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 ملخص

 

 

 

مصدر الهواء    عمالالتركيز الأساسي على است، مع  (FSW)الدوراني  ك  تستكشف هذه الرسالة تحسين عمليات اللحام بالاحتكا

  إلى الدراسة    نقسم ، وتقليل استهلاك الطاقة، وتمكين العمل في البيئات الخطرة، وتعزيز الكفاءة. ت كمصدر طاقةالمضغوط  

الهوائية،   FSW ( الأكثر ملاءمة لعمليةالهوائية  تهدف إلى تحديد المحرك الهوائي )أو الأداة الدوارةحيث  أربعة فصول،  

 . Metaheuristicsي والـباستخدام قوة خوارزميات التعلم الآل

 

ويؤكد الدور المحوري لمصادر الهواء المضغوط في هذه التقنية اللحامية.   FSW أساسياتحول  يقدم الفصل الأول استكشافاً  

 .وكفاءة الطاقةقابلية التنقل تؤكد المناقشة على الفوائد الكامنة المقدمة من قبل مصادر الهواء المضغوط، خاصة فيما يتعلق ب 

 

في الفصل التالي، يُحدد منهج الدراسة، الذي يشمل مختلف تقنيات الذكاء الاصطناعي مثل الشبكات العصبية الاصطناعية، 

الإضافية للتفسير وخوارزمية  SHAPLEY وخوارزميات الغابات العشوائية، والانحدار الجبري. تكمل هذه الطرق بأساليب

 .مع مصادر الهواء المضغوط FSW خصائص، المصممة خصيصاً لتحليل وتحسين لطائر البجعالتحسين 

 

في الفصل الثالث. من خلال إجراءات تحقق صارمة، يتم   FSW لخصائصتتقدم الرسالة بعد ذلك إلى تطوير نماذج التنبؤية  

 .خصائص٪، مما يوفر رؤى حول تحسين ال4.54بنسبة   MAPE ٪ و99.60بنسبة   R² تقييم أداء هذه النماذج للوصول إلى

 

. يهدف هذا النهج الجديد  طائر البجعفي الفصل الأخير، يُقترح نهج مختلط، يجمع بين النماذج المطورة مع خوارزمية تحسين  

، وسرعة اللحام، وسرعة  شكل هندسي مناسب لأداة اللحام الدوراني، بما في ذلك الخصائصمن  مناسبة إلى تحديد مجموعة 

واستهلاك   والعزم،  الإمالة،  وزاوية  لعملياتمنخفض  طاقةالدوران،  خصيصاً  مخصصة   ، FSW   بالهواء المدفوعة 

  اللحام   أدوات  أبعادالمضغوط. وبالتالي، يسهل هذا اختيار المحركات الهوائية أو الأدوات الدوارة المناسبة، جنباً إلى جنب مع  

 .FSW المناسبة، لتبسيط وتعزيز عمليات
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ABSTRACT 

 

 

This thesis explores the optimization of friction stir welding (FSW) processes, with a primary 

emphasis on harnessing pneumatic sources to introduce portability, minimize power 

consumption, enable workability in hazardous environments, and enhance efficiency. 

Structured into four chapters, the study is dedicated to identifying the pneumatic motor (or 

rotary hand tool) best suited for the pneumatic FSW process, leveraging the power of machine 

learning and metaheuristic algorithms. 

 

The initial chapter provides a comprehensive exploration of FSW fundamentals and 

emphasizes the pivotal role of pneumatic sources in this welding technique. The discussion 

underscores the potential advantages offered by pneumatic sources, particularly in terms of 

portability and energy efficiency. 

 

In the subsequent chapter, the methodology of the study is delineated, encompassing various 

artificial intelligence techniques such as artificial neural networks, random forest algorithms, 

and polynomial regression. Complementing these methods are the SHAPLEY additive 

explanation and Pelican optimization algorithm, tailored specifically to analyze and optimize 

FSW parameters with pneumatic sources. 

 

The thesis then progresses to the development and validation of predictive models for FSW 

parameters in the third chapter. Through rigorous validation procedures, the performance of 

these models is assessed to reach an R² of 99.60% and a MAPE of 4.54%, providing insights 

into the optimization of parameters. 

 

In the final chapter, a hybrid approach is proposed, synthesizing the developed models with the 

Pelican optimization algorithm. This novel approach aims to identify an optimum set of 

parameters, including tool geometry, welding speed, rotational speed, tilt angle, torque, and 

minimal power consumption, specifically tailored for pneumatic-driven FSW processes. 

