+ v) + w = u+ (v + w).

(4) there is a special vector 0V ∈ V such that u+ 0V = v for all u in V .

(5) for every u ∈ v there exists w = −v ∈ V such that v + w = 0V .

(6) a · v ∈ V .

(7) (a+ b) · v = a · v + b · v.

(8) a · (u+ v) = a · u+ a · v.

(9) (ab) · v = a · (b · v).

(10) 1 · v = v for all v ∈ V .
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1.2 Some examples of vector spaces
Let F be a field.

(A) The set Fn = {(a1, . . . , an) | ai ∈ F} is a vector space over F:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn);

b(a1, . . . , an) = (ba1, . . . , ban).

(B) The set F[X] of polynomials with coefficients in F is a vector space over F.

(C) The set Fn[X] of polynomials of degree less than or equal n form a vector space over F.

(D) The space of functions from a set to a field. let S be any non-empty set. Let V be the set of all functions
from the set S into F. The sum of two vectors f and g in V is the vector f + g, i.e., the function from
S into F , defined by

(f + g)(s) = f(s) + g(s).

The product of the scalar c and the function f is the function cf defined by

(cf)(s) = cf(s).

1.3 Vector subspaces

Definition 1.3.1
Let V be a vector space. A non empty subset U of V is a subspace if and only if U is closed under the
addition and scalar multiplication on V . That is:

(1) For all u1 ∈ U, u2 ∈ U , u1 + u2 ∈ U

(2) For any scalar k ∈ F and u ∈ U , ku ∈ U .

Proposition 1.3.2

Let V be a vector space over a field F and let U be a subset of V . Then U is a subspace of V if and
only if U is also a vector space over F under the operations of V .

Example 1.3.3

(1) If V is any vector space, V is a subspace of V ; the subset {0V } consisting of the zero vector alone
is a subspace of V , called the zero sub?space of V .

(2) In Fn, the set of n-tuples (x1, . . . , xn) with x1 = 0 is a subspace of Fn.

(3) In Fn, the set of n-tuples (x1, . . . , xn) with x1 = 1 is not a subspace of Fn.

(4) The space of polynomial functions over the field F is a subspace of the space of all functions from
F into F.
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Proposition 1.3.4

Let V be a vector space. Then

(1) 0V ∈ U for every subspace U of V .

(2) The intersection of any collection of subspaces of V is a subspace of V .

Definition 1.3.5
If S1, S2, . . . , Sk are subsets of a vector space V , the set of all sums

vl + v2 + · · · + vk

of vectors vj in Sj is called the sum of the subsets S1, S2, ..., Sk and is denoted by or S1 +S2 + · · · +Sk

or
k∑

j=1
Si.

Proposition 1.3.6

If W1,W2, . . . ,Wk are subspaces of V , then the sum

W = W1 +W2 + · · · +Wk

is a subspace of V which contains each of the subspaces Wi.

Definition 1.3.7 Linear combination

Any summand of the form a1v1 + · · · + anvn is called a linear combination of v1, . . . , vn.

Definition 1.3.8 Span

Let V be a vector space over F and let v1, . . . , vn be elements of V . Then the subset
{a1v1 + . . . + anvn | a1, . . . , an ∈ F} is called the subspace of V spanned by v1, . . . , vn. It’s
denoted by span{v1, . . . , vn}.

If span{v1, . . . , vn} = V , we say that {v1, . . . , vn} spans V .

Definition 1.3.9 Linearly independent

A set of vectors is said to be linearly dependent over the field F if there are vectors v1, . . . , vn from S
and elements a1, . . . , an from F , not all zero, such that

a1v1 + · · · + anvn = 0.

A set of vectors that not linearly dependent over F is called linearly independent.
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Example 1.3.10

The most basic linearly independent set in Fn is the set of standard unit vectors e1 = (1, 0, 0, ..., 0), e2 =
(0, 1, 0, ..., 0), ..., en = (0, 0, 0, ..., 1).

These vectors span Fn since every vector v = (x1, x2, . . . , xn) in Fn can be expressed as v = x1e1 +
x2e2 + · · · + xnen which is a linear combination of e1, e2, . . . , en.

Fn = span{e1, e2, . . . , en}.

1.4 Basis, dimension and coordinates

Definition 1.4.1 Basis

Let V be a vector space over F . A subset B of V is called a basis for V if B is linearly independent
over F and every element of V is a linear combination of elements of B.

Proposition 1.4.2

All bases of the same vector space have the same size.

Definition 1.4.3 Dimension

A vector space V that has a basis consisting of n elements is said to have dimension n. We write
dimV = n.

For completeness, the trivial vector space {0} is said to be spanned by the empty set and to have dimension
0.Every vector space has a basis. A vector space that has a finite basis is called finite dimensional; otherwise,
it is called infinite dimensional.

Definition 1.4.4 Coordinate

Let V is a n-dimensional vector space over F and B = {v1, . . . , vn} is an ordered basis for V .

Given a vector v in V , there is a unique n-tuple (αl, . . . , αn) of scalars in F such that:

v =
n∑

i=1
αivi

The n-tuple is unique, because if v we also have

v =
n∑

i=1
βivi

We obtain:
n∑

i=1
(αi − βi)vi = 0,

and the linear independence of the αi tells us that αi = βi) for each i.
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The vector (αl, . . . , αn) in Fn is called the coordinate vector of v relative to B; it is denoted by

(v)B = (αl, . . . , αn).

or

[v]B =

α1
...
αn

 .

Theorem 1.4.5 Incomplete basis theorem

Let V be an n-dimensional vector space. Suppose that the family of vectors S = {u1, u2, ..., ur}
is linearly independent. Then there exist in V vectors {ur+1, ur+2, ..., un} such that the family
{u1, u2, ..., un} is basis for V .

Proof. Suppose that dimV = n. If S is a linearly independent set that is not already a basis for V , then S
fails to span V , so there is some vector ur+1 in V that is not in span(S). We can insert ur+1 into S, and the
resulting set S ′ will still be linearly independent. If S ′ spans V , then S′ is a basis for V , and we are finished.
If S′ does not span V , then we can insert an appropriate vector ur+2 into S ′ to produce a set S ′′ that is
still linearly independent. We can continue inserting vectors in this way until we reach a set with n linearly
independent vectors in V . This set will be a basis B = {u1, u2, ..., un} for V .

1.5 Linear Transformations

Definition 1.5.1 Linear Transformation (Linear map)

Let V , W be two vector spaces over the same field F. A function T : V GA W is called a linear
transformation from V to W if the following hold for all vectors u, v in V and for all scalars k ∈ F.

(1) T (u+ v) = T (u) + T (v) (additivity)

(2) T (ku) = kT (u) (homogeneity)

Note 1.5.2

We denote the set of all such linear transformations, from V to W , by L(V,W ) .

Definition 1.5.3 Linear operator

If V and W are the same, we call a linear transformation from V to V a linear operator. We denote
the set of all such linear operator on V , by L(V ) .



9C. BEDDANI

Proposition 1.5.4 Linear transformation

A function T : V GAW is a linear transformation if and only if for all vectors v1, v2 in V and for any
scalar k we have

T (k v1 + v2) = k T (v1) + T (v2)

Example 1.5.5 Identity and zero transformations

If V is any vector space, the identity transformation I, defined by I(v) = v, is a linear operator on
V . The zero transformation O, defined by O(v) = 0 for all v ∈ V , is a linear operator on V .

Proposition 1.5.6

If T is a linear transformation, then

(a) T (0) = 0

(b) T (−v) = −T (v)

(c) T (u− v) = T (u) − T (v)

Definition 1.5.7 Composition (or product) of two linear transformations

Let S ∈ L(U, V ) and T ∈ L(V,W ) where U is another F-vector space. The composition TS is given
by

(ST )(u) = S
(
T (u)

)
for all u ∈ U

U V W
ST

ST

Definition 1.5.8 Invertible linear transformation

Let T ∈ L(V,W ). We say T is invertible provided there exists some S ∈ L(W,V ) so that ST : V GA

V is the identity map on V and TS : W GAW is the identity map on W . We call S an inverse of T .

As a consequence of the next lemma, we are able to refer to the inverse of T which we denote by T−1.

Lemma 1.5.9

Let T ∈ L(V,W ). If T is invertible, then its inverse is unique.
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Proof. Assume S and S′ are both inverses for T . Then

S = SIW = STS′ = IV S
′ = S′

where IV and IW are the identity maps on V and W respectively.

Theorem 1.5.10 Dimension of L(V,W )

Let V be an n-dimensional vector space over the field F, and let W be an m-dimensional vector space
over F. Then the space L(V,W ) is finite-dimensional and has dimension mn:

dim L(V,W ) = (dimV ) × (dimW ).

Proof. Let B = {v1, v2, . . . , vn} be a basis for V and B′ = {w1, w2, . . . , wm} a basis for W .

For all 1 ≤ p ≤ n and 1 ≤ q ≤ m. Consider the linear transformation fp,q ∈ L(V,W ) defined by:

fp,q(vi) =
{

0 if i ̸= p

wq if i = p

That means:
fp,q(vi) = δipwq,

where

δip =
{

0 if i ̸= p

1 if i = p

The claim is that the mn transformations fp,q form a basis for L(V,W ).

Let T be a linear transformation from V into W , and a1j , ..., amj the coordinates of the vector T (vj) in the
ordered basis B′.
That means:

T (vj) =
m∑

q=1
aqjwq

Let
U =

m∑
q=1

n∑
p=1

aqpfp,q

We wish to show that: T = U.
For all j = 1, ..., n, we have:

U(vj) =
m∑

q=1

n∑
p=1

apqfp,q(vj)

=
m∑

q=1

n∑
p=1

aqpδjpwq

=
m∑

q=1
aqjwq

= T (vj)

Then T = U . This shows that the linear transformations fp,q span L(V,W ).
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We must prove that they are independent. Assume that:
m∑

q=1

n∑
p=1

kqpfp,q = 0

Then for all j = 1, ..., n
m∑

q=1
kqjwq = 0

and the independence of the basis B′ implies that kqj = 0 for all j = 1, ..., n and q = 1, ...,m.

Hence the set

{fp,q}1≤p≤n
1≤q≤m

form a basis for L(V,W ).

Finally
dim L(V,W ) = nm = (dimV ) × (dimW ).

1.6 Kernel and range of a transformation

Definition 1.6.1 Kernel and range of a linear transformation

Let T : V GAW is a linear transformation.

• The set kerT of all vectors v in V for which T (v) = 0 is called the kernel (or Null Space) of
T .

kerT = {v ∈ V | T (v) = 0}

• The set R(T ) of all outputs (images) T (v) of vectors in V via the transformation T is called the
range of T .

rang T = {T (v) | v ∈ V }

Clearly kerT is a vector subspace of V and rang T is a vector subspace of W .

Definition 1.6.2 Nullity and rank

If V and W are finite dimensional vector spaces and T : V GA W is a linear transformation, then we
call

• dim kerT = nullity of T

• dim rang T = rank of T

Theorem 1.6.3

If V and W are finite-dimensional vector spaces and T : V GAW is a linear transformation, then

rank (T ) + nullity (T ) = dim(V )
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Definition 1.6.4 One-to-one, onto, bijective

• A function f : X GA Y is called one-to-one (or injective) if f(x) = f(x′) imply x = x′.

• A function f : X GA Y is called onto (or surjective ) if for every y in Y there is at least one x in X
such that f(x) = y.

• A linear transformation that is both injective and surjective is called isomorphism (or bijective).

Proposition 1.6.5

• A linear transformation T : V GAW is one-to-one if and only if ker(T ) = {0}.

• A linear transformation T : V GAW is onto if and only if rang T = W .

Definition 1.6.6

We say two vector spaces V and W are isomorphic and write V ∼= W , if there exists T ∈ L(V,W )
which is both injective and surjective. We call such a T an isomorphism.

Theorem 1.6.7

Two finite-dimension vector spaces V andW are isomorphic if and only if they have the same dimension.

Proof. Assume V and W are isomorphic. This means there exists a linear map T : V GA W that is both
surjective and injective. Theorem 1.6.3 immediately implies that dimV = dimW . For the reverse direction,
let BV = {v1, . . . , vn} be a basis for V and BW = {w1, . . . , wn} be a basis for W . As every vector v ∈ V can
be written (uniquely) as

v = a1v1 + · · · + anvn

for ai ∈ F, we may define a function T : V GAW by

Tv = a1w1 + · · · + anwn.

Observe that the uniqueness of our representation of v implies that T is a well-defined function. Moreover, a
straightforward check reveals that T is indeed a linear map. It only remains to show that T is an isomorphism.
To see that T is injective, let that v ∈ nulT and let bi ∈ F be such that

v = b1v1 + · · · + bnvn.

This means
0W = Tv = b1w1 + · · · + bnwn.

Since BW is an independent set, it follows that all our scalars bi must be 0 and, in turn, v = 0. This shows
that kerT = {0V }, i.e., T is injective.

To see that T is also surjective, note that any vector w ∈ W can be written as

w = c1w1 + · · · + cmwm,

for some choice of scalars ci (why?). Now consider the vector c1v1 + · · · + cmvm ∈ V and observe that

T (c1v1 + · · · + cmvm) = c1w1 + · · · + cmwm = w.

This shows that T is surjective.
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1.7 Direct-Sum

Definition 1.7.1
Let U1, . . . , Un be subspaces of V . and W a subspace of V . We say that W is sum of the Ui’s, and
write

W = U1 + · · · + Un

provided that for every w ∈ W there exist ui ∈ Ui, 1 ≤ i ≤ n, with

w =
n∑

i=1
ui.

Example 1.7.2

Consider the subspaces of R3:

U1 = {(x, 0, z) | x, z ∈ R} and U1 = {(0, y, z) | y, z ∈ R}.

Remark that every vector v = (x, y, z) ∈ R3, can be written as sum of a vector in U1 and a vector in
U2, for example:

v = (x, y, z) = (x, 0, z) + (0, y, 0) or v = (x, y, z) = (x, 0, 0) + (0, y, z).

Therefore R3 = U1 + U2

Definition 1.7.3
Let U1, . . . , Un be subspaces of V and W a subspace of V . We say that W is direct sum of the Ui’s,
and write

W =
n⊕

i=1
Ui,

provided that for every w ∈ W there exist unique ui ∈ Ui, 1 ≤ i ≤ n, with

w =
n∑

i=1
ui.

Example 1.7.4

Let V = R2, U1 = {(x, x) | x ∈ R} and U2 = {(y,−y) | y ∈ R}.

(1) Show that R2 = U1 + U2.

(2) Is R2 = U1 ⊕ U2?

solution

(1) Let (a, b) ∈ R2, we will find (x, x) ∈ U1 and (y,−y) ∈ U2 such that

(a, b) = (x, x) + (y,−y) (1.1)
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That is
a = x+ y and b = x− y

Adding and subtracting the two equation we obtain

2x = a+ b and 2y = a− b

Then we can divide by 2 to obtain the solution x = a+b
2 and y = a−b

2 . So for all (a, b) ∈ R2:

(a, b) =
(a+ b

2 ,
a+ b

2

)
+
(a− b

2 ,
b− a

2

)
.

Hence R2 = U1 + U2.

(2) As the equation (1.1) has a unique solution, R2 = U1 ⊕ U2.

1.8 A formal definition of the determinant of a matrix

Definition 1.8.1 Permutation

A permutation of the set {1, . . . n} is any ordered way to write down the symbols {1, . . . n}. We denote
the set of all this permutations by Sn.

Example 1.8.2

The collection of all permutations of the string (1, 2, 3) is the set

S3 = (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

Given a permutation π, we refer to the k-th entry of π by writing π(k). For example, if π = (2, 3, 4, 1),
we would interpret π(2) to be the second entry of π, which is 3.

Note 1.8.3
Take any permutation. We claim that it can be created by the following process:

(1) Start with the permutation (1, 2, 3, . . . n).

(2) Repeatedly pick pairs of elements in the permutation we have, and swap them.

(3) By carefully choosing the pairs in step 2 above, we can get to any other permutation.

The signature of the permutation sgn(σ) is defined as follows:

sgn(σ) =
{

1 If the total number of swaps is even
−1 If the total number of swaps is odd.
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Example 1.8.4

The permutation (2, 3, 4, 1) has signature

sgn(2, 3, 4, 1) = −1.

Remark that

(1, 2, 3, 4)
switch 1,2
−−−−−GA (2, 1, 3, 4)

switch 1,3
−−−−−GA (2, 3, 1, 4)

switch 1,4
−−−−−GA (2, 3, 4, 1).

Definition 1.8.5
Let A be a n× n matrix, of the form a11 . . . a1n

... . . . ...
an1 . . . ann


det(A) =

∑
σ∈Sn

sgn(σ)a1,σ(1) · a2,σ(2) · · · · · an,σ(n).

Example 1.8.6

If A is a square matrix of order 3 × 3 , then

detA =sgn(1, 2, 3) · a11a22a33 + sgn(1, 3, 2) · a11a23a32 + sgn((2, 1, 3)) · a12a21a33

+sgn(2, 3, 1) · a12a23a31 + sgn(3, 1, 2) · a13a21a32 + sgn(3, 2, 1) · a13a22a31,

which if you calculate the signatures is just

detA =1 · a11a22a33 + (−1) · a11a23a32 + (−1) · a12a21a33

+1 · a12a23a31 + 1 · a13a21a32 + (−1) · a13a22a31.

Hence

detA = a11a22a33 − ·a11a23a32 − a12a21a33 + ·a12a23a31 + a13a21a32 − a13a22a31.

1.9 Matrix of a linear transformation
Consider the following data:

• An n-dimensional vector space V over F with a basis B = {u1, u2, . . . , un}.

• An m-dimensional vector space W over F with a basis B′ = {v1, v2, . . . , vm}.

• A linear transformation T : V GAW .
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Definition 1.9.1

The matrix for T relative to the bases B and B′ is the m× n matrix [T ]B′,B defined by

[T ]B′,B =
[

[T (u1)]B′ | [T (u2)]B′ | . . . | [T (un)]B′
]

Relative to these bases.
More precisely, we have the following relation:[

T (v)
]

B′
= [T ]B′,B · [v]B

Theorem 1.9.2

Let A be a square matrix and and let TA : Rn
GA Rn be the matrix transformation TA(x) = Ax.

Then the following statements are equivalent:

(1) A is invertible.

(2) The columns of A

(3) Ax = b has a unique solution for each b in Rn.

(4) Ax = 0 has a unique solution x = 0.

(5) TA is invertible.

(6) TA is one-to-one.

(7) TA is onto

Example 1.9.3

Let T : R2
GA R2 be defined by T (x, y) = (2x− 3y, x+ 2y).

Compute the matrix A of T relative to standard basis S = {e1, e2} of R2.
Solution We have

T (e1) = T (1, 0) = (2, 1)

and
T (e2) = T (0, 1) = (−3, 2),

so the standard matrix for T is

[T ]S = [T (e1)|T (e2)] =
(

2 −3
1 2

)

Proposition 1.9.4 Linear isomorphisms on finite-dimensional dimension vector spaces

Let V and W be two finite-dimensional vector spaces over a field F of the same dimension. If T : V GA

W is a linear trnasformation and if B is (resp B′)a basis for V (resp. W ), then the following are
equivalent:
(a) T is one-to-one.

(b) T is onto.
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(c) T is bijective.

(d) [T ]B′,B is invertible,

(e) det[T ]B′,B ̸= 0.

Moreover, if these conditions hold, then

[T−1]B,B′ = [T ]−1
B′,B

1.10 Transition matrix

Theorem 1.10.1 Change of coordinates formula

Let B = {v1, . . . , vn} and B′ = {v′
1, . . . , v

′
n} be two ordered bases of V . Then there is a unique,

necessarily invertible, n× n matrix P with entries in F such that for all vector v ∈ V :

(i) [v]B = PB′
GAB[v]B′

(ii) [v]B′ = PBGAB′ [v]B

The columns of PB′
GAB are given by [v′

j ]B.

The matrix
PB′

GAB =
[

[v′
1]B | [v′

2]B | · · · | [v′
n]
]
.

is called the transition matrix from B′ to B.

Remark 1.10.2. Remark that : (PBGAB′) × (PB′
GAB) = In.

Example 1.10.3

Consider the bases B = {u1, u2} and B′ = {u′
1, u

′
2} for R2, where u1 = (1, 0), u2 = (0, 1), u′

1 =
(1, 1), u′

2 = (2, 1)

(a) Find the transition matrix PB′
GAB from B′ to B.

(b) Find the transition matrix PBGAB′ from B to B′.

(c) Let v be a vector in R2 such that [v]B′ =
[
−3
5

]
. Find [v]B.

Solution.
PB′

GAB =
[
1 2
1 1

]
and PBGAB′ =

[
−1 2
1 −1

]
[v]B = (PB′

GAB)[v]B′ =
[
7
2

]
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1.11 Exercises set

Exercise 1.11.1
Determine whether the vectors

v1 = (1, 2, 2,−1), v2 = (4, 9, 9,−4) and v3 = (5, 8, 9,−5)

are linearly dependent or linearly independent in R4.

Solution. The linear independence or dependence of these vectors is determined by whether the vector
equation

k1v1 + k2v2 + k3v3 = 0.

Equating corresponding components on the two sides yields the homogeneous linear system


k1 + 4k2 + 5k3 = 0
2k1 + 9k2 + 8k3 = 0
2k1 + 9k2 + 9k3 = 0
−k1 − 4k2 − 5k3 = 0

This system has only the trivial solution k1 = 0, k2 = 0, k3 = 0. We conclude that v1,v2, and v3 are
linearly independent.

Exercise 1.11.2

Determine whether the vectors v1 = (1,−2, 3), v2 = (5, 6,−1) and v3 = (3, 2, 1) are linearly inde-
pendent or linearly dependent in R3.

Solution. The linear independence or dependence of these vectors is determined by whether the vector
equation

k1v1 + k2v2 + k3v3 = 0

Equating corresponding components on the two sides yields the homogeneous linear system
k1 + 5k2 + 3k3 = 0
−2k1 + 6k2 + 2k3 = 0
3k1 − k2 + k3 = 0

Thus, our problem reduces to determining whether this system has nontrivial solutions. There are various
ways to do this; one possibility is to simply solve the system, which yields k1 = 1

2 t, k2 = 1
2 t, k3 = t.

This shows that the system has nontrivial solutions and hence that the vectors are linearly dependent.

Exercise 1.11.3

Let V be a vector space of dimension n over a field F, and B = {v1, . . . , vn} a basis of V . Show that
the map ψ : V GA Fn defined by ψ(v) = [v]B is an isomorphism
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Solution. First we show that ψ is linear. Let λ ∈ F and u,w two vectors in V . As B is a basis for V , the
vectors u and v can be written uniquely as

u =
n∑

i=1
αivi and w =

n∑
i=1

βivi

Then
λu+ w =

n∑
i=1

(λαi + βi)vi

Hence

ψ(λu+ w) = [λu+ w]B

=


λα1 + β1
λα2 + β2

...
λαn + βn



= λ


α1
α2
...
αn

+


β1
β2
...
βn


= λ[u]B + [w]B
= λψ(u) + ψ(w).

Since V and Fn has the same dimension (dimV = dimFn = n), to prove that ψ is bijective, it suffices to
prove for example that is injective.

Let u =
n∑

i=1
αivi ∈ V . We have:

ψ(u) = 0Fn ⇐⇒


α1
α2
...
αn

 =


0
0
...
0


⇐⇒ α1 = α2 = · · · = αn = 0
⇐⇒ u = 0.

So Ker(ψ) = {0} and hence ψ is injective. Therefore it is an isomorphism of vector spaces.

Exercise 1.11.4

Let f ∈ L(U, V ) and g ∈ L(V,W ) where U, V,W are F-vector spaces. Show that gf ∈ L(U,W ).

Solution. Let α ∈ F and u1, u2 ∈ U . We have:

(gf)(λu1 + u2) = g
(
f(λu1 + u2)

)
= g
(
λf(u1) + f(u2)

)
= λg

(
f(u1)

)
+ g
(
f(u2)

)
= λ(gf)(u1) + (gf)(u2).
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Exercise 1.11.5

Consider the bases B = {u1, u2} and B′ = {u′
1, u

′
2} for R2, where u1 = (1, 0), u2 = (0, 1), u′

1 =
(1, 1), u′

2 = (2, 1)

(a) Find the transition matrix PB′
GAB from B′ to B.

(b) Find the transition matrix PBGAB′ from B to B′.

(c) Let v be a vector in R2 such that [v]B′ =
[
−3
5

]
. Find [v]B.

Solution.
PB′

GAB =
[
1 2
1 1

]
and PBGAB′ =

[
−1 2
1 −1

]
[v]B = (PB′

GAB)[v]B′ =
[
7
2

]

Exercise 1.11.6

Let T : R3
GA R3 be the linear operator given by:

T (x, y, z) = (2x+ z,−2x+ y,−x+ 2y + z).

(1) What is the matrix of T with respect to the standard basis S of R3 ?

(2) What is the matrix of T with respect to the ordered basis B = {v1, v2, v3}, where

v1 = (1, 0, 1) , v2 = (1, 1, 0) , v3 = (0, 1, 1) .

(3) Find [T ]B,S the matrix for T relative to the bases S and B.

(4) Find [T ]S,B the matrix for T relative to the bases B and S.

Exercise 1.11.7
Show that the following maps ∂, T and L are linear:

(1) Let D be the vector space of all differentiable function f : R GA R and F the space of all function
g : R GA R. Define the map ∂ : D GA F , by ∂f = f ′.

(2) Let C be the space of continuous functions f : R GA R . Define T : C GA C by T (f) = xf(x).

(3) The map L : C GA R given by

L(f) =
∫ 1

0
f dx.

Solution. (1) Clearly ∂ is a linear map since

∂(f + g) = (f + g)′ = f ′ + g′ = ∂f + ∂g

and
∂(af) = (af)′ = af ′ = a∂f.
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In particular the map D form F[X] into F[X] defined by

D(a0 + a1X + · · · + anX
n) = a1 + 2a2X + · · · + nanX

n−1.

Is a linear operator.

(2) Let C be the space of continuous functions f : R GA R . An example of a linear map on this space is the
function T : C GA C given by T (f) = xf(x).

(3) The map L : C GA R given by

L(f) =
∫ 1

0
f dx.

is linear.
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Chapter

2 Inner product spaces

Chapter contents
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Throughout this chapter we consider only real or complex vector spaces, that is, vector spaces over the field
of real numbers or the field of complex numbers.

F = R or F = C
2.1 Inner Products

Definition 2.1.1 Inner Products

Let V be a vector space over F. An inner product is a function ⟨ −,− ⟩ : V × V GA F such that for
all vectors v, u, w in V and scalars a, b in F:

(1) ⟨ v, v ⟩ ≥ 0 with equality iff v = 0V .

(2) ⟨ v, u ⟩ = ⟨u, v ⟩, where the bar denoting complex conjugation; Conjugate symmetric

(3) ⟨ av + bu, w ⟩ = a⟨ v, w ⟩ + b⟨u,w ⟩. Linearity in the first component
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• Notice that conjugate symmetry implies that ⟨u, u⟩ ∈ R even if F = C since

⟨u, u⟩ = ⟨u, u⟩.

Example 2.1.2

(1) Rn with the dot product:

⟨ (a1, . . . , an), (b1, . . . , bn) ⟩ = a1b1 + · · · + anbn.

(2) Cn with the standard inner product:

⟨ (a1, . . . , an), (b1, . . . , bn) ⟩ = a1b̄1 + · · · + anb̄n.

(3) If W is a subspace of an inner product space V , then the inner product of V restricted to W gives
an inner product on W .

Example 2.1.3

(1) V = (C[0, 1],C), the set of continuous complex valued functions on [0, 1] with inner product

⟨ f, g ⟩ =
∫ 1

0
f(x)g(x)dx,

(2) V = Fn×n, the space of all n× n matrices over F with inner product

⟨A,B ⟩ =
∑
i,j

AijBij .

Definition 2.1.4 Inner product space

An inner product space is a real or complex vector space, together with a specified inner product on
that space.

• A finite-dimensional real inner product space is often called a Euclidean space.

• A complet inner product space is often referred to as a unitary space.

Definition 2.1.5 Norm of a vector

Let V be an inner product space. For all vector v, we define the norm of v by

∥v∥ =
√

⟨ v, v ⟩.



25C. BEDDANI

Theorem 2.1.6

If V is an inner product space, then for any vectors v, u in V and any scalar a ∈ F, we have

(a) ∥u∥ ≥ 0

(b) ∥au∥ = |a| ∥u∥

(c) ∥u∥ = 0 ⇔ u = 0

(d) (Cauchy-Schwarz inequality):
|⟨u, v⟩| ≤ ∥u∥ ∥v∥ .

(e) (Triangle inequality):
∥u+ v∥ ≤ ∥u∥ + ∥v∥

Proof. Statements (a), (b) and (c) follow immediately from the definition. Let u and v be two vectors in
V , and c ∈ F:

(d) Consider u− cv and notice that

0 ≤ ∥u− cv∥2

= ⟨u− cv, u− cv⟩

= ∥u∥2 − ⟨cv, u⟩ − ⟨u, cv⟩ + ∥cv∥2

= ∥u∥2 − 2 Re c̄ ⟨u, v⟩ + |c|2 ∥v∥2
.

Notice that if we take c = ⟨u,v⟩
∥v∥2 then

0 ≤ ∥u∥2 − 2 |⟨u, v⟩|2

∥v∥2 + |⟨u, v⟩|2

∥v∥2 = ∥u∥2 − |⟨u, v⟩|2

∥v∥2 ,

Therefore
|⟨u, v⟩|2 ≤ ∥u∥2∥v∥2

Hence
|⟨u, v⟩| ≤ ∥u∥ ∥v∥ .

(e)

∥u+ v∥2 =⟨u+ v, u+ v ⟩
=⟨u, u ⟩ + ⟨u, v ⟩ + ⟨ v, u ⟩ + ⟨ v, v ⟩

= ∥u∥2 + ⟨u, v ⟩ + ⟨ v, u ⟩ + ∥v∥2

= ∥u∥2 + ⟨u, v ⟩ + ⟨u, v ⟩ + ∥v∥2

= ∥u∥2 + 2 Re ⟨u, v ⟩ + ∥v∥2

Remark that a ≤
√
a2 + b2 = |a+ bi| and so Re ⟨u, v⟩ ≤ |⟨u, v⟩| ≤ ∥u∥ ∥v∥ .

Therefore

∥u+ v∥2 ≤ ∥u∥2 + 2 ∥u∥ ∥v∥ + ∥v∥2
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So
∥u+ v∥2 ≤ (∥u∥ + ∥v∥)2

Hence
∥u+ v∥ ≤ ∥u∥ + ∥v∥

Apply the Cauchy-Schwarz inequality to the inner products given in Example 2.1.2 (2) and Example
2.1.3 (1), we get:

n∑
i=1

xiȳi ≤
( n∑

i=1
|xi|2

) 1
2
( n∑

i=1
|yi|2

) 1
2

,

and ∣∣∣∣ ∫ 1

0
f(x)g(x)dx

∣∣∣∣ ≤
(∫ 1

0
|f(x)|2dx

) 1
2
(∫ 1

0
|f(x)|2dx

) 1
2

Definition 2.1.7
Let V be an inner product space.

• Vectors u and v in V are orthogonal (u ⊥ v) if ⟨u, v⟩ = 0.

• A subset S ⊆ V is orthogonal if any two distinct vectors in S are orthogonal.

• A vector u in V is a unit vector if ∥u∥ = 1.

• A subset S ⊆ V is orthonormal if S is orthogonal and consists entirely of unit vectors.

Note 2.1.8
Note that :

• S = {u1, . . . , uk} is orthonormal iff ⟨ui, uj⟩ = δij .

• We can make an orthonormal set from an orthogonal set by replacing each vector u by 1
∥u∥u.

This will not change the orthogonality since
〈

x
∥x∥ ,

y
∥y∥

〉
= 1

∥x∥∥y∥ ⟨x, y⟩ since ∥y∥ ∈ R. We call
this process normalizing the set.

Proposition 2.1.9

If V is an inner product space and S ⊆ V is orthogonal subset of nonzero vectors, then S is linearly
independent.

Proof. We first note that if S is not the set consisting only of zero, then zero cannot be in S. Suppose that

S = {u1, ..., uk}

and
a1u1 + · · · + akuk = 0V

for scalars a1, . . . , ak and vectors u1, . . . , uk in S.
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Then we see that
0 = ⟨a1u1 + · · · + akuk, ui⟩ = ai ∥ui∥2

and since
∥ui∥2 ̸= 0,

we must have ai = 0. This can be done for all i.

2.2 Orthonormal bases

Definition 2.2.1
Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered
basis that is orthonormal.

Theorem 2.2.2

Let V be an inner product space and S = {v1, v2, . . . , vk} be an orthogonal subset of V consisting of
nonzero vectors. If w ∈ SpanS, then

w =
k∑

i=1

⟨w, vi⟩
⟨vi, vi⟩

vi.

In addition, if S is orthonormal, then the denominators are all 1. That means:

w =
k∑

i=1
⟨w, vi⟩vi.

Proof. Since w ∈ SpanS, we must have that there exist scalars a1, . . . , ak such that

w =
k∑

i=1
aivi.

We can now take the inner product with vj for j = 1, . . . , k and find that

⟨w, vj⟩ =
〈

k∑
i=1

aivi, vj

〉

=
k∑

i=1
ai ⟨vi, vj⟩

= aj ⟨vj , vj⟩

and so (since ∥vj∥ ≠ 0), aj = ⟨w, vj⟩
⟨vj , vj⟩

.

w =
k∑

i=1

⟨w, vi⟩
⟨vi, vi⟩

vi.
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Corollary 2.2.3

Let v1, . . . , vn be an orthonormal basis of an inner product space V and v, w ∈ V . Then:

• Parseval’s identity:

⟨v, w⟩ =
n∑

i=1
⟨v, vi⟩⟨vi, w⟩.

• Bessel’s equality:

∥v∥2 =
n∑

i=1
|⟨v, vi⟩|2.

Theorem 2.2.4

Let W be a finite dimensional subspace of the inner product space V. Then for a vector y ∈ V, there
is a unique vector u ∈ W that minimizes ∥y − w∥2 for all w ∈ W.