Consequently, this facilitates the selection of suitable pneumatic motors or rotary hand tools, 

alongside appropriate tool geometries, to further streamline and enhance FSW operations. 
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RESUME 

 

 

Cette thèse explore l'optimisation des processus de soudage par friction-malaxage (FSW), en 

mettant principalement l'accent sur l'utilisation de sources pneumatiques pour introduire la 

portabilité, minimiser la consommation d'énergie, permettre le travail dans des environnements 

dangereux et améliorer l'efficacité. Structurée en quatre chapitres, l'étude est dédiée à 

l'identification du moteur pneumatique (ou outil rotatif) le mieux adapté au processus de FSW 

pneumatique, en tirant parti de la puissance des algorithmes d'apprentissage automatique et 

métaheuristiques. 

 

Le premier chapitre offre une exploration complète des fondamentaux du FSW et met l'accent 

sur le rôle central des sources pneumatiques dans cette technique de soudage. La discussion 

souligne les avantages potentiels offerts par les sources pneumatiques, notamment en termes 

de portabilité et d'efficacité énergétique. 

 

Dans le chapitre suivant, la méthodologie de l'étude est décrite, englobant diverses techniques 

d'intelligence artificielle telles que les réseaux de neurones artificiels, les algorithmes de forêt 

aléatoire et la régression polynomiale. Ces méthodes sont complétées par l'explication additive 

SHAPLEY et l'algorithme d'optimisation Pelican, spécialement conçus pour analyser et 

optimiser les paramètres du FSW avec des sources pneumatiques. 

 

La thèse progresse ensuite vers le développement et la validation de modèles prédictifs pour 

les paramètres du FSW dans le troisième chapitre. À travers des procédures de validation 

rigoureuses, les performances de ces modèles sont évaluées pour atteindre un R² de 99,60% et 

un MAPE de 4,54%, fournissant des insights sur l'optimisation des paramètres. 

 

Dans le dernier chapitre, une approche hybride est proposée, synthétisant les modèles 

développés avec l'algorithme d'optimisation Pelican. Cette approche novatrice vise à identifier 

un ensemble optimum de paramètres, comprenant la géométrie de l'outil, la vitesse de soudage, 

la vitesse de rotation, l'angle d'inclinaison, le couple et la consommation minimale d'énergie, 

spécifiquement adaptés aux processus de FSW pneumatique. En conséquence, cela facilite la 

sélection de moteurs pneumatiques ou d'outils rotatifs adaptés, ainsi que de géométries d'outil 

appropriées, pour rationaliser et améliorer davantage les opérations de FSW. 
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GENERAL INTRODUCTION 

Friction Stir Welding (FSW) stands as a transformative welding technique, 

revolutionizing the landscape of material joining in various industries. Its inherent ability to 

create high-strength, defect-free welds without melting the material has garnered significant 

attention. Yet, within this promising field, the integration of a pneumatic source of power 

represents an unexplored frontier, offering potential advancements and innovation. 

The conventional power source -electric power- utilized in FSW have laid the groundwork for 

its success, but the introduction of a pneumatic source introduces a paradigm shift. This thesis 

embarks on an exploration of this novel avenue, delving into the uncharted territory of FSW 

enhanced by pneumatic source of power, aiming to unearth its promises and advancements. 

Machine learning, a powerful tool in today's technological era, serves as the guiding 

force in this endeavor. Its ability to decipher complex patterns and predict outcomes holds 

immense potential in optimizing FSW processes, especially when applied in conjunction with 

a novel source of power such as the pneumatic one. 

This thesis aims to bridge the gap between traditional FSW source of power and the 

untapped potential offered by the pneumatic source. By harnessing the capabilities of machine 

learning and integrating them into the FSW domain As this study uses previously conducted 

experimental results from different researches and fit them to the service of pneumatic FSW, 

the objective is to unlock new insights, enhance predictive capabilities, and pave the way for a 

future where pneumatic FSW stands as a pinnacle of efficiency and precision by opening the 

door to use light weight and portable equipment as well as it introduces more safety in use at 

environments where the electric power might impose a risk like in the underwater environment. 

Through a comprehensive exploration of machine learning models, particularly neural 

networks and Random Forest in conjunction with innovative optimization techniques like the 

Pelican Optimization Algorithm, this research aspires to propel FSW technology into uncharted 

realms, offering a glimpse into its unprecedented possibilities. 

The scope of this thesis encompasses an in-depth analysis of the theoretical 

fundamentals, methodological intricacies, and forward-looking implications of integrating 

machine learning with the revolutionary concept of pneumatic FSW. 
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Chapter I - FSW fundamentals and the concept of a pneumatic 

source 

I.1. Introduction 

Our initial focus revolves around establishing a comprehensive understanding of FSW 

fundamentals. We begin by unpacking the process itself, highlighting the role of the dedicated 

tool, joint design considerations, and a meticulous analysis of the inherent advantages and 

limitations compared to other joining methods. Subsequently, we navigate the intricacies of 

FSW parameters, scrutinizing their individual and combined influence on the welding process 

and the final joint quality. 