Proof. Suppose there is a u ∈ W such that ⟨w, y − u⟩ = 0 for any w ∈ W. Then if w ∈ W (and hence so is
u− w),

∥y − w∥2 = ∥u+ (y − u) − w∥2

= ⟨u− w + (y − u) , u− w + (y − u)⟩
= ∥u− w∥2 + ⟨u− w, y − u⟩ + ⟨y − u, u− w⟩ + ∥y − u∥2

= ∥u− w∥2 + ∥y − u∥2

≥ ∥y − u∥2
.

We can do this if W is finite dimensional using the following theorem.

Definition 2.2.5

The orthogonal complement of W, written W⊥ (pronounced “W perp”), is the set of all vectors v ∈ V
such that ⟨v, w⟩ = 0 for all w ∈ W .

Proposition 2.2.6

W⊥ is a vector space.

Proof. It is straightforward to see that ⟨0V , w⟩ = 0 for all w ∈ W, so 0V ∈ W⊥.

Let v, u ∈ W⊥ and c ∈ F.

Then
⟨cv + u,w⟩ = c ⟨v, w⟩ = ⟨u,w⟩ = 0

so
cv + u ∈ W⊥.
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Theorem 2.2.7 Gram-Schmidt process

Let V be an inner product space and S = {w1, . . . , wn} be a linearly independent subset of V. Define
S′ = {v1, . . . , vn} by v1 = w1 and

vk = wk −
k−1∑
j=1

⟨wk, vj⟩
⟨vj , vj⟩

vj

for k = 2, . . . , n. Then S′ is an orthogonal set of nonzero vectors such that SpanS′ = SpanS.

Proof. We show inductively that vk+1 is orthogonal to v1, . . . , vk. It is clear that

⟨v2, v1⟩ =
〈
w2 − ⟨w2, v1⟩

⟨v1, v1⟩
v1, v1

〉
= ⟨w2, v1⟩ − ⟨w2, v1⟩

⟨v1, v1⟩
⟨v1, v1⟩ = 0.

We then can use the inductive hypothesis to assume ⟨vi, vj⟩ = 0 for i, j ≤ k and see that

⟨vk, vi⟩ =
〈
wk −

k−1∑
j=1

⟨wk, vj⟩
⟨vj , vj⟩

vj , vi

〉
= ⟨wk, vi⟩ − ⟨wk, vi⟩

⟨vi, vi⟩
⟨vi, vi⟩ = 0.

Thus S′ is orthogonal. Hence S′ is linearly independent and since each element of S′ is in the span of S,
SpanS′ ⊆ SpanS, and hence SpanS′ = SpanS (since they have the same dimension).

Theorem 2.2.8

Suppose that S = {v1, . . . , vk} is an orthonormal set in a n-dimensional inner product space V. Then

(1) S can be extended to an orthonormal basis {v1, . . . , vk, vk+1, . . . , vn} for V.

(2) If W = SpanS, then S1 = {vk+1, . . . , vn} is an orthonormal basis for W⊥.

(3) If W is any subspace of V, then dimV = dimW + dimW⊥.

Proof. By the replacement theorem, S can be extended into a basis, and then the Gram-Schmidt process
can be used to turn this into an orthogonal set. Then normalizing gives an orthonormal set. S1 is clearly a
linearly independent subset of W⊥. Since {v1, . . . , vn} is a basis, any vector in W⊥ can be written as a linear
combination of these vectors. However, since w ∈ W⊥ satisfies ⟨w, vi⟩ = 0 for i = 1, . . . , k, w is in the span
of S1, hence S1 is a basis. The dimension statement is clear now that we know that S is a basis for S, S′ is
a basis for W⊥, and {v1, . . . , vn} is a basis for V.

Proposition 2.2.9 Polarization Identities for real inner product spaces

Let V be a real inner product space and v, w two vectors in V . We have:

⟨ v, w ⟩ = 1
4 ∥v + w∥2 − 1

4 ∥v − w∥2
.
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Proposition 2.2.10 Polarization Identities for complex inner product spaces

Let V be a complex inner product space and v, w two vectors in V . We have:

⟨ v, w ⟩ = 1
4 ∥v + w∥2 − 1

4 ∥v − w∥2 + i

4 ∥v + iw∥2 − i

4 ∥v − iw∥2
.

Proof. Exercise for students. Hint.

∥v ± w∥2 = ∥v∥2 ± 2 Re ⟨ v, w ⟩ + ∥w∥2
.

and
Im⟨ v, w ⟩ = Re −i⟨ v, w ⟩ = Re⟨ v, iw ⟩

2.3 Exercises set

Exercise 2.3.1

Let F = C. Show that if ⟨ −,− ⟩ is an inner product, then

⟨ v, au+ bw ⟩ = ā⟨ v, u ⟩ + b̄⟨ v, w ⟩.

Solution. By definition, we know that for all u, v ∈ V and a, b ∈ F, we have

⟨ v, u ⟩ = ⟨u, v ⟩.

⟨ v, au+ bw ⟩ = ⟨ au+ bw, v ⟩

= a⟨u, v ⟩ + b⟨w, v ⟩

= a ⟨u, v ⟩ + b ⟨w, v ⟩
= ā⟨ v, u ⟩ + b̄⟨ v, w ⟩.

Exercise 2.3.2

For u = (u1, u2) and v = (v1, v2) in R2, let

⟨u, v ⟩ = u1v1 − u2v1 − u1v2 + 4u2v2.

Show that this function define an inner product on R2.

Solution. Let u = (u1, u2) and v = (v1, v2) in R2 and a, b ∈ R. Then
(1) ⟨ v, v ⟩ = v2

1 − v2v1 − v1v2 + 4v2
2 = (v1 − v2)2 + 3v2

2 ≥ 0
Clearly

⟨ v, v ⟩ = 0 ⇐⇒ (v1 − v2)2 + 3v2
2 = 0

⇐⇒ (v1 − v2)2 = 0 and 3v2
2 = 0

⇐⇒ v1 − v2 = 0 and v2 = 0
⇐⇒ v1 = 0 and v2 = 0
⇐⇒ v = 0.
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(2)

⟨ v, u ⟩ = v1u1 − v2u1 − v1u2 + 4v2u2

= u1v1 − u2v1 − u1v2 + 4u2v2

= ⟨u, v ⟩

= ⟨u, v ⟩.

(3) Let w = (w1, w2) in R2. Then av + bu = (av1 + bu1, av2 + bu2). Therefore

⟨ av + bu, w ⟩ = (av1 + bu1)w1 − (av2 + bu2)w1 − (av1 + bu1)w2 + 4(av2 + bu2)w2

= av1w1 − av2w1 − av1w2 + 4av2w2 + bw1u1 − bu2w1 − bu1w2 + 4bu2w2

= a⟨ v, w ⟩ + b⟨u,w ⟩.

Hence, the function ⟨ −,− ⟩ define an inner product on R2.

Exercise 2.3.3
Apply Cauchy-Schwarz inequality to show that for all x1, x2, y1 and y2 in R,

|x1y1 + x2y2| ≤
√

(x2
1 + x2

2)(y2
1 + y2

2).

and
|x1y1 − x2y1 − x1y2 + 4x2y2| ≤

√
(x2

1 − 2x1x2 + 4x2
2)(y2

1 − 2y1y2 + 4y2
2).

Solution. Consider on R2 the following real inner product : for u = (x1, x2) and v = (y1, y2) in R2,

⟨u, v ⟩ = x1y1 + x2y2

By Cauchy-Schwarz inequality :
|⟨u, v⟩| ≤ ∥u∥ ∥v∥ .

Hence
|x1y1 + x2y2| ≤

√
(x2

1 + x2
2)(y2

1 + y2
2).

Similarly, when we consider the following real inner product on R2:

⟨u, v ⟩ = x1y1 − 2x1y2 + 4x2y2

we get :
|x1y1 − x2y1 − x1y2 + 4x2y2| ≤

√
(x2

1 − 2x1x2 + 4x2
2)(y2

1 − 2y1y2 + 4y2
2).

Exercise 2.3.4 Polarization Identities for real inner product spaces

Let V be a real inner product space and v, w two vectors in V . Prove that:

⟨ v, w ⟩ = 1
4 ∥v + w∥2 − 1

4 ∥v − w∥2
.
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Solution. For all v, w two vectors in V , we have
∥v + w∥2 = ⟨ v + w, v + w ⟩

= ⟨ v, v ⟩ + ⟨ v, w ⟩ + ⟨w, v ⟩ + ⟨w,w ⟩

= ∥v∥2 + ∥w∥2 + ⟨ v, w ⟩ + ⟨ v, w ⟩

Since the inner product is considered real, ⟨ v, w ⟩ = ⟨ v, w ⟩. Therefore

∥v + w∥2 = ∥v∥2 + ∥w∥2 + 2⟨ v, w ⟩. (2.1)
Replacing w by −w in the previous equality, we obtain:

∥v − w∥2 = ∥v∥2 + ∥w∥2 − 2⟨ v, w ⟩. (2.2)
From (2.1) and (2.2), we obtain

4⟨ v, w ⟩ = ∥v + w∥2 − ∥v − w∥2
.

Consequently,
⟨ v, w ⟩ = 1

4 ∥v + w∥2 − 1
4 ∥v − w∥2

.

Exercise 2.3.5 Polarization Identities for complex inner product spaces

Let V be a complex inner product space and v, w two vectors in V . Prove that:

⟨ v, w ⟩ = 1
4 ∥v + w∥2 − 1

4 ∥v − w∥2 + i

4 ∥v + iw∥2 − i

4 ∥v − iw∥2
.

Solution. Clearly for v, w in V , we have{
∥v + w∥2 = ∥v∥2 + 2 Re ⟨ v, w ⟩ + ∥w∥2

∥v − w∥2 = ∥v∥2 − 2 Re ⟨ v, w ⟩ + ∥w∥2 (2.3)

Therefore
4 Re ⟨ v, w ⟩ = ∥v + w∥2 − ∥v − w∥2 (2.4)

Replacing w by iw in the equation (2.3), we get{
∥v + iw∥2 = ∥v∥2 + 2 Re ⟨ v, iw ⟩ + ∥iw∥2

∥v − iw∥2 = ∥v∥2 + 2 Re ⟨ v,−iw ⟩ + ∥−iw∥2

So {
∥v + iw∥2 = ∥v∥2 + 2 Re −i⟨ v, w ⟩ + ∥w∥2

∥v − iw∥2 = ∥v∥2 + 2 Re i⟨ v, w ⟩ + ∥w∥2

Using the fact that
Im⟨ v, w ⟩ = Re −i⟨ v, w ⟩ = Re⟨ v, iw ⟩

we obtain {
∥v + iw∥2 = ∥v∥2 + 2 Im⟨ v, w ⟩ + ∥w∥2

∥v − iw∥2 = ∥v∥2 − 2 Im⟨ v, w ⟩ + ∥w∥2
.

Hence
4 Im ⟨ v, w ⟩ = ∥v + iw∥2 − ∥v − iw∥2 (2.5)

Form (2.4) and (2.5), we obtain

4 Re ⟨ v, w ⟩ + 4i Im ⟨ v, w ⟩ = ∥v + w∥2 − ∥v − w∥2 + i ∥v + iw∥2 − i ∥v − iw∥2
. (2.6)
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Exercise 2.3.6
Suppose V is a real inner product space.

(1) Show that ⟨u+ v, u− v⟩ = ∥u∥2 − ∥v∥2 for any u, v ∈ V .

(2) Show that if ∥u∥ = ∥v∥, then u+ v is orthogonal to u− v.

Solution. (1) For any u, v ∈ V, ⟨u+ v, u− v⟩ = ⟨u, u⟩ − ⟨u, v⟩ + ⟨v, u⟩ − ⟨v, v⟩ = ∥u∥2 − ∥v∥2.

(2) If ∥u∥ = ∥v∥, since ⟨u+ v, u− v⟩ = ∥u∥2 − ∥v∥2 = 0, u+ v is orthogonal to u− v.

Exercise 2.3.7

Let B = {u1, u2, u3} be a basis for the Euclidean inner product space R3, where

u1 = (1,−2, 1), u2 = (1, 0, 1) and u3 = (−2, 0, 1).

(1) Use the Gram-Schmidt process to transform the basis B into an orthogonal basis B′ = {v1, v2, v3}.

(2) Normalize the basis B′ to obtain an orthonormal basis B′′ = {w1, w2, w3} for R3.

(3) Find B′′∗ the dual basis of B′′.

Solution.
(1) Apply Gram-Schmidt process to obtain an orthogonal basis for R3.

v1 = u1 = (1,−2, 1).

v2 = u2 − < u2, v1 >

∥v1∥2 v1

= (1, 0, 1) − 1
3(1,−2, 1)

=
(

2
3 ,

2
3 ,

2
3

)

v3 = u3 − < u3, v1 >

∥v1∥2 v1 − < u3, v2 >

∥v2∥2 v2

= (−2, 0, 1) + 1
6(1,−2, 1) + 2/3

4/3(2
3 ,

2
3 ,

2
3)

= (−2, 0, 1) + 1
6(1,−2, 1) + 1

3(1, 1, 1)

=
(

−3
2 , 0, 3

2

)
(2) Normalize the basis B′

w1 = v1

∥v1∥
=
(

1√
6
,

−2√
6
,

1√
6

)
=
(√

6
6 ,

−
√

6
3 ,

√
6

6

)
.

w2 = v2

∥v2∥
=

√
3

2

(
2
3 ,

2
3 ,

2
3

)
=
(√

3
3 ,

√
3

3 ,

√
3

3

)
w3 = v3

∥v3∥
=

√
2

3

(
−3
2 , 0, 3

2

)
=
(

−
√

2
2 , 0,

√
2

2

)
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(3) Using Theorem 2.2.2, for all v = (x1, x2, x3) ∈ R3:

v = (x1, x2, x3) = ⟨ v, w1 ⟩w1 + ⟨ v, w2 ⟩w2 + ⟨ v, w3 ⟩w3

=
√

6
6 (x1 − 2x2 + x3)w1 +

√
3

3 (x1 + x2 + x3)w2 +
√

2
2 (−x1 + x3)w3

Then B′′∗ = {f1, f2, f3} where:

f1(x1, x2, x3) =
√

6
6 (x1 − 2x2 + x3)

f2(x1, x2, x3) =
√

3
3 (x1 + x2 + x3)

f3(x1, x2, x3) =
√

2
2 (−x1 + x3)

Exercise 2.3.8

Let V = Mn×n(R) be the real vector space of n × n matrices. Consider the following inner product
on V defined by

⟨A,B ⟩ = tr(At B).

Let
Sn = {A ∈ V | At = A} and An = {A ∈ V | At = −A}

(1) Show that for all A ∈ V : At +A ∈ Sn and A−At ∈ An.
(2) Show that, every matrix A ∈ V can be written as A = X + Y where X ∈ Sn and Y ∈ An.
(3) Deduce that V = Sn ⊕ An.
(4) Show that S⊥

n = An.
(5) Using Cauchy-Schwarz inequality, show that for all matrix A ∈ V : tr(A) ≤

√
n
√

tr(AtA).
(6) Deduce that, if A ∈ V is an orthogonal matrix, then tr(A) ≤ n.

Solution. (1) for all A ∈ V , we have (At + A)t = (At)t + At = A + At, so At + A ∈ Sn and similarly we
have A−At ∈ An.

(2) Clearly
A = 1

2(At +A)︸ ︷︷ ︸
X

+ 1
2(A−At)︸ ︷︷ ︸

Y

.

(3) From the previous question, we get V = Sn + An. Since the square matrix which is both symmetric and
anti-symmetric matrix is the zero matrix, we obtain V = Sn ⊕ An.

(4) Let A ∈ An. For all B ∈ Sn, we have

⟨A,B ⟩ = tr(At B) = tr(AB).

On other hand, we have

⟨A,B ⟩ = ⟨B,A ⟩ = tr(Bt A) = tr(−BA) = −tr(AB).

Therefore ⟨A,B ⟩ = 0 for all B ∈ Sn. Hence An ⊆ S⊥
n

From (3), we obtain
dim An = dimS⊥

n .

Therefore
S⊥

n = An.
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(5) Using Cauchy-Schwarz inequality, we get for all matrix A ∈ V :

⟨ In, A ⟩ ≤ ∥In∥ ∥A∥

Hence
tr(A) ≤

√
n
√

tr(AtA).

(6) As A ∈ V is an orthogonal matrix, AtA = In. So tr(A) ≤
√
n
√

tr(In). That means

tr(A) ≤ n.
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Chapter

3 Bilinear forms
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We study, in this chapter, the bilinear forms on finite dimensional vector spaces over a field F. Moreover, we
discussed to symmetric forms and their reduction of to a diagonal form in the case when F = R or C.

3.1 Linear Functionals

Definition 3.1.1 Linear Functional (or 1-form)

Let V be a vector space. Define V ∗ = L(V,F). V ∗ is called the dual space of V . The elements of V ∗

are called linear functional. So a linear functional ϕ on V is a linear transformation ϕ : V GA F.

Example 3.1.2

Let F be a field and let a1, ..., an be scalars in F. Define a function f : Fn
GA F by

f(x1, ..., xn) = a1x1 + · · · + anxn.
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Then f is a linear functional on Fn.

Every linear functional on Fn is of this form, for some scalars ai, ..., an.

That is immediate from the definition of linear functional because:

f(x1, . . . , xn) = f(
n∑

i=1
xiei)

=
n∑

i=1
f(xiei)

=
n∑

i=1
xif(ei)

=
n∑

i=1
aixi

= a1x1 + · · · + anxn.

Example 3.1.3

Let n be a positive integer and F a field. The trace function tr : Fn×n
GA F is a linear functional.

Recall that if A = (aij) ∈ Fn×n:

tr(A) = a11 + a22 + · · · + ann.

Example 3.1.4

Let [a, b] be a closed interval on the real line and let C([a, b]) be the space of continuous real-valued
functions on [a, b]. Then the function L : C([a, b]) GA R defined by

L(f) =
∫ b

a

f(t) dt

is a linear functional.

Proposition 3.1.5 Dimension of V ∗

Suppose that B = {v1, . . . , vn} is a basis for the finite dimensional vector space V . Define fi ∈ V ∗ by

fi(vj) = δij =
{

1 if i = j

0 if i ̸= j

Then, the set B∗ = {f1, f2, . . . , fn} form a basis for V ∗. Therefore dimV ∗ = dimV.

Proof. See Exercise 3.8.1.
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Definition 3.1.6 Dual basis

The set B∗ in the previous proposition is called the dual basis of B.

Theorem 3.1.7

Let V be a finite-dimensional vector space over the field F, and let B = {v1, . . . , vn} be a basis for V .
Let B∗ = {f1, ..., fn} be the dual basis of B:

fi(vj) = δij .

Then, for each linear functional f on V we have

f =
n∑

i=1
f(vi)fi

and for each vector v in V we have
v =

n∑
i=1

fi(v)vi.

Proof. We have, for all j = 1, .., , n:

(
n∑

i=1
f(vi)fi)(vj) =

n∑
i=1

f(vi)fi(vj) =
n∑

i=1
f(vi)δij = f(vj)

Then

f =
n∑

i=1
f(vi)fi

Let v ∈ V , then this vector can be expressed as v = c1v1 + · · · + cnvn. Then for all j = 1, .., , n, we have:

fj(v) = fj(c1v1 + · · · + cnvn) = c1fj(v1) + · · · + cjfj(vj) + · · · + cnfj(vn) = cj ,

Hence

v =
n∑

i=1
fi(v)vi.

Proposition 3.1.8

Let V be an n-dimensional vector space and x1, . . . , xk ∈ V linearly independent vectors with k < n.
Then there exists f ∈ V ∗ and y ̸∈ span{x1, . . . , xk} such that

f(y) = 1 and f(x) = 0 for all x ∈ span{x1, . . . , xk}.

3.2 Bilinear maps
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Definition 3.2.1 Bilinear maps

Let U, V,W be vector spaces over a field F. A map f : U × V GA W is bilinear if it is linear in each
variable:

f(au1 + u2, v) = af(u1, v) + f(u2, v)
f(u, av1 + v2) = af(u, v1) + f(u, v2),

for all u, u1, u2 ∈ U , v, v1, v2 ∈ V and a ∈ F.

We will sometimes write ⟨u, v⟩ for f(u, v) if f is clear from context.

Note 3.2.2

We denote the set of all F-bilinear map f : U × V GAW by BilF(U × V,W ).

Example 3.2.3

(1) Matrix multiplication is bilinear:

(A,B) 7GA AB : Mm×n(F) × Mn×k(F) GA Mm×k(F).

(2) Composition of maps is bilinear:

(ψ, ϕ) 7GA ψ ◦ ϕ : L(U,W ) × L(V,U) GA L(V,W ).

Proposition 3.2.4

For any bilinear map f : U × V GAW , we have:

f(u, 0) = f(0, v) = 0, for all u ∈ U and v ∈ V.

Indeed,
f(u, 0) = f(u, 0 + 0) = f(u, 0) + f(u, 0)

and similarly for f(0, v).

Definition 3.2.5 Bilinear pairing

Let U and V be vector spaces over a field F. A bilinear map U × V GA F is called a bilinear pairing.

Definition 3.2.6 Bilinear form

Let V be vector spaces over a field F. A bilinear map V × V GA F is called a bilinear form.
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Example 3.2.7

Consider the functions S,T : R × R GA R defined as follows: for any x, y ∈ R,

S(x, y) = x+ y, T(x, y) = xy.

Clearly S is linear but not multilinear, and T is multilinear and not linear.

Note 3.2.8

We denote the set of all F-bilinear forms on V by BilF(V ).

Example 3.2.9

(1) Evaluation (f, v) 7GA f(v) : V ∗ × V GA F is a bilinear pairing.

(2) Let A ∈ Mm×n(F). Then mapping BA : Fm × Fn
GA F by

fA(x, y) = xtAy

is a bilinear pairing.

We denote by Bil(V, V ) the set of all bilinear forms on V . Note that any scalar multiple of a bilinear form or
any sum of two bilinear forms is again a bilinear form. This gives Bil(V, V ) the structure of a vector space
over F.

Definition 3.2.10 Special important bilinear forms

Let f : V × V GA F be a bilinear form. We say that f is:

(1) Nondegenerate if f(u, v) = 0 for all u ∈ V implies that v = 0.

(2) Symmetric if f(u, v) = f(v, u) for all u, v ∈ V .

(3) Anti-symmetric (skew-symmetric) if f(u, v) = −f(v, u) for all u, v ∈ V .

(4) Alternating if f(v, v) = 0 for all v ∈ V .

Example 3.2.11

(1) V = R2. The following map ((
x1
x2

)
,

(
y1
y2

))
7GA x1y1 + x2y2

is a symmetric form on R2 × R2.

(2) Let V = C([−1, 1],R). The map

C([−1, 1],R) × C([−1, 1],R) GA R

(f, g) 7GA
∫ 1

−1
f(t)g(t)dt
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is a symmetric form.

(3) In general, every real inner product is a symmetric bilinear form.

3.3 Bilinear forms and matrices

Definition 3.3.1

Let V be a vector space over F with basis B = {v1, . . . , vn} and let f : V ×V GA F be a bilinear form.
The matrix of f with respect to B is A = (aij) ∈ Mn×n(F) given by

aij = f(vi, vj),

for 1 ≤ i, j ≤ n.

Note 3.3.2

Let V be a vector space over F with basis B = {v1, . . . , vn} and let f : V ×V GA F be a bilinear form.
We denote [f ]B to the matrix of f with respect to the basis B.

Proposition 3.3.3

Let f : V × V GA F be a bilinear form with matrix A with respect to B = {v1, . . . , vn}. Then f is

completely determined by A: if v =
n∑

i=1
xivi and w =

n∑
j=1

yjvj then

f(v, w) =
n∑

i,j=1
xiyjaij ,

Proof. Using the bilinearity of f :

f(v, w) =
n∑

i,j=1
xiyjf(vi, vj) =

n∑
i,j=1

xiyjaij .

Example 3.3.4

Let V = R2 and B = {e1, e2} the standard basis of V . Consider the following symmetric form

f : R2 × R2
GA R((

x1
x2

)
,

(
y1
y2

))
7GA 3x1y1 − 2x2y2 + x1y2 + x2y1
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The matrix of f relative to the standard basis B is

[f ]B =
(

3 1
1 −2

)

Proposition 3.3.5

Let V be a vector space over a field F and f ∈ BilF(V ) , and B an ordered basis of V . Then,

(1) [ ]B : BilF(V ) GA Mn(F) is an isomorphism of F-vector spaces.

(2) Let A ∈ Mn(F) and fA ∈ BilF(Fn) be the bilinear form defined by the matrix A. Then [fA]S = A,
where S is the standard basis of Fn.

(3) Let f ∈ BilF(Fn) and A = [f ]S , then, f = fA .

Proof. This is a homework.

Definition 3.3.6
Let f be a symmetric bilinear form on a vector space V .

(1) We say that u,v ∈ V are orthogonal with respect to f if f(u,v) = 0.

(2) If W ⊆ V is a subspace of V , we define the orthogonal complement of W in V to be

W⊥ := {v ∈ V : f(v,w) = 0 for all w ∈ W}.

Lemma 3.3.7

Let f ∈ BilF(V ) and B = {v1, . . . , vn} an ordered basis of V . Then, for any u, v ∈ V , we have

[u]tB [f ]B [v]B = f(u, v).

Moreover, if A ∈ M(F) is such that
[u]tB A [v]B = f(u, v),

then A = [f ]B.

Proof. Let u, v ∈ V and suppose that

u =
n∑

i=1
αivi and v =

n∑
j=1

βjvj .

so that

[u]tB = [α1, . . . , αn] and [v]B =

β1
...
βn


Then, we have
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f(u, v) = f
( n∑

i=1
αivi,

n∑
j=1

βjvj

)
=

n∑
i=1

αif
(
vi,

n∑
j=1

βjvj

)
=

n∑
i=1

n∑
j=1

αiβjf(vi, vj)

Also, we see that

[u]tB [f ]B [v]B = [α1, . . . , αn] [f ]B

β1
...
βn


=

n∑
i=1

n∑
j=1

αiβjf(vi, vj).

Let A = (aij) ∈ Mn(F) such that
[u]tB A [v]B = f(u, v),

Then for all i and j, we have
[vi]tB A [vj ]B = f(vi, vj),

Hence
et

i Aej = f(vi, vj),
Finally, we get aij = f(vi, vj), that means A = [f ]B.

Proposition 3.3.8 Bilinear form: change of basis formula

Let V be finite-dimensional vector space over a field F and f ∈ BilF(V ). If B and B′ be two ordered
bases of V , then

P t [f ]B P = [f ]B′ ,

where P = PB′
GAB.

Proof. Let u, v ∈ V , and P = PB′
GAB.

We know that
[u]B = P [u]B′ and [v]B = P [v]B′

We have:
f(u, v) = [u]tB [f ]B [v]B

=
(
P [u]B′

)t [f ]BP [v]B′

= [u]tB′ (P t[f ]BP ) [v]B′

Therefore
P t [f ]B P = [f ]B′ ,

3.4 Rank and radical
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Definition 3.4.1 Radical

Let f : V × V GA F be a symmetric bilinear form. The radical rad f of f is the vector subspace of V
given by

rad f := {v ∈ V | f(v, v′) = 0, for all v′ ∈ V } = V ⊥.

Definition 3.4.2 Rank

Let f : V ×V GA F be a symmetric bilinear form such that V is finite-dimensional, we define the rank
of f by

rank f =: dimV − dim rad f.

Here is how to understand both the rank and the radical of f .

Proposition 3.4.3 Bilinear symmetric form and dual space

Let f be a bilinear symmetric form on a vector space V . Define the map σf : V GA V ∗ by

σf (v)(w) = f(v, w),

for v, w ∈ V . Then

(1) σf (v) ∈ V ∗ since f is linear in the second slot.

(2) σf : V GA V ∗ is linear since f is linear in the first slot.

(3) kerσf = {v ∈ V | σf (v) = 0} = {v ∈ V | f(v, w) = 0 for all w ∈ V } = rad f .
Thus rad f ≤ V and rank f = rank σf when V is finite-dimensional.
Moreover f is non-degenerate if and only if σf one-to-one or, when V is finite-dimensional, is an
isomorphism.

(4) Let f have matrix A = (aij) with respect to a basis v1, . . . , vn of V . Then

σf (vj)(vi) = f(vj , vi) = aji = aij ,

where we used the symmetry of A in the last equality. It follows that

σf (vj) =
n∑

i=1
aijv

∗
i

so that A is the matrix of σf with respect to the dual bases {v1, . . . , vn} and {v∗
1 , . . . , v

∗
n} of V

and V ∗.

Lemma 3.4.4
Let f : V × V GA F be a symmetric bilinear form on a finite-dimensional vector space V with matrix
A with respect to some basis of V . Then rank f = rankA. In particular, f is non-degenerate if and
only if detA ̸= 0.
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Example 3.4.5

We contemplate some symmetric bilinear forms on F3:

(1) f(x, y) = x1y1 + x2y2 − x3y3. With respect to the standard basis, we have

A =

1 0 0
0 1 0
0 0 −1


so that rank f = 3.

(2) g(x, y) = x1y2 + x2y1. Here the matrix with respect to the standard basis is

A =

0 1 0
1 0 0
0 0 0


so that g has rank 2 and radical span{e3}.

3.5 Classification of symmetric bilinear forms
In this section, we consider that F is a field of characteristic not equal 2, (i.e. 1 + 1 ̸= 0).

Lemma 3.5.1

Let f : V × V GA F be a symmetric bilinear form such that f(v, v) = 0, for all v ∈ V . Then f ≡ 0.

Proof. Let v, w ∈ V . We show that f(v, w) = 0. We know that f(v+w, v+w) = 0 and expanding out gives
us

0 = f(v, v) + 2f(v, w) + f(w,w) = 2f(v, w).

Since 2 ̸= 0 in F, f(v, w) = 0.

Theorem 3.5.2 Diagonalization Theorem

Let f be a symmetric bilinear form on a finite-dimensional vector space over F. Then there is a basis
B = {v1, . . . , vn} of V with respect to which the matrix of f is diagonal:

f(vi, vj) = 0, for all 1 ≤ i ̸= j ≤ n.

We call {v1, . . . , vn} a diagonalising basis for f .

Proof. We will prove this theorem by using the proof by induction on dimV .

(1) Clearly the hypothesis holds if dimV = 1.

(2) Now suppose it holds for all vector spaces of dimension at most n− 1 and that f is a symmetric bilinear
form on a vector space V with dimV = n.
There are two possibilities: if f(v, v) = 0, for all v ∈ V , then, by the previous lemma, f(v, w) = 0, for
all v, w ∈ V , and any basis is trivially diagonalizing.
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Otherwise, there is v1 ∈ V with f(v1, v1) ̸= 0 and we set

U := span v1, W := {v | f(v1, v) = 0} ≤ V.

We have:

(a) U ∩W = {0}: if λv1 ∈ W then 0 = f(v1, λv1) = λf(v1, v1) forcing λ = 0.
(b) V = U +W : for v ∈ V , write

v = f(v1,v)
f(v1,v1)v1 + (v − f(v1,v)

f(v1,v1)v1).

The first summand is in U while

f
(
v1, v − f(v1,v)

f(v1,v1)v1
)

= f(v1, v) − f(v1, v) = 0

so the second summand is in W .

We conclude that V = U ⊕W . We therefore apply the inductive hypothesis to f |W ×W (the restriction
of f on W ×W ) to get a basis {v2, . . . , vn} of W with f(vi, vj) = 0, for 2 ≤ i ̸= j ≤ n.
Now {v1, . . . , vn} is a basis of V and, further, since vj ∈ W , for j > 1, f(v1, vj) = 0 so that

f(vi, vj) = 0, for all 1 ≤ i ̸= j ≤ n.

Thus the inductive hypothesis holds at dimV = n and so the theorem is proved.

Remark 3.5.3. We can do a little better if F is C or R: when B(vi, vi) ̸= 0, either

(1) If F = C, replace vi with vi/
√
f(vi, vi) to get a diagonalising basis with each f(vi, vi) either 0 or

1.

(2) If F = R, replace vi with vi/
√

|f(vi, vi)| to get a diagonalising basis with each f(vi, vi) either 0,
1 or −1.

Example 3.5.4

Let f : R3 ×R3
GA R be a symmetric bilinear form such that its matrix in the standard basis of R3 is

A =

1 2 1
2 0 1
1 1 0

 .

Find a diagonalising basis for f .
Solution: First notes that A11 ̸= 0 so take v1 = e1. We seek v2 among y such that

0 = f(v1, y) =
(
1 0 0

)
Ay =

(
1 2 1

)
y = y1 + 2y2 + y3.

We try v2 = (1,−1, 1) for which

f(v2, y) =
(
1 −1 1

)
Ay =

(
0 3 0

)
y = 3y2

In particular, f(v2, v2) = −3 ̸= 0 so we can carry on.
Now seek v3 among y such that f(v1, y) = f(v2, y) = 0, that is:{

y1 + 2y2 + y3 = 0
3y2 = 0.
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A solution is given by v3 = (1, 0,−1) and f(v3, v3) = −1.
We have therefore arrived at the diagonalising basis

{(1, 0, 0), (1,−1, 1), (1, 0,−1).}

We can verify that:1 0 0
1 −1 1
1 0 −1

1 2 1
2 0 1
1 1 0

1 1 1
0 −1 0
0 1 −1

 =

1 0 0
−3 0

0 0 −1


Note that: starting from a different v1 would give a different, equally correct answer.

3.6 Sylvester’s Theorem

Let f be a symmetric bilinear form on a real finite-dimensional vector space. We know that there is a
diagonalising basis v1, . . . , vn with each f(vi, vi) ∈ {±1, 0} and would like to know how many of each there
are. We give a complete answer.

Definition 3.6.1 Positive and negative definite symmetric bilinear forms

Let f be a symmetric bilinear form on a real vector space V .
Say that f is positive definite if f(v, v) > 0, for all v ∈ V \ {0}.
Say that f is negative definite if f(v, v) < 0 is for all v ∈ V \ {0}.

Definition 3.6.2 Signature of symmetric real bilinear forms

If V is finite-dimensional real vector space, the signature of f is the pair (p, q) where

p = max{dimU | U ≤ V with f |U×U positive definite}
q = max{dimW | W ≤ V with f |W ×W negative definite}.

We write sgn(f) = p− q..

Remark 3.6.3. A symmetric bilinear form f on V is positive definite if and only if it is an inner
product on V .