To gain a deeper understanding of the practical aspects, we explore the landscape of 

conventional FSW machines and their dedicated power sources. This section analyzes their 

design configurations, operational characteristics, and potential limitations. However, the 

chapter also ventures into the burgeoning realm of pneumatic power sources, exploring their 

untapped potential to revolutionize the FSW landscape. By examining the theoretical and 

practical advantages of pneumatic technology, we pave the way for future research and 

development in this dynamic field. 

This chapter aspires to demonstrate a robust understanding of FSW, serving as a valuable 

primer for further exploration. By methodically dissecting the process, its parameters, 

equipment, and potential advancements, we aim to demystify this transformative technology 

and explore the necessary knowledge to navigate its intricacies and leverage its potential across 

diverse applications. 

I.2. Overview of FSW and it’s principles 

I.2.1 Introduction to Friction Stir Welding 

Friction Stir Welding (FSW) is acknowledged as a solid-state joining process where the 

generated heat does not surpass the melting temperature of the materials being joined. 

Developed in 1991 at The Welding Institute (TWI) in the UK [1]. It addresses the challenge of 

welding materials traditionally considered non-weldable, such as dissimilar materials, 

magnesium alloys, certain aluminum alloys, copper, titanium, etc. These materials often exhibit 

poor solidification microstructure, porosity in the fusion zone, and significant loss of 

mechanical properties through conventional welding methods [1]. 
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In the FSW process (illustrated in Fig. I-1), a non-consumable cylindrical tool with a shoulder 

and pin serves as a stirrer. The tool, fixed to a milling machine chuck, undergoes rotation along 

its longitudinal axis (as shown in Fig. I-2, depicting a modified milling machine). Workpieces 

slated for welding can be butted up or overlapped, then clamped to remain stationary and 

withstand substantial applied forces (as seen in the clamping system of Fig. I-3). Clamping 

effectively prevents workpiece spreading. 

Initiating the FSW process involves inserting the rotating tool pin into the joint of the 

workpiece, with the shoulder making contact with the workpiece surface. Friction between the 

workpiece surface and the tool shoulder induces heating of the material being joined. 

Transversely moving the tool along the joint combines friction heating with pin stirring, 

softening and integrating the material into a weld. Crucially, the process is meticulously 

managed to keep the temperature below the melting point of the base materials [2] [3]. Upon 

reaching the end of the joint, the tool is retracted from the workpiece. The four distinct steps of 

the FSW process are outlined in Fig. I-4. 

 

 

 

Fig. I-1: Schematic of the FSW and the acting 

forces [54]. 
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Fig. I-2 – Modified milling machine [182] 

Fig. I-3 - Clamping system [183]. 
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Fig. I-4 - FSW steps: 1) tool plunging, 2) Dwelling, 3) Welding, 4) tool withdrawal [4] 

 

I.2.2 FSW welding zones 

FSW operation creates different zones in the welded plates due to them affected by heat and 

mechanical work (see Fig. I-5). We can categorize the zones to [2]: 

I.2.2.1 Parent metal/base metal (PM/BM):  

In regions where the material remains undeformed, it may also undergo thermal cycles without 

experiencing any microstructural or mechanical alterations. 

I.2.2.2 Heat affected zone (HAZ):  

Within this zone, the metal undergoes a thermal cycle that induces alterations in microstructure 

and mechanical properties. Importantly, there is an absence of plastic deformation or dynamic 

recrystallization, preserving the same grain structure as that of the parent metal. 

I.2.2.3 Thermo-mechanical affected zone (TMAZ):  

In this zone, both thermal cycling and plastic deformation occur, leading to a highly deformed 

microstructure. The grains originating from the parent metal undergo deformation and 

elongation, forming an upward-flowing pattern around the stirred zone. Due to insufficient 

plastic strain, dynamic recrystallization does not take place, and only plastic deformation is 

observed. 
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I.2.2.4 Stir zone (SZ): 

Dynamic recrystallization has undergone complete occurrence. The presence of fine grain sizes 

is attributed to severe deformation at elevated temperatures. These diminutive grain sizes 

contribute to heightened strength and hardness in the welded metal. 

 

 

 

 

The material flow and dynamics within Friction Stir Welding (FSW) can exhibit considerable 

complexity (Fig. I-7). The region surrounding the tool undergoes heating through two primary 

mechanisms: frictional heating occurring between the tool, particularly the shoulder, and the 

Fig. I-5 - Various zones generated in the FSW process [184] 

Fig. I-6 - Various zones of FSW joint [185] 
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workpiece, and the plastic deformation associated with the movement of the workpiece 

material, commonly referred to as stirring. This localized heating effectively softens the 

material proximate to the tool. The combined rotational and translational motion of the tool 

along the joint leads to the displacement of material from the front to the rear of the pin [2]. 

Numerous studies have explored material flow using markers and etching techniques, with 

findings indicating that the design of the tool significantly influences material flow patterns [2]. 

 

 

 

 

I.2.3 Application of FSW process 

There Friction Stir Welding (FSW) finds applications across various industries (Fig. I-

8), and the following list provides a representative snapshot, acknowledging that new 

applications continue to emerge [1] [2] [5] [6]. 

Aerospace: 

  - Wings 

  - Fuselages 

  - Floor panels 

  - Aircraft landing gear doors 

  - Fuel tanks 

  - SpaceX Falcon 1 and Falcon 9 rockets 

  - NASA Space Shuttle external tanks 

Automotive (Fig. I-8): 

  - Trailer beds 

  - Door panels 

Fig. I-7 - material flow during FSW [5]. 
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  - Center console (smooth design) 

Military: Joining Armor Aluminum Alloys, particularly in Advanced Amphibious Armored 

Vehicles (AAAVs) 

Railway: Roof and side panels, Bodies 

Shipbuilding (Fig. I-8) and Offshore: 

  - Panels for decks, sides, bulkheads, floors, hulls 

  - Superstructures, helipads 

  - Offshore accommodations 

  - Masts, booms 

Computers: iMac in 2012, specifically in joining front and back panels 

Construction: Aluminum bridges, Window frames, Aluminum pipelines and heat exchangers, 

Oil and Gas pipelines 

 

Fig. I-8 - FSW used in automotive, aerospace and shipbuilding industry [6]. 
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I.2.4 Friction Stir Welding Tool 

The friction stir welding tool stands as a pivotal component in this welding technique, 

exerting a profound influence on the quality of the welding zone. Enhanced tool properties 

contribute to improved welding outcomes. Comprising three integral parts -shank, shoulder, 

and pin (i.e., probe)- the friction stir welding tool serves various functions. The shoulder plays 

a multifaceted role, applying pressure on the workpieces and confining the plasticized material 

around the pin. As the shoulder encounters friction with the upper workpiece's surface, it 

generates heat, leading to plastic deformation. 

The primary function of the pin is to soften, plasticize, and stir the materials within the 

stir zone (SZ). Employing friction stir welding with specialized tool designs, shapes, 

dimensions, and materials yields significant improvements in various mechanical and physical 

properties. These enhancements encompass creep resistance, ductility, strength, fatigue 

performance, elimination of casting defects, manipulation of grain microstructure, corrosion 

resistance, and formability [7] [8]. 

1. Tool Types of the Friction Stir Welding Process 

The primary functions of the friction stir welding tool encompass heating the 

workpieces, achieved through the friction between the pin and shoulder with the workpieces, 

inducing plastic deformation of the workpiece metal, and facilitating the flow of material while 

constraining the heat beneath the shoulder. There exist three distinct types of friction stir 

welding tools: fixed, adjustable, and self-reacting, also known as the bobbin tool. 

The fixed pin tool is a singular piece that integrates both the shoulder and the pin. Its 

applicability is limited to welding metals of specific thicknesses due to the fixed pin length. 

Additionally, a backing anvil is required to secure the workpieces. In case of pin breakage or 

wear, the entire tool needs replacement. 

The adjustable tool, in contrast, consists of two independent components—the shoulder 

and the pin. This tool permits the alteration of pin length during the friction stir welding process, 

simplifying pin replacement in case of damage. While the pin and shoulder can be made from 

different materials, the tool's strength may be compromised compared to when both components 

are of the same material. The adjustable tool is versatile, accommodating different thicknesses 

of workpieces, but it also necessitates a backing anvil. 

The self-reacting tool, or bobbin tool, is constructed from three distinct pieces: top 

shoulder, bottom shoulder, and pin. This tool's versatility allows it to handle joints with varying 
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thicknesses, as the pin length can be adjusted between the two shoulders. Unlike the fixed and 

adjustable tools, the bobbin tool can work perpendicular to surfaces, eliminating the need for a 

backing anvil. However, it lacks the capability to be tilted at a specific angle, a feature present 

in fixed and adjustable tools, providing control over the appearance of the welding zone [9]  [10] 

[11] [12]. (Fig. I-9) below illustrates the three types of tools. 