Theorem 3.6.4 Sylvester’s Law of Inertia

Let f be a symmetric bilinear form of signature (p, q) on a finite-dimensional real vector space Then:

(a) p+ q = rank f ;

(b) any diagonal matrix representing f has p positive entries and q negative entries.
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Proof. Set K = rad f , r = rank f and n = dimV so that dimK = n− r.
Let U ≤ V be a p-dimensional subspace on which B is positive definite and W a q-dimensional subspace

on which f is negative definite.
First note that U ∩K = {0} since f(k, k) = 0, for all k ∈ K. Thus, by the dimension formula,

dim(U +K) = dimU + dimK = p+ n− r.

Moreover, if v = u+ k ∈ U +K, with u ∈ U and k ∈ K, then f(v, v) = f(u+ k, u+ k) = f(u, u) ≥ 0.
From this we see that W ∩ (U +K) = {0}: if w ∈ W ∩ (U +K) then f(w,w) ≥ 0 by what we just proved

but also f(w,w) ≤ 0 since w ∈ W . Thus f(w,w) = 0 and so, by definiteness on W , w = 0. Thus

dimW + (U +K) = dimW + dim(U +K) = q + n+ p− r ≤ dimV = n

so that p+ q ≤ r.
Now let v1, . . . , vn be a diagonalising basis of f with p̂ positive entries on the diagonal of the corresponding

matrix representative A of f and q̂ negative entries. Then f is positive definite on the p̂-dimensional space
spanvi | f(vi, vi) > 0 (exercise!). Thus p̂ ≤ p. Similarly, q̂ ≤ q.

However r = rankA is the number of non-zero entries on the diagonal, that is r = p̂ + q̂. We therefore
have

r = p̂+ q̂ ≤ p+ q = r

so that p = p̂, q = q̂ and p+ q = r.

Example 3.6.5

Find the rank and signature of f = fA where

A =

1 2 1
2 0 1
1 1 0

 .

Solution: we have already found a diagonalising basis v1 = (1, 0, 0), v2 = (1,−1, 1), v3 = (1, 0,−1) so we
need only count how many f(vi, vi) are positive and how many negative. In this case, f(v1, v1) = 1 > 0
while f(v2, v2) = −3 < 0 and f(v3, v3) = −1 < 0. Thus the signature is (1, 2) while rank f = 1+2 = 3.

Remark 3.6.6.

(a) Here is a useful sanity check: symmetric bilinear B of signature (p, q) on an n-dimensional V has
p, q, p+ q ≤ n (since p, q, p+ q are all dimensions of subspaces of n-dimensional V or V ∗).

(b) A symmetric bilinear form of signature (n, 0) on a real n-dimensional vector space is simply an
inner product.

3.7 Nondegenerate bilinear forms

We will now introduce the important notion of nondegeneracy of a bilinear form. Nondegenerate bilinear
forms arise throughout mathematics. For example, an inner product is an example of a nondegenerate bilinear
form.
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Definition 3.7.1 Nondegenerate bilinear form

Let V be a finite dimensional F-vector space, f ∈ BilF(V ). We say that f is nondegenerate if the
following property holds:

f(u, v) = 0 for every u ∈ V =⇒ v = 0V .

If f is not nondegenerate, then we say that f is degenerate.

Lemma 3.7.2

f ∈ BilF(V ) and B = {v1, . . . , vi} be a basis for V . Then, f is nondegenerate if and only if [f ]B is an
invertible matrix.

Proof. Suppose that f is nondegenerate. We will show that A = [f ]B is invertible by showing that kerTA =
{0}. So, suppose that x ∈ Kn is such that

Ax = 0.

Then, for every y ∈ Kn we have
0 = yt0 = ytAx = fA(y,x).

As [−]B : V GA Kn is an isomorphism we have x = [u]B for some unique v ∈ V . Moreover, if y ∈ Kn then
there is some unique u ∈ V such that y = [v]B. Hence, we have just shown that

0 = fA(y,x) = [u]tB[f ]B[v]B = f(u, v),

Therefore, since f is nondegenerate

f(u, v) = 0, for every u ∈ V =⇒ v = 0V ,

Hence, x = [u]B = 0 so that kerTA = {0} and A must be invertible. Conversely, suppose that A = [f ]B is
invertible. We want to show that f is nondegenerate so that we must show that if

f(u, v) = 0, for every u ∈ V,

then v = 0V . Suppose that f(u, v) = 0, for every u ∈ V . Then, by Lemma 3.1.6, this is the same as

0 = f(u, v) = [u]tBA[v]B, for every u ∈ V.

In particular, if we consider ei = [vi]B then we have

0 = et
iA[v]B, for every i =⇒ A[v]B = 0.

As A is invertible this implies that [v]B = 0 so that v = 0V , since [−]B is an isomorphism.

Proposition 3.7.3

Let V be a F-vector space, f ∈ BilK(V ) a nondegenerate bilinear form. Then, f induces an isomorphism
of F-vector spaces

σf : V GA V ∗; v 7GA σf (v),

where
σf (v) : V GA F;u 7GA σf (v)(u) = f(u, v).
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Proof. Clearly σf is well-defined, ie, that σf is F-linear and σf (v) ∈ V ∗, for every v ∈ V .
Since we know that dimV = dimV ∗ it suffices to show that σf is injective. So, suppose that v ∈ kerσf .

Then, σf (v) = 0 ∈ V ∗, so that σf (v) is the zero linear form. Hence, we have σf (v)(u) = 0, for every u ∈ V .
Thus, using nondegeneracy of f we have

0 = σf (v)(u) = f(u, v), for every u ∈ V,=⇒ v = 0V .

Hence, σf is injective and the result follows.

Remark 3.7.4.

(1) We could have also defined an isomorphism

σ̂f : V GA V ∗,

where
σ̂f (v)(u) = f(v, u), for every u ∈ V.

(2) If f is symmetric then we have σf = σ̂f

(3) The converse of the previous proposition : suppose that σf induces an isomorphism

σf : V GA V ∗.

Then, f is nondegenerate. This follows because σf is injective.

Definition 3.7.5 Left (right) f -complement

Let f ∈ BilF(V ). Let E ⊂ V be a nonempty subset. Then, we define the (right) f -complement of E
in V to be the set

E⊥
r = {v ∈ V | f(u, v) = 0 for every u ∈ E}

this is a subspace of V

Similarly, we define the (left) f -complement of E in V to be the set

E⊥
l = {v ∈ V | f(v, u) = 0, for every u ∈ E};

Remark 3.7.6. It’s clear that if f is symmetric or anti-symmetric, we have

E⊥
l = E⊥

r .

In this case we write E⊥.

Proposition 3.7.7

Let f ∈ BilK(V ) be (anti-)symmetric and nondegenerate, U ⊂ V a subspace of V . Then,

dimU + dimU⊥ = dimV.
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Proof. As f is nondegenerate we can consider the isomorphism

σf : V GA V ∗,

We will show that

σf

(
U⊥) = annV ∗(U) = {α ∈ V ∗ | α(u) = 0, for every u ∈ U} .

Indeed, suppose that w ∈ U⊥. Then, for every u ∈ U , we have

σf (w)(u) = f(u,w) = 0,

so that σf (w) ∈ annV ∗(U). Conversely, let α ∈ annV ∗(U). Then, α = σf (w), for some w ∈ V , since σf is an
isomorphism. Hence, for every u ∈ U , we must have

0 = α(u) = σf (w)(u) = f(u,w),

so that w ∈ U⊥ and α = σf (w) ∈ σf

(
U⊥). Hence,

dimU⊥ = dim σB

(
U⊥) = dim annV ∗(U) = dimV − dimU.



53C. BEDDANI

3.8 Exercises set

Exercise 3.8.1

Suppose that B = {v1, . . . , vn} is a basis for the finite dimensional vector space V . For all 1 ≤ i ≤ n,
let fi ∈ V ∗ = L(V,F) given by

fi(vj) = δij =
{

1 if i = j

0 if i ̸= j.

(1) Show that B∗ = {f1, f2, . . . , fn} form a basis for V ∗.

(2) Deduce that dimV ∗ = dimV.

Solution. (1) Let α1, . . . , αn be scalars such that
n∑

i=1
αifi = 0.

Then for all r ∈ {1, ..., n}, we have
n∑

i=1
αifi(vr) = 0.

So
n∑

i=1
αiδij = 0.

So αr = 0. Therefore the set {f1, . . . , fn} is linearly independent. In addition, for all h ∈ V ∗, we have

h =
n∑

i=1
h(vi)fi.

(2) From (1), we obtain
dimV ∗ = |B∗| = |B| = dimV.

Exercise 3.8.2
Let f : U × V GAW be a bilinear mapping. Show that

f(u, 0) = f(0, v) = 0

for all u ∈ U and v ∈ V .

Solution. Let u ∈ U and v ∈ V be two arbitrary vectors. Then

f(u, 0) = f(u, 0 + 0) = f(u, 0) + f(u, 0),

and
f(0, v) = f(0 + 0, v) = f(0, v) + f(0, v).

Hence f(u, 0) = f(0, v) = 0.



54C. BEDDANI

Exercise 3.8.3
Show that the following are bilinear maps:

(1) Matrix multiplication M : Mn×p(F)× : Mp×m(F) GA Mn×m(F), M(A,B) = AB.

(2) Evaluation mapping: E : V ∗ × V GA F, E(f, v) = f(v).

(3) T : M2(Q) × M2(Q) GA Q, T (A,B) = tr(AB).

Solution. (1) Clearly, for all α ∈ F, A1, A2 ∈ Mn×p(F) and B1, B2Mp×m(F), we have:

M(A1 + αA2, B1) = (A1 + αA2)B1

= (A1B1 + (αA2)B1

= (A1B1 + α(A2B1)
= M(A1, B1) + αM(A2, B1)

Similarly, we have:
M(A1, B1 + αB2) = M(A1, B1) + αM(A1, B2).

(2) For all α ∈ F, u, v ∈ V and f, g ∈ V ∗, we have:

E(u+ αv, f) = f(u+ αv)
= f(u) + αf(v)
= E(u, f) + αE(v, f),

and

E(u, f + αf) = (f + αf)(u)
= f(u) + (αf)(u)
= f(u) + α(f(u))
= E(u, f) + αE(u, g).

Exercise 3.8.4
Let V and W be F-vector spaces. For f ∈ V ∗ and g ∈ W ∗, we consider the mapping ϕ : V ×W GA F
defined by

ϕ(v, w) = f(v)g(w).

Show that ϕ is bilinear form on V ×W .

Solution. For all α ∈ F, v1, v2 ∈ V , and w1, w2 ∈ W , we have:

ϕ(v1 + αv2, w1) = f(v1 + αv2)g(w1)
=
(
f(v1) + αf(v2)

)
g(w1)

= f(v1)g(w1) + αf(v2)g(w1)
= ϕ(v1, w1) + αϕ(v2, w1).

Similarly,
ϕ(v1, w1 + αw2) = ϕ(v1, w1) + αϕ(v1, w2).
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Exercise 3.8.5 composition between linear and bilinear is bilinear

Let U , V , W1 and W be vector spaces over a field F, and f : U × V GAW1 a bilinear mapping. Show
that for each linear map g : W1 GAW2 the composition g ◦ f is bilinear.

Solution. Let F = g ◦ f : U × V GAW2. Then for all u1, u2 ∈ U , v1, v2 and α ∈ F:

F (u1 + αu2, v1) = (g ◦ f)(u1 + αu2, v1)
= g
(
f(u1 + αu2, v1)

)
= g
(
f(u1, v1) + αf(u2, v1)

)
= g
(
f(u1, v1)

)
+ αg

(
f(u2, v1)

)
= F (u1, v1) + αF (u2, v1).

Similarly, we can prove the linearity fir the second argument, that means:

F (u1, v1 + αv2) = F (u1, v1) + αF (u1, v2).

Exercise 3.8.6
Let V and W be vector spaces over a field F, and f : V × V GAW is both bilinear and linear. Show
that f is the zero map.

Solution. For all v1, v2 ∈ V , we have:

f(v1, v2) = f(v1 + 0, 0 + v1) = f
(

(v1, 0) + (0, v2)
)

Using the linearity of f , we get
f(v1, v2) = f(v1, 0) + f(0, v2).

Since f is considered bilinear f(v1, 0) = f(0, v2) = 0 (see Exercise 3.8.2). Therefore f(v1, v2) = 0 for all
v1, v2 ∈ V . Hence f = 0.

Exercise 3.8.7

Let B = {v1, . . . , vn} be a basis for a finite-dimensional F-vector space V , and f ∈ BilF(V ). Show that
f is symmetric if and only if

f(vi, vj) = f(vj , vi), for all 1 ≤ i, j ≤ n,

Solution. Let B = {v1, . . . , vn} be a basis for V . By definition, it’s clear that, if f is symmetric, then

f(vi, vj) = f(vj , vi) for all 1 ≤ i, j ≤ n.

Conversely, let u and v be two vectors in V , then

u =
n∑

i=1
αivi and v =

n∑
j=1

βjvj .
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Using the bilinearity of f , we get

f(u, v) = f
( n∑

i=1
αivi,

n∑
j=1

βjvj

)
=

n∑
i=1

f
(
αivi,

n∑
j=1

βjvj

)
=

n∑
i=1

n∑
j=1

f
(
αivi, βjvj

)
=

n∑
i=1

n∑
j=1

αiβjf(vi, vj)

Similarly, we can show that

f(v, u) =
n∑

j=1

n∑
i=1

βjαif(vj , vi)

Since f(vi, vj) = f(vj , vi), for all 1 ≤ i, j ≤ n, we obtain f(u, v) = f(v, u).

Exercise 3.8.8

Consider the bilinear form f : R2 × R2
GA R is given by

f(x, y) = 2x1y1 + 3x1y2 + y1x2

where x =
(
x1
x2

)
and y =

(
y1
y2

)
Let S = {e1, e2} be the standard basis of R2, and B = {v1, v2} such that

v1 =
(

1
1

)
and v2 =

(
1
0

)
(1) Find [f ]S , [f ]B and P = PSGAB.

(2) Verify that
P t [f ]B P = [f ]S ,

Solution. (1) Let us write the matrix of f in the standard basis.

f(e1, e1) = 2, f(e1, e2) = 3, f(e2, e1) = 1, f(e2, e2) = 0

hence the matrix of f in the standard basis is

[f ]S =
(

2 3
1 0

)
Similarly,

f(v1, v1) = 6, f(v1, v2) = 3, f(v2, v1) = 5, f(v2, v2) = 2

Hence
[f ]B =

(
6 3
5 2

)
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(2) By definition

PBGAS = [[v1]S | [v2]S ] =
(

1 1
1 0

)
Therefore

P = PSGAB =
(
PBGAS

)−1
=
(

0 1
1 −1

)
So

P t [f ]B P =
(

0 1
1 −1

)(
6 3
5 2

)(
0 1
1 −1

)
=
(

5 2
1 1

)(
0 1
1 −1

)
=
(

2 3
1 0

)
= [f ]S .

Exercise 3.8.9
Consider the bilinear form

f : Q3 × Q3
GA Q; (x, y) 7GA x1y2 + x3y2 + x2y1.

Is f nondegenerate?

Solution. We have

A = [f ]S =

 0 1 0
1 0 0
0 1 0

 ,
which is non-invertible. Hence f is degenerate.

Exercise 3.8.10

Let V = P2(R) be a vector space over R of polynomials of degree at most 2 with coefficients in R. For
f, g ∈ V define the bilinear form ϕ : V × V GA R by:

ψ(f, g) =
∫ 1

−1
xf(x)g(x) dx.

(1) Is ψ non-degenerate or degenerate?

(2) Give the matrix A associated to ψ relative to the standard basis B = {1, x, x2} of V .

(3) Find a basis of V for which the matrix associated to ψ is diagonal.

(4) Find the rank and signature of ψ.

Solution. (1) Let f = a+ bx+ cx2 ∈ V such that ψ(f, g) = 0 for all g ∈ V . Then

ψ(f, 1) = ψ(f, x) = ψ(f, x2) = 0

That means∫ 1

−1
ax+ bx2 + cx3 dx = 0,

∫ 1

−1
ax2 + bx3 + cx4 dx = 0, and

∫ 1

−1
ax3 + bx4 + cx5 dx = 0.

Therefore 
2b
3 = 0
2a
3 + 2c

5 = 0
2b
5 = 0
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So b = 0 and 3c = −5a. Take for example (a, b, c) = (−3, 0, 5), that means f = −3 + 5x2. Then

ψ(−3 + 5x2, g) = 0 for all g ∈ V .

Hence ψ is degenerate.