 

I.2.4.1 Shoulder Shapes of Friction Stir Welding 

The design of tool shoulders holds a crucial role in heating the upper surface of 

workpieces through frictional forces. The shoulder contributes a downward forging pressure, 

vital for welding integration and constraining heated material beneath the bottom surface. While 

the outer surface of the shoulder commonly adopts a cylindrical shape, occasionally a conical 

shape is employed. The choice between cylindrical and conical shapes has minimal impact on 

welding quality due to the shallow plunge depth of the shoulder, typically ranging from 1-5% 

of the sheet's thickness. 

A straightforward shoulder design, termed flat, lacks effectiveness in trapping flowing 

materials underneath, resulting in excessive material flash due to flat end shoulder surfaces. In 

contrast, the other end surface adopts a concave design, widely favored in friction stir welding. 

The concave angle, ranging between 6-10º, facilitates material flow control, ease of machining, 

and high-quality welding. This concave shoulder serves as a reservoir for the material stirred 

by the rotating pin. Tilting the tool during the friction stir welding process, typically between 

1-3º against the tool's travel direction, optimizes the advantages of the concave shoulder design. 

This includes the application of compressive forging force on the welding zone, maintaining 

continuity in material storage, hydrostatic pressures, enhancing nugget zone integrity, and 

stirring material around the pin. 

Fig. I-9 - FSW tool types (a) fixed, (b) adjustable and (c) bobbin [8]. 
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Another shoulder design, convex, successfully pushes material away from the pin, 

maintaining contact along the shoulder's end surface. While the smooth surface lacks the ability 

to prevent material displacement, it controls differences in thickness between joined 

workpieces. The characteristics of shear and plastic deformation on shoulder end surfaces 

enhance material mixing, weld quality, and friction. Various shoulder end styles, including 

scrolls, concentric circles, ridges, knurling, grooves, and flat (smooth or featureless), are 

utilized during the friction stir welding process. The scrolled shoulder, featuring a spiral 

channel, aids material flow from the shoulder's edge to the center. Combining the concave 

design with a scrolled feature reduces tool lifting, removes undercut defects, decreases flash, 

and increases frictional heat. Further advantages arise from combining the convex shoulder with 

a scroll, providing greater flexibility, improved mismatch tolerance, and the ability to weld 

complex curvatures and metals with different thicknesses [2] [8] [9] [10] [11] [12]. (Fig. I-10) 

below illustrates the various types of shoulders. 

 

I.2.4.2 Pin Shapes of Friction Stir Welding 

The pin in the friction stir welding process serves several key functions, including 

frictional heating and deformation, cutting materials in front of the tool, damaging workpiece 

edges, and stirring and mixing materials behind the tool. Two distinct end shapes of the pin are 

Fig. I-10 - shoulder outer surfaces, the bottom end surfaces, and the end features [8]. 
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commonly utilized: flat and domed (see Fig. 7). The flat design, being easy to manufacture, is 

the most prevalent in friction stir welding. It can provide high forge force during the plunging 

step, reducing overall forge force and tool wear. On the other hand, the domed design enhances 

the joint root at the bottom of the pin and extends tool life by minimizing stress concentration 

in the joint zone. The benefits of the domed design are maximized when the dome radius at the 

pin end is equal to 75% of the pin diameter. 

In the case of cylindrical pins, they prove useful for joining different metals until the 

thickness reaches 12 mm. Thicker metals require the welding process to operate with high 

rotational and low travel speeds to maintain weld integrity. Tapered pins, generating frictional 

heat, enhance plastic deformation due to their substantial contact area with the workpieces. 

They also produce high hydrostatic pressure in the joint region, crucial for improving nugget 

integrity and materials stirring. However, the features of tapered pins can lead to sharp tool 

wear. 

The outer surface of the pin may have different shapes and features, including threads, 

flat surfaces, or flutes. Although threaded pins are more susceptible to corrosion, they are 

frequently used in the friction stir welding process. Improved void closure, materials stirring, 

and oxide layer breakdown can be achieved through two factors: the material circulating twice 

around the pin before depositing and the threaded pin rotating the materials clockwise, drawing 

them down along the pin surface (see Fig. I-11) [9] [12] [13] [14] [15]. 

Fig. I-11 - some pin shapes and their main features [8]. 



CHAPTER I : FSW Fundamentals and The concept of Pneumati source 

14 

 

 

Tapered pin designs in friction stir welding come in three variants: non-threaded, 

threaded, and threaded with flats. Threaded and threaded with flats pins yield fully consolidated 

welds, while the non-threaded design may result in voids in the welding zone. The presence of 

flats restricts and releases material, enhancing mixing. Increasing the number of flats can raise 

temperature and nugget zone width. Flat-shaped pins can act like cutting edges. Typically, 

cylindrical threaded pins are employed for aluminum alloys with thicknesses exceeding 12 mm 

in butt joints. However, for thicker workpieces, additional features are beneficial to enhance 

material flow and mixing, as well as to reduce friction stir welding loads. 

Critical to the friction stir welding process is the tool design. Tools with high swept rates, 

developed by welding institutes such as Whorl and MX Triflute, play a significant role in 

reducing voids, increasing material stirring and mixing, and dispersing the oxide layer in the 

nugget zone. These tool types, including straight cylindrical, threaded cylindrical, tapered 

cylindrical, and triangular, can achieve a volume reduction of approximately 60-70% (see Table 

I-1). The geometry of the tool is paramount in the friction stir welding process, especially in 

governing material flow and determining the travel rate. 

 

Table I-1 - a selection of tools designed at TWI [8]. 
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I.2.4.3 Tool Dimensions of Friction Stir Welding 

The dimensions of the tool play a crucial role in the friction stir welding process, 

exerting a significant influence on the outcomes and mechanical properties. As a general 

guideline, the diameter of the tool pin should match the thickness of the workpiece, and the 

height of the pin should be slightly less than the thickness. Additionally, the shoulder diameter 

is typically maintained between 3-5 times the diameter of the pin. 

The heat input during the friction stir welding process is influenced by the shoulder 

radius to the third power. This heat input linearly depends on both the rotational speed and the 

downward forge force. In essence, the energy input in the friction stir welding process is 

contingent on the dimensions of the shoulder. The equation below encapsulates these 

considerations, emphasizing that the Z axis of the downward force is a function of the shoulder 

radius. 

 

 
𝑄0 =

4

3
𝜋2µkPω𝑅3 (I-1) 

 

 𝐹𝑓 = µk𝐹𝑛 (I-2) 

   

In the given equation, 𝑄0 symbolizes the net power (unit unspecified), 
4

3
𝜋2 represents a 

constant, µ denotes the dimensionless friction coefficient between the pin, shoulder, and 

workpieces, P stands for pressure measured in megapascals (MPa), R signifies the shoulder 

radius measured in millimeters (mm), ω indicates the rotational speed measured in revolutions 

per minute (rev/min), 𝐹𝑓 represents the frictional force measured in Newtons, and 𝐹𝑛 

corresponds to the normal force measured in Newtons. The shoulder diameter is considered a 

function of the plate's thickness or the pin diameter. This relationship implies that an increase 

in sheet thickness necessitates a greater amount of energy. Consequently, a larger shoulder 

diameter is required to generate the necessary heat. 

I.2.4.4 Tool Materials of Friction Stir Welding 

The selection of the tool material for the friction stir welding (FSW) process is a critical 

consideration, as it significantly influences the quality of the welding joint. Several factors 

contribute to the decision-making process, including the workpiece material, user experience, 
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performance expectations, and tool life. Consequently, the chosen tool material must possess 

specific properties to ensure optimal performance in the FSW process. 

Key properties that a suitable tool material for FSW should exhibit include high 

strength, creep resistance, and dimensional stability. The compressive yield strength at the 

operating temperature should surpass the stresses generated by the forces applied on the tool. 

Thermal fatigue strength is crucial, as it should withstand repeated heating and cooling cycles. 

Additionally, the tool material should not undergo harmful reactions with the workpiece 

material, and its fracture toughness should be high to resist damage during the plunging and 

dwelling process. A low thermal expansion coefficient between the pin and shoulder materials 

helps reduce thermal stresses. The application of a thermal barrier coating can prevent heat from 

moving into the shank part of the tungsten carbide tool. Machinability is essential for ease of 

manufacturing different shapes for each shoulder and pin, and cost-effectiveness is a practical 

consideration. 

Various materials can be used to manufacture FSW tools, each with its own set of 

advantages and disadvantages based on the type of material being welded. Steel tools like H13 

are suitable for welding soft materials such as aluminum. Tungsten carbide with cobalt and 

polycrystalline cubic boron nitride (PCBN) are preferred for hard materials like titanium and 

its alloys. 

Tungsten carbide, in particular, is widely used as a tool material in FSW due to its 

excellent mechanical properties. It offers exceptional toughness and wear resistance at ambient 

temperature, excellent fracture toughness, high hardness reaching 1650 HV, insensitivity to 

sudden changes in temperature and loading, and minimal deformation owing to its chemical 

inertness. 

While tools have been well-developed for materials with low strength like aluminum 

alloys, a cost-effective and long-lasting tool for abrasive materials and high-strength materials 

such as titanium, nickel, and steels remains a challenge. The choice of tool material has a 

profound impact on various joint properties, including microstructure, heat generation, thermal 

conductivity, and thermal stresses of workpieces [2] [9] [10] [11] [12] [15] [16]. 