(2) Let f1 = 1, f2 = x and f3 = x2. By definition

A = [ψ]B =

ψ(f1, f1) ψ(f1, f2) ψ(f1, f3)
ψ(f2, f1) ψ(f2, f2) ψ(f2, f3)
ψ(f3, f1) ψ(f3, f2) ψ(f3, f3)


After calculation, we get

A = [ψ]B =

0 2
3 0

2
3 0 2

5
0 2

5 0


(3) The matrix A is denationalization :0 2

3 0
2
3 0 2

5
0 2

5 0

 =

1 0 0
0 1 0
0 0 1

0 2
3 0

2
3 0 2

5
0 2

5 0

1 0 0
0 1 0
0 0 1


Replace R1 GA 3R1, R2 GA 15R1 and R3 GA 5R1 0 2 0

10 0 6
0 2 0

 =

3 0 0
0 15 0
0 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

1 0 0
0 1 0
0 0 0


Replace C1 GA 3C1, C2 GA 15C1 and C3 GA 5C1 0 30 0

30 0 30
0 30 0

 =

3 0 0
0 15 0
0 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

3 0 0
0 15 0
0 0 5


Replacing R3 GA R3 + (−1)R1: 0 30 0

30 0 30
0 0 0

 =

 3 0 0
0 15 0

−3 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

3 0 0
0 15 0
0 0 5


Replacing C3 GA C3 + (−1)C1: 0 30 0

30 0 0
0 0 0

 =

 3 0 0
0 15 0

−3 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

3 0 −3
0 15 0
0 0 5


Replacing C1 GA C1 + C2:30 30 0

30 0 0
0 0 0

 =

 3 0 0
0 15 0

−3 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

 3 0 −3
15 15 0
0 0 5


Replacing R1 GA R1 +R2:60 30 0

30 0 0
0 0 0

 =

 3 15 0
0 15 0

−3 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

 3 0 −3
15 15 0
0 0 5


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Replacing C2 GA C2 − (1/2)C1:60 0 0
30 −15 0
0 0 0

 =

 3 15 0
0 15 0

−3 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

 3 −3
2 −3

15 15
2 0

0 0 5


Replacing R2 GA R2 − (1/2)R1:60 0 0

0 −15 0
0 0 0

 =

 3 15 0
−3
2

15
2 0

−3 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

 3 −3
2 −3

15 15
2 0

0 0 5


Replacing R2 GA 2R2:60 0 0

0 −30 0
0 0 0

 =

 3 15 0
−3 15 0
−3 0 5

0 2
3 0

2
3 0 2

5
0 2

5 0

 3 −3
2 −3

15 15
2 0

0 0 5


Replacing C2 GA 2C2:60 0 0

0 −60 0
0 0 0


︸ ︷︷ ︸

D

=

 3 15 0
−3 15 0
−3 0 5


︸ ︷︷ ︸

P t

0 2
3 0

2
3 0 2

5
0 2

5 0

 3 −3 −3
15 15 0
0 0 5


︸ ︷︷ ︸

P

Hence
D = P tAP.

Let
q1 = 3 + 15x, q2 = −3 + 15x, and q3 = −3 + 5x2.

If we take B′ = {q1, q2, q3}, then the matrix of ψ relative to this basis is:

[ψ]B =

60 0 0
0 −60 0
0 0 0


Verify that ψ(q1, q1) = 60, ψ(q2, q2) = −60, ψ(q3, q3) = 0, and ψ(q1, q2) = ψ(q2, q3) = ψ(q1, q3) = 0.

(4) We have already found a diagonalising basis B′ = {q1, q2, q3}, so we need only count how many ψ(qi, qi)
are positive and how many negative. In this case, ψ(q1, q1) = 60 > 0 while ψ(q2, q2) = −60 < 0 and
ψ(q3, q3) = 0. Thus the signature is (1, 1) while rankψ = 1 + 1 = 2.

Exercise 3.8.11
Consider the bilinear form

f : M2(Q) × M2(Q) GA Q; (X,Y ) 7GA tr(XY ).

(1) Show that f is nondegenerate.

(2) FInd the matrix of f relative to the standard basis of M2(Q)

(3) Find a basis of V for which the matrix associated to f is diagonal.

(4) Find the rank and signature of f .
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Solution. (1) Let

e1 =
(

1 0
0 0

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
1 0

)
, and e4 =

(
0 0
0 1

)
,

be the standard basis of M2(Q).

Suppose that

X =
(
x11 x12
x21 x22

)
∈ M2(Q)

such that
f(X,Y ) = 0, for every Y ∈ M2(Q).

Then, in particular, we have
f (X, ei) = 0, i ∈ {1, 2, 3, 4}

Hence, 
x11 = f (X, e1) = 0,
x12 = f (X, e3) = 0,
x21 = f (X, e2) = 0,
x22 = f (X, e4) = 0.

So that X = 02 ∈ M2(Q).

(2)

[f ]S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


(3) We have 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Replacing R2 GA R2 +R3:

1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Replacing C2 GA C2 + C3:

1 0 0 0
0 2 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1


Replacing R3 GA 2R3 and C3 GA 2C3 :

1 0 0 0
0 2 2 0
0 2 0 0
0 0 0 1

 =


1 0 0 0
0 1 1 0
0 0 2 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 1 2 0
0 0 0 1


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Replacing R3 GA R3 + (−1)R2
1 0 0 0
0 2 2 0
0 0 −2 0
0 0 0 1

 =


1 0 0 0
0 1 1 0
0 −1 1 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 1 2 0
0 0 0 1


Replacing C3 GA C3 + (−1)C2

1 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 1


︸ ︷︷ ︸

D

=


1 0 0 0
0 1 1 0
0 −1 1 0
0 0 0 1


︸ ︷︷ ︸

P t


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 −1 0
0 1 1 0
0 0 0 1


︸ ︷︷ ︸

P

.

Put
w1 =

(
1 0
0 0

)
, w2 =

(
0 1
1 0

)
, w3 =

(
0 −1
1 0

)
, and w4 =

(
0 0
0 1

)
,

Then the matrix of f relative to the basis {w1, w2, w3, w4} is D.

The signature of f is (3, 1) while rank f = 3 + 1 = 4.

Exercise 3.8.12

Consider the following symmetric bilinear form B = fA : R4 × R4
GA R where

A =


0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0


Find a matrix P and a diagonal matrix D such that P tAP = D.

Solution. Method 1:
0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Replacing R1 GA R1 +R3

1 2 1 2
2 0 0 1
1 0 0 2
0 1 2 0

 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Replacing C1 GA C1 + C3

2 2 1 2
2 0 0 1
1 0 0 2
2 1 2 0

 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1


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Replacing R2 GA R2 + (−1)R1
2 2 1 2
0 −2 −1 −1
1 0 0 2
2 1 2 0

 =


1 0 1 0

−1 1 −1 0
0 0 1 0
0 0 0 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1


Replacing C2 GA C2 + (−1)C1

2 0 1 2
0 −2 −1 −1
1 −1 0 2
2 −1 2 0

 =


1 0 1 0

−1 1 −1 0
0 0 1 0
0 0 0 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 0 0
0 1 0 0
1 −1 1 0
0 0 0 1


Replacing R3 GA 2R3 and C3 GA 2C3

2 0 2 2
0 −2 −2 −1
2 −2 0 4
2 −1 4 0

 =


1 0 1 0

−1 1 −1 0
0 0 2 0
0 0 0 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 0 0
0 1 0 0
1 −1 2 0
0 0 0 1


Replacing R3 GA R3 + (−1)R1

2 0 2 2
0 −2 −2 −1
0 −2 −2 2
2 −1 4 0

 =


1 0 1 0

−1 1 −1 0
−1 0 1 0
0 0 0 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 0 0
0 1 0 0
1 −1 2 0
0 0 0 1


Replacing C3 GA C3 + (−1)C1

2 0 0 2
0 −2 −2 −1
0 −2 −2 2
2 −1 2 0

 =


1 0 1 0

−1 1 −1 0
−1 0 1 0
0 0 0 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 −1 0
0 1 0 0
1 −1 1 0
0 0 0 1


R4 GA R4 + (−1)R1

2 0 0 2
0 −2 −2 −1
0 −2 −2 2
0 −1 2 −2

 =


1 0 1 0

−1 1 −1 0
−1 0 1 0
−1 0 −1 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 −1 0
0 1 0 0
1 −1 1 0
0 0 0 1


C4 GA C4 + (−1)C1

2 0 0 0
0 −2 −2 −1
0 −2 −2 2
0 −1 2 −2

 =


1 0 1 0

−1 1 −1 0
−1 0 1 0
−1 0 −1 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 −1 −1
0 1 0 0
1 −1 1 −1
0 0 0 1


R3 GA R3 + (−1)R2

2 0 0 0
0 −2 −2 −1
0 0 0 3
0 −1 2 −2

 =


1 0 1 0

−1 1 −1 0
0 −1 2 0

−1 0 −1 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 −1 −1
0 1 0 0
1 −1 1 −1
0 0 0 1


Replacing C3 GA C3 + (−1)C2

2 0 0 0
0 −2 0 −1
0 0 0 3
0 −1 3 −2

 =


1 0 1 0

−1 1 −1 0
0 −1 2 0

−1 0 −1 1




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 0 −1
0 1 −1 0
1 −1 2 −1
0 0 0 1


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Replacing R4 GA (−2)R4 and C4 GA (−2)C4
2 0 0 0
0 −2 0 2
0 0 0 −6
0 2 −6 −8

 =


1 0 1 0

−1 1 −1 0
0 −1 2 0
2 0 2 −2




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 0 2
0 1 −1 0
1 −1 2 2
0 0 0 −2


Replacing R4 GA R4 +R2

2 0 0 0
0 −2 0 2
0 0 0 −6
0 0 −6 −6

 =


1 0 1 0

−1 1 −1 0
0 −1 2 0
1 1 1 −2




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 0 2
0 1 −1 0
1 −1 2 2
0 0 0 −2


Replacing C4 GA C4 + C2

2 0 0 0
0 −2 0 0
0 0 0 −6
0 0 −6 −6

 =


1 0 1 0

−1 1 −1 0
0 −1 2 0
1 1 1 −2




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 0 1
0 1 −1 1
1 −1 2 1
0 0 0 −2


Replacing R3 GA R3 + (−1)R4

2 0 0 0
0 −2 0 0
0 0 6 0
0 0 −6 −6

 =


1 0 1 0

−1 1 −1 0
−1 −2 1 2
1 1 1 −2




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 0 1
0 1 −1 1
1 −1 2 1
0 0 0 −2


Replacing C3 GA C3 + (−1)C4

2 0 0 0
0 −2 0 0
0 0 6 0
0 0 0 −6

 =


1 0 1 0

−1 1 −1 0
−1 −2 1 2
1 1 1 −2




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 −1 −1 1
0 1 −2 1
1 −1 1 1
0 0 2 −2


Method 2:

We need to start with v1 with B (v1, v1) ̸= 0. Those diagonal zeros say that none of the standard basis
will do so let us try v1 = (1, 1, 0, 0) for which B (v1, v1) = 4.

Now seek v2 among the y with

0 = B (v1, y) =
(

1 1 0 0
)
Ay =

(
2 2 1 1

)
y = 2y1 + 2y2 + y3 + y4.

We take v2 = (0, 0, 1,−1) with

B (v2, y) =
(

0 0 1 −1
)
Ay =

(
1 −1 −2 2

)
y = y1 − y2 − 2y3 + 2y4.

We need to start with v1 with f(v1, v1) ̸= 0. Those diagonal zeros say that none of the standard basis
will do so let us try v1 = (1, 1, 0, 0) for which f(v1, v1) = 4. Now seek v2 among the y with

0 = f(v1, y) = (1 1 0 0)Ay = (2 2 1 1)y = 241 + 242 + 43 + 34.

We take v2 = (0, 0, 1,−1) with

B(v2, y) = (0 0 1 − 1)Ay = (1 − 1 − 2 2)8 = 11 − 42 − 243 + 241.

Then B (v2, v2) = −4 and we seek v3 among the y with B (v1, y) = B (v2, y) = 0, that is:

2y1 + 2y2 + y3 + y4 = 0
y1 − y2 − 2y3 + 2y4 = 0.
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One solution is v3 = (−3, 5,−4, 0) with

B (v3, y) =
(

−3 5 −4 0
)
Ay = 3

(
2 −2 −1 −1

)
y = 3 (2y1 − 2y2 − y3 − y4) .

Thus B (v3, v3) = −36 and we need to find v4 = y with B (v1, y) = B (v2, y) = B (v3, y) = 0 :

2y1 + 2y2 + y3 + y4 = 0
y1 − y2 − 2y3 + 2y4 = 0
2y1 − 2y2 − y3 − y4 = 0.

A solution is v4 = (0, 4,−5,−3) with B (v4, v4) = 36. We now have a diagonalising basis with B (vi, vi) =
4,−4,−36, 36 so B has signature (2, 2) and so has rank 4.

After all this linear equation solving it is probably good to check our answer: let P have the vj as columns
and check that PTAP is diagonal:

1 1 0 0
0 0 1 −1

−3 5 −4 0
0 4 −5 −3




0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0




1 0 −3 0
1 0 5 4
0 1 −4 −5
0 −1 0 −3

 =


4 0 0 0
0 −4 0 0
0 0 −36 0
0 0 0 36



Exercise 3.8.13
Let f : V × V GA F be a symmetric bilinear form. Show that

rad f := {v ∈ V | f(v, v′) = 0 for all v′ ∈ V }.

is a vector subspace of V .

Solution. Since f(0, v) = 0 for all v ∈ V , 0 ∈ rad f , so rad f ̸= ∅. Let v1, v2 ∈ rad f and α ∈ F. Then for all
v ∈ V

f(v1 + αv2, v) = f(v1, v) + αf(v2, v) = 0.
Hence v1 + αv2 ∈ rad f.

Exercise 3.8.14

Let V be a finite-dimensional vector space over a field F and f ∈ BilF(V ). Show that, if f is
nondegenerate, then

f(u, v) = 0 for every v ∈ V =⇒ u = 0V .

Solution. Let B = {v1, . . . , vn} be a basis of V . We know that f is nondegenerate if and only if det[f ]B ̸= 0.
Assume that f is nondegenerate, and let g the bilinear form on V defined by

g(u, v) = f(v, u) for all u, v ∈ V .

Clearly g is a symmetric bilinear form and
[g]B = [f ]tB.

Therefore det[g]B = det[f ]tB = det[f ]B ̸= 0. That means g is nondegenerate, and hence

g(v, u) = 0 for every v ∈ V =⇒ u = 0V .

Which is give the requested implication.
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Exercise 3.8.15

Let E ⊂ V be a nonempty subset and f ∈ BilF(V ) be (anti-)symmetric. Show that

E⊥ = (SpanFE)⊥.

Solution. Obviously, we have
(SpanFE)⊥ ⊂ E⊥,

since if f(u, v) = 0, for every u ∈ SpanF(E), then this must also hold for those u ∈ E. Hence,

v ∈ SpanF(E)⊥ =⇒ v ∈ E⊥.

Conversely, if v ∈ E⊥, so that f(e, v) = 0, for every e ∈ E, then if w = c1e1 + . . . + ckek ∈ SpanF(E) for
some ei ∈ E, then

f(w, v) = f (c1e1 + . . . ckek, w) = c1f (e1, v) + . . .+ ckf (ek, w) = 0 + . . .+ 0 = 0.

Exercise 3.8.16

Let V be a F-vector space and f ∈ BilF(V ). Suppose that B = {v1, . . . , vn} ⊂ V is an ordered basis of
V and B∗ = {v∗

1 , . . . , v
∗
n} ⊂ V ∗ is the dual basis. Define the linear mapping σf : V GA V ∗; v 7GA σf (v),

by
σf (v)(u) = f(u, v) for all u, v ∈ V .

Show that [σf ]B
∗

B = [f ]B.

Solution. By definition,
[σf ]B

∗

B =
[
[σf (v1)]B∗ · · · [σf (vn)]B∗

]
.

Now, for each i, σf (vi) ∈ V ∗ is a linear form on V so we need to know what it does to elements of V . Suppose
that

v = λ1v1 + . . .+ λnvn ∈ V

Then,

σf (vi) (v) = f

(
n∑

k=1
λkvk, vi

)
=

n∑
k=1

λkf (vk, vi)

and  n∑
j=1

f (vj , vi) v∗
j

 (v) =

 n∑
j=1

f (vj , vi) v∗
j

( n∑
k=1

λkvk

)
=

n∑
k=1

λkf (vk, vi) ,

so that we must have
σf (vi) =

n∑
j=1

f (vj , vi) v∗
j

Hence,
[σf ]B

∗

B = [f ]B
It is now clear that B is nondegenerate precisely when the morphism σB is an isomorphism.
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This chapter gives the basic properties of Hermitian and quadratic forms.

4.1 Real and complex symmetric bilinear forms
Throughout this section we consider only real or complex vector spaces, that is, vector spaces over the field
of real numbers or the field of complex numbers.

F = R or F = C

Proposition 4.1.1 Polarisation identity

Let f ∈ BilF(V ) be a symmetric bilinear form. Then, for any u, v ∈ V , we have

f(u, v) = 1
2

(
f(u+ v, u+ v) − f(u, u) − f(v, v)

)
.

Proof. Left as an exercise for the reader.
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Corollary 4.1.2

Let f ∈ BilF(V ) be a nonzero symmetric bilinear form. Then, there exists nonzero v ∈ V such that

f(v, v) ̸= 0.

Proof. Suppose that the result does not hold: that is, for every v ∈ V we have f(v, v) = 0. Then, using the
polarisation identity, we get, for every u, v ∈ V ,

f(u, v) = 1
2(f(u+ v, u+ v, ) − f(u, u) − f(v, v)) = 1

2(0 − 0 − 0) = 0.

Hence, we must have that f = 0 is the zero bilinear form, which contradicts our assumption on f . Hence,
ther must exist some v ∈ V such that f(v, v) ̸= 0.

Theorem 4.1.3 Classification of nondegenerate symmetric bilinear forms over C

Let f ∈ BilC(V ) be symmetric and nondegenerate. Then, there exists an ordered basis B ⊂ V such
that

[f ]B = Idim V .