 

Table I-2 - Tool materials and suitable weld metals [11]. 

Tool Material Suitable weld material 

Tool steels Al alloys, aluminum metal matrix composites (AMCs) and copper alloys 
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WC –Co Aluminum alloys, mild steel 

Ni-Alloys Copper alloys 

WC composite Aluminum alloys, low alloy steel and magnesium alloys, Ti-alloys 

W-alloys Titanium alloys, stainless steel and copper alloys 

PCBN Copper alloys, stainless steels and nickel alloys 

 

 

Table I-3 - Materials joined by friction stir welding using WC tool material [11] 

No Materials used 

1 A3003-H112 Al alloy 15 mm thick & SUS304 (SS) 12 mm thick. 

2 Al. alloy 1060 and titanium alloy Ti–6Al–4V plates 3 mm thick 

3 Plates of SK4 high carbon steel alloy (0.95% C). 2 mm thick 

4 Hyper-eutectoid steel  (0.85mass% C,  AISI-1080), 1.6  mm thick 

5 SAF 2205 duplex stainless steel. 2mm thick 

6 High carbon steel S70C (0.72 wt. % C). 1.6 mm thick 

7 Carbon steels IF steel, S12C and S35C 1.6 mm thick plates 

 

I.2.5 Joint Design of the Friction Stir Welding Process 

During the friction stir welding (FSW) process, butt and lap joints are the most suitable 

types of joints employed. Lap joints, in particular, pose specific challenges and advantages in 

comparison to butt joints. The inherent hardness of lap joints during FSW is attributed to several 

factors. Wider welds are required to bear the loads, and avoiding hooking defects is crucial to 

maximize fatigue strength. Additionally, disrupting the oxides at the workpiece interface in lap 

joints is more challenging. 

Butt joints involve clamping two plates together firmly to prevent any movement of the 

joint. These plates have identical thickness and are positioned on the backing plate. Care must 

be taken to ensure the plates do not shift when the tool is inserted into the butt joint. The tool 

pin plunges and rotates within the butt joint, traveling along the joint line. The direct contact of 

the shoulder with the upper surface of the plates results in the formation of a long welded butt 

joint. 
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In lap joints, two plates are clamped onto the backing plate, and the tool is rotated 

vertically while traveling along the appropriate direction. Special surface preparation is not 

required for each butt and lap joint in the FSW process. Metals can be joined without concerns 

about the condition of the surfaces. Fig. I-12 provides an illustration of different types of joints 

in the FSW process [2]. 

 

 

I.2.6 Advantages and limitations of FSW 

FSW, like other welding technologies, presents both advantages and limitations. Some of the 

key advantages are outlined below: 

I.2.6.1 Advantages 

1. Improved Microstructure: FSW enhances the microstructure by generating fine grains, 

resulting in excellent mechanical properties in the welding zone, including enhanced strength, 

bending, tensile, and fatigue properties compared to other welding processes. Joint efficiency 

can range from 70-96%, and in some cases, it can even reach 100% with shorter joint zones. 

2. Solid-State Joining: FSW enables the joining of similar or dissimilar materials without 

melting, producing a joint in a solid state. This minimizes or eliminates typical defects 

encountered in traditional welding processes, such as porosity, cracking, shrinkage, and 

solidification. 

3. No Need for Shielding Gases or Filler Materials: The FSW process eliminates the need for 

shielding gases, avoiding issues like porosity, spatter, arcs, or fumes. Additionally, no filler 

materials are required, streamlining the welding process. 

Fig. I-12 - joint configurations utilized in friction stir welding: (a) square butt, (b) edge butt, 

(c) T butt joint, (d) lap joint, (e) multiple lap joint, (f) T lap joint, and (g) fillet joint. 
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4. Elimination of Solidification Defects and Weld Distortion: FSW can completely eliminate 

common issues like solidification defects and weld distortion, contributing to the overall quality 

of the welded joints. 

5. Low Power Requirement: FSW requires relatively low power, necessitating only enough 

energy to rotate the tool and apply the force that generates friction heat. 

6. Cost and Time Efficiency: FSW offers cost and time savings, is environmentally-friendly, 

minimizes material wastage, and is energy-efficient. The process is characterized by good 

properties, is pollution-free, and can weld both similar and dissimilar materials that are 

challenging to fusion weld. 

These advantages make friction stir welding an attractive option for various applications, 

especially where the avoidance of melting and the achievement of superior mechanical 

properties are critical considerations [17] [18] [19]. 

I.2.6.2 Limitations: 

1. Joint Type Limitations: Friction stir welding (FSW) has limited flexibility in the types of 

joints that can be welded. 