Proof. By the previous corollary, there exists some nonzero v1 ∈ V such that

f (v1, v1) ̸= 0

(we know that f is nonzero since it is nondegenerate).

Let
E1 = SpanC {v1}

and consider
E⊥

1 = {w ∈ V | f(w, v1) = 0}.

We have
E1 ∩ E⊥

1 = {0V }

indeed, let x ∈ E1 ∩ E⊥
1 . Then, x = cv1, for some c ∈ C. As x ∈ E⊥

1 we must have

0 = f (x, v1) = f (cv1, v1) = cf (v1, v1)

so that c = 0 (as (f (v1, v1) ̸= 0)). Thus, by Proposition 3.7.7, we obtain

V = E1 ⊕ E⊥
1 .

Moreover, f restricts to a nondegenerate symmetric bilinear form on E⊥
1 : indeed, the restriction is

f|E⊥
1

: E⊥
1 × E⊥

1 GA C; (u, u′) 7GA f (u, u′) ,

and this is a symmetric bilinear form. We need to check that it is nondegenerate. Suppose that w ∈ E⊥
1 is

such that, for every z ∈ E⊥
1 we have

f(z, w) = 0.

Then, for any v ∈ V , we have v = cv1 + z, z ∈ E⊥
1 , c ∈ C, so that

f(v, w) = f (cv1 + z, w) = cf (v1, w) + f(z, w) = 0 + 0 = 0,
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where we have used the assumption on w and that w ∈ E⊥
1 . Hence, using nongeneracy of f on V we see that

w = 0. Hence, we have that f is also nondegenerate on E⊥
1 .

As above, we can now find v2 ∈ E⊥
1 such that f (v2, v2) ̸= 0 and, if we denote E2 = SpanC {v2}, then

E⊥
1 = E2 ⊕ E⊥

2 ,

where E⊥
2 is the f -complement of E2 in E⊥

1 . Hence, we have

V = E1 ⊕ E2 ⊕ E⊥
2 .

Proceeding in the manner we obtain
V = E1 ⊕ · · · ⊕ En

where n = dimV , and where Ei = SpanC {vi}. Moreover, by construction we have that

f (vi, vj) = 0, for i ̸= j.

Define
bi = 1√

f (vi, vi)
vi

we know that the square root
√
f (vi, vi) exists (and is nonzero) since we are considering C-scalars. Then, it

is easy to see that

f (bi, bj) =
{

1, i = j,

0, i ̸= j.

Finally, since
V = SpanC {b1} ⊕ · · · ⊕ SpanC {bn} ,

we have that B = {b1, . . . , bn} is an ordered basis such that

[f ]B = In.

Corollary 4.1.4

Let A ∈ GLn(C) be a symmetric matrix. Then, there exists P ∈ GLn(C) such that

P tAP = In.

Since A is an invertible matrix the bilinear form fA ∈ BilC (Cn) is symmetric and nondegenerate.

Theorem 4.1.5 Sylvester’s law of inertia

Let V be an R-vector space, f ∈ BilR(V ) a nondegenerate symmetric bilinear form. Then, there is an
ordered basis B ⊂ V such that [f ]B is a diagonal matrix

[f ]B =


d1

d2
. . .

dn

 ,
where di ∈ {1,−1}.
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Proof. The proof is similar to the proof of the previous theorem: we determine v1, . . . , vn ∈ V such that

V = SpanR {v1} ⊕ · · · ⊕ SpanR {vn}

and with f (vi, vj) = 0, whenever i ̸= j.

However, we now run into a problem: what if f (vi, vi) < 0 ? We can’t find a real square root of a negative
number so we can’t proceed as in the complex case. However, if we define

δi =
√

|f (vi, vi)|, for every i

then we can obtain a basis B = (b1, . . . , bn), where we define

bi = 1
δi
vi

Then, we see that
f (bi, bj) =

{
0, i ̸= j
±1, i = j

and [f ]B is of the required form.

Remark 4.1.6. If p is the number of 1’s appearing on the diagonal and q the number of −1’s appearing
on the diagonal, then

sgn(f) = p− q.

4.2 Quadratic forms

Definition 4.2.1 Quadratic form

A quadratic form on a vector space V over F is a function Q : V GA F of the form

Q(v) = f(v, v),

for all v ∈ V , where f : V × V GA F is a symmetric bilinear form.

Remark 4.2.2. For v ∈ V and λ ∈ F,

Q(λv) = f(λv, λv) = λ2Q(v)

so Q is emphatically not a linear function!

Example 4.2.3

Here are two quadratic forms on F3:

(1) Q(x) = x2
1 + x2

2 − x2
3 = fA(x, x) where

A =

1 0 0
0 1 0
0 0 −1

 .



71C. BEDDANI

(2) Q(x) = x1x2 = fA(x, x) where

A =

0 1
2 0

1
2 0 0
0 0 0

 .

Proposition 4.2.4 Polarisation of quadratic forms

Let Q : V GA F be a quadratic form with Q(v) = f(v, v) for a symmetric bilinear form f . Then

f(v, w) = 1
2
(
Q(v + w) −Q(v) −Q(w)

)
,

for all v, w ∈ V . f is called the polarisation of Q.

Proof. Expand out to get

Q(v + w) −Q(v) −Q(w) = f(v, w) + f(w, v) = 2f(v, w).

Here is how to do polarisation in practice: any quadratic form Q : Fn
GA F is of the form

Q(x) =
∑

1≤i≤j≤n

qijxixj = xT

 q11
1
2qji

. . .
1
2qij qnn

x = xtAx

so that the polarisation is fA where

Aij = Aji =
{
qii if i = j;
1
2qij if i < j.

Example 4.2.5

Let Q : R3
GA R be given by

Q(x) = x2
1 + 2x2

2 + 2x1x2 + x1x3.

Let us find the polarisation f of Q, that is, we find A so that f = fA: we have q11 = 1. q22 = 2,
q12 = 2 and q13 = 1 with all other qij vanishing so

A =

1 1 1
2

1 2 0
1
2 0 0

 .

Definition 4.2.6 Rank and signature of quadratic forms

Let Q be a quadratic form on a finite-dimensional vector space V over F.
The rank of Q is the rank of its polarisation.
If F = R, the signature of Q is the signature of its polarisation.
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Theorem 4.2.7

Let Q be a quadratic form with rank r polarisation on a finite-dimensional vector space over F.

(1) When F = C, there is a basis {v1, . . . , vn} of V such that

Q
( n∑

i=1
xivi

)
= x2

1 + · · · + x2
r.

(2) When F = R and Q has signature (p, q), there is a basis {v1, . . . , vn} of V such that

Q
( n∑

i=1
xivi

)
= x2

1 + · · · + x2
p − x2

p+1 − · · · − x2
p+q.

Example 4.2.8

Find the signature of Q : R3
GA R given by

Q(x) = x2
1 + x2

2 + x2
3 + 2x1x3 + 4x2x3.

Q has polarisation f = fA with

A =

1 0 1
0 1 2
1 2 1

 .

Solution: exploit the zero in the (1, 2)-slot of A to see that e1, e2, y = (−1,−2, 1) is a diagonalising
basis and so gives us a diagonal matrix representing f with Q(e1) = Q(e2) = 1 > 0 and Q(y) = −4 < 0
along the diagonal. So the signature is (2, 1).

Here are two alternative techniques:

(1) Orthogonal diagonalisation yields a diagonal matrix representing B with the eigenvalues of A down the
diagonal so we just count how many positive and negative eigenvalues there are.
In fact, A has eigenvalues 1 and 1 ±

√
5. Since

√
5 > 2, 1 −

√
5 < 0 and we again conclude that the

signature is (2, 1).

(2) Write Q as a linear combination of linearly independent squares and then count the number of positive
and negative coefficients. In fact,

Q(x) = x2
1 + x2

2 + x2
3 + 2x1x3 + 4x2x3

= (x1 + x3)2 + x2
2 + 4x2x3 = (x1 + x3)2 + (x2 + 2x3)2 − 4x2

3.

But now we need to check that x1 + x3, x2 + 2x3, x3 are linearly independent linear functionals on R3.
Here comes to the rescue and says we only need show that (kerx1 +x2) ∩ (kerx2 + 2x3) ∩ (kerx3) = {0}.
But x3 = 0 = x1 + x3 = x2 + 2x3 rapidly implies that each xi = 0 and we are done. The coefficients of
these squares are 1, 1,−4 and so, once more, we get that the signature is (2, 1).

Example 4.2.9

Determine the rank and signature of the quadratic form Q : R3
GA R given by

Q(x, y, z) = 2xy + 2yz.
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by reducing it to its canonical form.

Solution:
Clearly

Q(x, y, z) = 2xy + 2yz = 1
2

(
(x+ y + z)2 − (x− y + z)2

)
Hence, the matrix for the canonical form is

A =

 1
2 0 0
0 − 1

2 0
0 0 0


So, the rank is 2. Further, the signature is (1,1) and sgn(Q) = 0 .

4.3 Hermitian forms

Definition 4.3.1 Hermitian form

Let V be a C-vector space. A function H : V × V GA C is called a Hermitian form on V if

(HF1) for any u, v, w ∈ V and λ ∈ C, H(u+ λv,w) = H(u,w) + λH(v, w),

(HF2) for any u, v ∈ V , we have H(u, v) = H(v, u), (Hermitian symmetric).

Where the bar denoting complex conjugation, that means if z = a + bi is a complex number
(i2 = −1), then by definition z̄ = a− bi.

Note 4.3.2

We denote the set of all Hermitian forms on V by Herm(V ).

Example 4.3.3

(1) The function H1 : Cn × Cn
GA C defined by

H1(z, w) =
n∑

i=1
ziwi,

where z =

z1
...
zn

 and w =

w1
...
w2

,

is a Hermitian form on Cn.

(2) The function H2 : C2 × C2
GA C defined by

H2(z, w) = z1w1 + iz2w1 − iz1w2.

is a Hermitian form on C2.
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(3) The function H3 : C2 × C2
GA C defined by

H3(z, w) = z1w1 + z2w2

is not a Hermitian form on C2. Take for example z =
(

1
i

)
and w =

(
1
1

)
H3(z, w) = 1 + i

and
H3(w, z) = 1 + i = 1 − i

So
H3(z, w) ̸= H3(w, z)

Definition 4.3.4 Hermitian matrix

Recall that a square matrix A = (aij) is called Hermitian matrix if aij = aji for all for all indices i
and j,

Definition 4.3.5 Skew-Hermitian matrix

Recall that a square matrix A = (aij) is called skew-Hermitian matrix if aij = −aji for all for all
indices i and j,

Note 4.3.6

The conjugate transpose of a matrix A is denoted by Ah

Remark 4.3.7.

(1) Let A be a complex square martix. Then

(a) A Hermitian ⇐⇒ Ah = A.
(b) A skew-Hermitian ⇐⇒ Ah = −A

(2) If A is a real matrix, then

(a) A Hermitian ⇐⇒ A is symmetric (i.e. At = A).
(b) A skew-Hermitian ⇐⇒ A is skew symmetric (i.e. At = −A).
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Example 4.3.8

The following matrix A is Hermitian

A =

 1 1 − i 2 − 3i
1 + i 4 2i
2 + 3i −2i 0


The following matrix B is skew-Hermitian

B =
(

−i 2 + i
−2 + i 0

)
because

Ah =
(

−i 2 + i
−2 + i 0

)t

=
(

i 2 − i
−2 − i 0

)t
=
(

i −2 − i
2 − i 0

)
= −A

Proposition 4.3.9 Hermitian properties of matrices

Let A,B ∈ Mn(C) and λ ∈ C. Then

(1) (A+B)h = Ah +Bh

(2) (λA)h = λAh.

(3) (AB)h = BhAh.

(4) (Ah)h = A.

(5) If A is invertible, we have (Ah)−1 = (A−1)h.

Proposition 4.3.10 Hermitian properties of matrices

(1) The sum of two Hermitian matrices is Hermitian.

(2) The inverse of an invertible Hermitian matrix is Hermitian as well.

(3) The sum of a square matrix and its conjugate transpose
(
A+Ah) is Hermitian.

(4) The difference of a square matrix and its conjugate transpose
(
A−Ah) is skew-Hermitian.

(5) The product of two Hermitian matrices A and B is Hermitian if and only if AB = BA.

(6) if A and B are Hermitian, then ABA is Hermitian.

Definition 4.3.11

Let V be a vector space over C with basis B = {v1, . . . , vn} and letH : V×V GA F be a Hermitian form.

We define [H]B the matrix of H with respect to B by [H]B = (aij) ∈ Mn×n(F) given by

aij = H(vi, vj), for 1 ≤ i, j ≤ n.
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The Hermitian symmetric property of a Hermitian form implies that

[H]B = [H]B
t
.

Remark 4.3.12. f V is a vector space over C with basis B = {v1, . . . , vn} and H : V × V GA C a
Hermitian form with matrix A = [H]B with respect to B. Then H is completely determined by A: if

v =
n∑

i=1
xivi and w =

n∑
j=1

yjvj then

H(v, w)
n∑

i,j=1
xiyjH(vi, vj) =

n∑
i,j=1

xiyjaij =
n∑

i,j=1
yjaijxi = xtAy = yhAx.

Lemma 4.3.13

Let H ∈ Herm(V ) and B = {v1, . . . , vn} an ordered basis of V . Then, for any u, v ∈ V , we have

H(u, v) = [u]tB [H]B [v]B = [v]hB [H]B [u]B.

Moreover, if A ∈ Mn(C) is such that

[u]tB A [v]B = H(u, v),

then A = [H]B.

Proposition 4.3.14 Hermitian form and chage of basis

Let H ∈ Herm(V ), B,B′ two ordered bases of V . If P = PBGAB′ is the change of coordinate matrix
from B to B′, then

P h[H]B′P = [H]B.

Proof. Let u, v ∈ V , and P = PB′
GAB. We know that

[u]B = P [u]B′ and [v]B = P [v]B′

We have:

H(u, v) = [v]hB[H]B[u]B
=
(
P [v]B′

)h[H]BP [u]B′

= [v]hB′P h[H]BP [u]B′

Therefore
P h [H]B P = [H]B′ ,

4.4 Classification of Hermitian forms
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Definition 4.4.1 Nondegenerate Hermitian form

Let H ∈ Herm(V ). We say that H is nondegenerate if [H]B is invertible, for any basis B of V . The
previous lemma ensures that this notion of nondegeneracy is well-defined (ie, does not depend on the
choice of basis B).

Theorem 4.4.2 Classification of Hermitian forms

Let V be a C-vector space, n = dimV and H ∈ Herm(V ) be nondegenerate Hermetian form on V .
Then, there is an ordered basis B of V such that

[H]B =

d1
. . .

dn


where di ∈ {1,−1}.

Corollary 4.4.3

If u, v ∈ V with

[u]B =

u1
...
un

 and [v]B =

v1
...
vn


, we have

H(u, v) =
n∑

i=1
diuivi.

Definition 4.4.4 Sesquilinear form

Let V be a C-vector space. A function H : V × V GA C is called a sesquilinear form on V if for any
u, v, w ∈ V and λ ∈ C, we have

(1) H(u+ λv,w) = H(u,w) + λH(v, w),

(2) H(w, u+ λv) = H(w, u) + λH(w, v),

Definition 4.4.5 Positive and positive definite of Hermitian forms

Given a complex vector space V , a Hermitian form H ∈ Herm(V ) is called

(1) Positive if H(u, u) ≥ 0 for all u ∈ V

(2) Positive definite if H(u, u) > 0 for all u ∈ V
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Definition 4.4.6 Hermitian space (or unitary space)

A pair ⟨V,H ⟩ is called Hermitian space, where V is a C-vector space and H is a Hermitian form on
V such that [H]B = In, for some basis B.

Definition 4.4.7 Positive and positive definite of Hermitian forms

A Hermitian space ⟨V,H ⟩ is called:

(1) pre-Hilbert space if H is positive.

(2) Hilbert space if H is positive definite.
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4.5 Exercises Set

Exercise 4.5.1

Let B be a nonzero real symmetric bilinear form on V with quadratic form Q. Show that Q(v) ̸= 0
for some v ∈ V .

Solution. For all u, v ∈ V , we have

Q(u+ v) = Q(u) + 2B(u, v) +Q(v).

If Q(v) = 0 for all v ∈ V , we get from previous equality

0 = 0 + 2B(u, v) + 0 for all u, v ∈ V.

Therefore B = 0.
0 = Q(u+ v) = Q(u) + 2B(u, v) +Q(v) = 2B(2, v).

Which is a contradiction. So Q(v) ̸= 0 for some v ∈ V .

Exercise 4.5.2
Let V be a complex vector space, and H : V ×V GA C a nonzero Hermitian form on V . Let v1, v2 ∈ V
such that c = H(v1, v2) ̸= 0. Let v3 = c v2.

(1) Show that H(v1, v3) is a nonzero real number.
(2) Show that, there exists v ∈ V such that H(v, v) ̸= 0.

Solution.

(1) H(v1, v3) = H(v1, cv2) = cH(v1, v2) = cc ∈ R \ {0}.

(2) We have

H(v1 + v3, v1 + v3) = H(v1, v1) +H(v1, v3) +H(v3, v1) +H(v3, v3)
= H(v1, v1) +H(v1, v3) +H(v1, v3) +H(v3, v3)
= H(v1, v1) + 2H(v1, v3) +H(v3, v3) Because H(v1, v3) is a real number.

So
H(v1 + v3, v1 + v3) = H(v1, v1) + 2H(v1, v3) +H(v3, v3)

Since the term 2H(v1, v3) isn’t zero, at least one of the three other terms in the last equation isn’t zero.

Exercise 4.5.3

Let B ∈ BilR(V ) be a real nondegenerate symmetric bilinear form with quadratic form Q such that
Q(u) = 0 for some nonzero vector u ∈ V .

(1) Show that there exists w ∈ V such that B(u,w) = 1
2 .

(2) Show that, for all x ∈ R, Q(xu+ w) = x+Q(w).

(3) Deduce that Q(V ) = R.
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Solution. (1) Let u be a nonzero vector in V such that Q(u) ̸= 0. As B is nondegenerate, there exists
w1 ∈ V such that B(u,w1) ̸= 0. Let

w = 1
2B(u,w1)w1

So
B(u,w) = B

(
u,

1
2B(u,w1)w1

)
= 1

2B(u,w1)B(u,w1) = 1
2 .

(2) For all x ∈ R,

Q(xu+ w) = B(xu+ w, xu+ w)
= x2Q(u) + 2xB(u,w) +Q(w)
= x+Q(w).

(3) W deduce from (2) : for all x ∈ R,

x = Q
(

(x−Q(w))u + w
)
.

Hence Q(V ) = R.

Exercise 4.5.4 Hermitian form is anti-linear in the second argument

Show that, if H is a Hermitian form on V , then

H(u, v + bw) = H(u, v) + bH(v, w),

any u, v, w ∈ V and b ∈ C.

Solution. By definition, we know that for all u, v ∈ V and b ∈ F, we have

H(u, v + bw) = H(v + bw, u)
= H(v, u) + bH(w, u)
= H(v, u) + bH(w, u)
= H(u, v) + b̄H(u,w).

Exercise 4.5.5
Show that the determinant of a Hermitian matrix is a real number.

Solution. If A is Hermitian, then A = At, so det(A) = detAt. Therefore detA = detAt. Since detA = detAt,
we get detA = detA. Hence detA is a real number.

Exercise 4.5.6

Let H ∈ Herm(V ). Show that for all u, v ∈ V and α, β ∈ C, we have

H(αu+ βv, αu+ βv) = |α|2H(u, u) + 2ℜ(αβH(u, v)) + |β|2H(v, v).
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Solution.

H(αu+ βv, αu+ βv) = αH(u, αu+ βv) + βH(v, αu+ βv)
= αH(u, αu) + αH(u, βv) + βH(v, αu) + βH(v, βv)
= ααH(u, u) + αβH(u, v) + βαH(v, u) + ββH(v, v)
= ααH(u, u) + αβH(u, v) + βαH(u, v) + ββH(v, v)
= |α|2H(u, u) + 2ℜ(αβH(u, v)) + |β|2H(v, v).

Exercise 4.5.7 First polarization identities for sesquilinear form

Show that for any sesquilinear form H : V × V GA C, we have

4H(u, v) = H(u+ v, u+ v) −H(u− v, u− v) + iH(u+ iv, u+ iv) − iH(u− iv, u− iv),

Solution. Let Φ be the quadratic form associated with H:

Φ(x) = H(x, x) for all x ∈ V .

For any α, β ∈ C, we have
Φ(αx+ βy) = H(αx+ βy, αx+ βy)

= |α|2Φ(x) + αβ̄H(x, y) + ᾱβH(y, x) + |β|2Φ(y).

Using this equality subsequently for α = β = 1;α = 1 and β = −1;α = 1 and β = i;α = 1 and β = −i;
we get

Φ(x+ y) = Φ(x) +H(x, y) +H(y, x) + Φ(y)
−Φ(x− y) = −Φ(x) +H(x, y) +H(y, x) − Φ(y)
iΦ(x+ iy) = iΦ(x) +H(x, y) −H(y, x) + iΦ(y)

−iΦ(x− iy) = −iΦ(x) +H(x, y) −H(y, x) − iΦ(y).
By adding these equalities we obtain:

4H(u, v) = H(u+ v, u+ v) −H(u− v, u− v) + iH(u+ iv, u+ iv) − iH(u− iv, u− iv),

Exercise 4.5.8 Second polarization identities for sesquilinear form

Show that for any sesquilinear form H : V × V GA C, we have

2H(u, v) = (1 + i)
(
H(u, u) +H(v, v)

)
−H(u− v, u− v) − iH(u− iv, u− iv).

Solution. From Exercise 4.5.7 :

4H(u, v) = H(u+ v, u+ v) −H(u− v, u− v) + iH(u+ iv, u+ iv) − iH(u− iv, u− iv).

Then

4H(u, v) = H(u, u) +H(u, v) +H(v, u) +H(v, v) −H(u− v, u− v)
+ iH(u, u) + iH(u, iv) + iH(iv, u) + iH(iv, iv) − iH(u− iv, u− iv)

= H(u, u) +H(u, v) +����H(v, u) +H(v, v) −H(u− v, u− v)
+ iH(u, u) +H(u, v) −����H(v, u) + iH(v, v) − iH(u− iv, u− iv).

Hence
2H(u, v) = (1 + i)

(
H(u, u) +H(v, v)

)
−H(u− v, u− v) − iH(u− iv, u− iv).
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Exercise 4.5.9

Show that a sesquilinear form H : V × V GA C is Hermitian if and only if H(v, v) ∈ R for all v ∈ V .

Solution. Clearly, if H is Hermitian, then for all v ∈ V , H(v, v) = H(v, v). Therefore H(v, v) ∈ R.
Conversely, suppose that H is a sesquilinear form such that H(v, v) ∈ R for all v ∈ V . To prove that H

is Hermitian, we need only to

H(u+ v, u+ v) = H(u, u) +H(u, v) +H(v, u) +H(v, v)

and
H(u− v, u− v) = H(u, u) −H(u, v) −H(v, u) +H(v, v)

So
H(u, v) +H(v, u) = a ∈ R. (4.1)

Also
H(iu, v) +H(v, iu) = b ∈ R

that is
iH(u, v) − iH(v, u) = b

Multiplying by i,
H(u, v) −H(v, u) = ib (4.2)

From (4.1) and (4.2), we get
H(u, v) = α+ iβ

2
and

H(v, u) = α− iβ

2 ,

which means H(u, v) = H(v, u), for any u, v ∈ V , as required.

Exercise 4.5.10

Let ⟨V,H ⟩ be a Hermitian space. Show that for any linear map f ∈ L(V ) such that H(f(v), v) = 0
for all v ∈ V , then f = 0.

Solution. We have, for all u, v ∈ V and α ∈ C

0 = H(f(u+ αv), u+ αv) = H(f(u) + αf(v), u+ αv)
= αH(f(u), v) + αH(f(v), u).

In particular, when α = 1 or α = i, we get

H(f(u), v)) +H(f(v), u) = 0

and
iH(f(u), v)) − iH(f(v), u) = 0

Therefore
H(f(u), v)) = 0 for all u, v ∈ V

Since H is nondegenerate, f(u) = 0 for all u ∈ V .
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Chapter

5 Alternating Forms

Chapter contents
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5.3 Exercise Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 What is an Alternating Forms?

Definition 5.1.1

Let V be a vector space over a field F, and k a positive integer. An k-linear functional on V (or k-form)
is a function

f : V × V × · · · × V︸ ︷︷ ︸
k times

GA F

such that for all x1, . . . , xk, y, z ∈ V and all α, β ∈ F, we have:

αf(x1, . . . , xi−1, αy + βz, xi+1, . . . , xk ) = αf(x1, . . . , xi−1, y, xi+1, . . . , xk )
+ βf(x1, . . . , xi−1, z, xi+1, . . . , xk ).

for i = 1, 2, . . . , k.
We denote by T k(V ) to the set of all k-form on V .
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Definition 5.1.2 Symmetric multilinear form

An k-form on a vector space V is called symmetric with respect to its i-th and j-th arguments if, for
all x1, . . . , xk, we have

f(x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xj , xj , . . . , xk) = f(x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj , . . . , xk)

The k-form is called symmetric if it is symmetric with respect to every pair of arguments.

Definition 5.1.3 Antisymmetric multilinear form

An k-form on a vector space V is called antisymmetric with respect to its i-th and j-th arguments if,
for all x1, . . . , xk, we have

f(x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xj , xj , . . . , xk) = −f(x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj , . . . , xk)

The k-form is called antisymmetric if it is antisymmetric with respect to every pair of arguments.

Definition 5.1.4 Alternating multilinear form

An k-form on a vector space V alternates with respect to its i-th and j-th arguments if

f(x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xj , xj , . . . , xk) = 0

whenever xi = xj .

The k-form is called alternating if it alternates with respect to every pair of arguments.

Theorem 5.1.5 Alternation and antisymmetry of multilinear forms

(1) Alternating k-forms are anti-symmetric.

(2) If char(F) ̸= 2, an k-form is alternation if and only if it is antisymmetric.

Proof. Exercise 5.1.5 for students.

Proposition 5.1.6

If an k-form is alternates with respect to every pair of adjacent arguments, then it is an alternating
form. More general, a k-form f is alternating on V if and only if for all x1, . . . , xn ∈ V , we have

f(xσ(1), . . . , xσ(n)) = (sgn σ)f(x1, . . . , xn) for any σ ∈ Sn.

Proof. Exercise for students.
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Theorem 5.1.7

The set of all k-forms is a vector space and the set of all alternating k-forms is a subspace of it.

5.2 Exterior product

Definition 5.2.1 Exterior product

If f is an alternating k-form and g is a 1-form, then the exterior product of g and f is the (k+ 1)-form
g ∧ f defined by

g ∧ f (x1, . . . , xk+1) =
k+1∑
i=1

(−1)i−1g(xi)f(x1, . . . , xi−1, xi+1, . . . , xk+1)

The expression g ∧ f is often read g wedge f speaking.

Theorem 5.2.2

If f is an alternating n-form and g is a 1-form then g ∧ f is an alternating (n+ 1)-form.

Proof. We use the previous proposition. Assume that x = {x1, . . . , xk} be an k-vectors in V such that
xj = xj+1. We will show that g ∧ f(x) = 0.
By definition,

g ∧ f (x1, . . . , xk+1) =
k+1∑
i=1

(−1)i−1g(xi)f(x1, . . . , xi−1, xi+1, . . . , xk+1)

Every term in the sum except those for i = j and for i = j + 1 contains f with the equal arguments xj and
xj+1. Since f is an alternating form, this implies that the sum contains only two non-zero terms. These are:

(−1)j−1g(xj)f(x1, . . . , xj−1, xj+1, . . . , xk+1) + (−1)jg(xj+1)f(x1, . . . , xj , xj+2, . . . , xk+1)

They have opposite signs and are otherwise identical, because xj = xj+1. Hence the sum is zero. Finally
g ∧ f s an alternating (n+ 1)-form.

Theorem 5.2.3

If f is an alternating k-form and if the set of vectors {x1, . . . , xk} are linearly dependent, then
f(x1, . . . , xk) = 0

Proof. Assume that {x1, . . . , xk} are linearly dependent. Then there exist an index j, and scalars αi such
that

xj =
∑
i ̸=j

αixi.
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Hence

f(x1, . . . , xk) = f(x1, . . . , xj−1,
∑
i ̸=j

αixi, xj+1, . . . , xk)

=
∑
i ̸=j

αif(x1, . . . , xj−1, xi, xj+1, . . . , xk)

= α1f(x1, . . . , xj−1, x1, xj+1, . . . , xk)
+ α2, f(x1, . . . , xj−1, x2, xj+1, . . . , xk)
...

+ αkf(x1, . . . , xj−1, xk, xj+1, . . . , xk)
= 0

Corollary 5.2.4

If f is an alternating k-form and f(x1, . . . , xk) ̸= 0, then x1, . . . , xk are linearly independent.

We will prove now the existence non-trivial k-forms for k = 1, 2, . . . , n for every n-dimensional vector
space.

Theorem 5.2.5

If V is an n-dimensional vector space and 1 ≤ k ≤ n, then there is at least one non-zero alternating
k-form.

Proof. We know that there are of non-zero 1-forms and we proceed inductively. All we need to show is that
if k < n and there is a non-zero alternating k-form, then there is an alternating k + 1 form which does not
vanish identically.

Assume then that f is a non-zero alternating k-form and that k < n. Since f is not identically zero, there
are vectors x1, . . . , xk such that

f(x1, . . . , xk) ̸= 0.
Since k < n, the set vectors {x1, . . . , xk} cannot span the whole of V .

Using Corollary 5.2.4, the vectors x1, . . . , xk are linearly independent. Therefore there exists (see Proposition
3.1.8) 1-form d : V GA F and a vector xk+1 not in span{x1, . . . , xk}. such that

d(x) = 0 for all x ∈ span{x1, . . . , xk} and d(xk+1) = 1. (5.1)

Put
g = d ∧ f

By the previous theorem, g is an k + 1 alternating form on V . To complete the proof of this theorem, we
need only to show that g ̸= 0. We have

d ∧ f (x1, . . . , xk+1) =
k+1∑
i=1

(−1)i−1d(xi)f(x1, . . . , xi−1, xi+1, . . . , xk+1)

Using (5.1), we get

d ∧ f (x1, . . . , xk+1) = (−1)kf(x1, . . . , xk, xi+1, . . . , xk+1) ̸= 0.
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5.3 Exercise Set

Exercise 5.3.1
Show that, every alternating form is antisymmetric.

Solution. Let f : V × · · · × V GA F be an alternating n-form. We will show that f is antisymmetric with
respect to its i-th and j-th arguments. Let for all v1, . . . , vn ∈ V , we have

f(v1, . . . , vi−1, vi + vj , vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vn) = f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vn)
+ f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn)
+ f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vi, vj+1, . . . , vn)
+ f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vj , vj+1, . . . , vn)

Since f is alternating n-form, we have
f(v1, . . . , vi−1, vi + vj , vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vn) = 0
f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vi, vj+1, . . . , vn) = 0
f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vj , vj+1, . . . , vn) = 0.

Hence

f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vn) = −f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn).

Therefore f is antisymmetric.

Exercise 5.3.2
Show that, if an n-form is alternates with respect to every pair of adjacent arguments, then it is an
alternating form.

Solution. Suppoase that f : V × · · · × V GA F alternates with respect to every pair of adjacent arguments.
Then, for all v1, . . . , vn and for all 1 ≤ i < n, we have

f(v1, . . . , vi−1, vi + vi+1, vi + vi+1, vi+2, . . . , vn) = f(v1, . . . , vi−1, vi, vi, vi+2, . . . , vn)
+ f(v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vn)
+ f(v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vn)
+ f(v1, . . . , vi−1, vi+1, vi+1, vi+2, . . . , vn)

Since f alternates with respect to every pair of adjacent arguments, we get
f(v1, . . . , vi−1, vi + vi+1, vi + vi+1, vi+2, . . . , vn) = 0
f(v1, . . . , vi−1, vi, vi, vi+2, . . . , vn) = 0
f(v1, . . . , vi−1, vi+1, vi+1, vi+2, . . . , vn) = 0.

Hence for all i, we have

f(v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vn) = −f(v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vn)

Form this, we can see that for all i and j. we have

f(v1, . . . , vi, vi+1, . . . , vj , vj+1, . . . , vn) = (−1)sf(v1, . . . , vi, vj , vi+1, . . . , vn).

Therefore
f(v1, . . . , vn) = 0 when vi = vj .
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Exercise 5.3.3
Show that. if f is an n-form and g is an m-form on the same vector space V , then the function h
defined by

h(v1, . . . , vn+m) = f(v1, . . . , vn) g(vn+1, . . . , vn+m)

is an (m+ n)-form.

Solution. Clearly, for all v1, . . . , vn+m, u, w ∈ V and all α, β ∈ F, we have: when i ≤ n.

h(v1, . . . , vi−1, αu+ βw, vi+1, . . . , vn+m ) =(v1, . . . , vi−1, αu+ βw, vi+1, . . . , vn )g(vn+1, . . . , vn+m)

Using the linearity of the function f is linear in the argument i, we get the linearity of the function h.
Similarly, we can show that h is linear in the argument i, when i > n.

Exercise 5.3.4
Let V be a vector space of dimension 2. Show that every alternating 3-form on V is identically zero.

Solution. Let f : V × V × V GA F be an alternating form on V . Since dimV = 2, every subset {u, v, w} of
V is linearly dependent. Without loss of generality, we can assume that

w = αu+ βv.

Hence

f(u, v, w) = f(u, v, αu+ βv)
= αf(u, v, u) + βf(u, v, v)
= 0.

Exercise 5.3.5
Let V be a vector space over a field F of characteristic 2. Show that, every anti-symmetric bilinear
form on V is symmetric and conversely.

Solution. Let f be any anti-symmetric bilinear form on V . Then

f(u, v) = −f(v, u) ∀u, v ∈ V

Since F is a field of characteristic 2, we get 2f(u, v) = −2f(u, v) = 0 for all u, v ∈ V . Hence

f(u, v) = 2f(u, v) + f(u, v)
= 2f(u, v) − f(u, v)
= f(u, v).

Therefore f is symmetric. Conversely if f is symmetric. Then

f(u, v) = f(v, u) ∀u, v ∈ V

So,

f(u, v) = −2f(u, v) + f(u, v)
= −2f(v, u) + f(v, u)
= −f(v, u).

Therefore f is anti-symmetric.
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