2. Tool Wear: Welding harder materials can lead to excessive wear on the FSW tool, making 

tool replacement an expensive aspect of the process. 

3. Equipment Weight: FSW machines are typically heavy equipment, limiting their mobility 

and ease of transportation. 

4. Lack of Mobility: FSW equipment lacks mobility, making it challenging to use outside of 

controlled environments that require tight fixation, precision, and temperature control. 

5. Clamping Requirements: The necessity for clamping workpieces to prevent joint movement 

and the application of force limits FSW applications to joints with specific geometries. 

6. Undesired Hole Formation: At the end of the welding process, lifting the tool may result in 

an undesired hole, which is undesirable in many applications. 

7. Temperature Sensitivity: High traverse speeds or low rotation speeds can lead to insufficient 

weld temperatures, preventing materials from accommodating extensive deformation during 

the welding process. 

8. Welding Parameter Sensitivity: Welding parameters such as low forging pressure, short 

friction time, and low friction pressure can result in weak joints with voids. 

9. Kissing Bond Defect: When two workpieces are lightly contacted, forming a "kissing bond," 

defects may occur that are challenging to detect using non-destructive methods. 
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10. Lack of Penetration Defect: Insufficient penetration may occur at the bottom of the weld 

joint if the pin is not long enough. 

11. Hole Initiation: Increased travel speed can lead to hole initiation near the bottom of the weld 

joint due to insufficient material flow. 

12. Processing Temperature: The processing temperature for FSW of different materials varies; 

for example, titanium alloys may require temperatures between 700 to 950 ºC, while for steel, 

it’s 600 to 875 ºC. 

13. Limited Formability: Studying the stability of both the formability and microstructure of 

FSW joints is rare, making forming FSW welds challenging due to limited formability [20] [21] 

[22] [23]. 

I.3. Parameters of FSW 

The Friction Stir Welding (FSW) process is a complex physical phenomenon influenced by 

various interconnected variables that directly or indirectly impact weld quality and performance 

(Table I-4). These variables fall into categories such as tool-related parameters, joint design 

factors, machine (welding) parameters, and other miscellaneous factors. Tool-related 

parameters encompass tool geometry and the material type used. Joint design involves 

considerations such as the type of joint, including butt, lap, or fillet joints. Machine parameters 

include tool rotation speed (ω, rpm), transverse speed (V, mm/min), axial force (insertion 

depth), tool tilt (angle of the spindle), and the offset from the center of the joint. Additional 

factors influencing weld quality include the initial material temperature (pre-heat or cooling) 

and the cooling rate. 

As previously mentioned, the FSW tool serves the dual purposes of heating the workpiece 

and facilitating material movement. The tool's geometry significantly affects heat generation, 

plastic flow, and the uniformity of the weld joint. The shoulder, responsible for generating heat 

through friction, also prevents plasticized material from escaping the workpiece. Key 

considerations for the tool include wear resistance, high fracture toughness, and machinability. 

The shoulder's design, particularly whether it is flat, concave, or convex, and its diameter, plays 

a crucial role. A concave surface tends to create moderate flash and some defects, while a 

convex surface minimizes flash and defects. The pin's critical role in FSW lies in material flow 

and, consequently, welding speeds. Factors influencing the pin include probe length, probe 

shape (tapered, cylindrical, square, triangular, tri-sided, threaded) [2].  
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Table I-4 - FSW Process Parameters [2]  

Process Parameters 

Rotational speed (RPM) 

Welding (traverse) speed (mm/min) 

Pin length (mm) 

Tool shoulder diameter (mm) 

Axial force (kN) 

Tilt Angle 

Pin diameter (mm) 

Shoulder diameter (mm) 

D/d Ratio of Tool 

Tool materials 

Tool profile 

 

Several parameters play a crucial role in the friction stir welding process, influencing the 

quality of the weld (Table I-5). These include: 

1. Rotational Speed (ω, rpm): Direction: Clockwise or counterclockwise. 

2. Travel Speed (v, mm/min): Measured along the line of the welding joint. 

3. Tilt Angle: 

   - Ensures the tool shoulder holds the material by the threaded pin from front to back. 

   - Influences weld appearance and thinning. 

   - Optimal tilt angle is typically between 1 and 3º. 

4. Downward Axial Force: Applied by the machine, the force of the tool shoulder on the 

workpiece. 

Achieving optimal welding in friction stir welding is challenging due to the dependence on 

controlling these four factors. Researchers emphasize the importance of balancing these 

parameters. For instance, low rotational speeds with high axial pressure result in a high rate of 

deformation and shorter weld times. Conversely, high rotational speeds with low axial pressure 

lead to a relatively low rate of deformation. The ideal friction time for welding two sheets 

depends on factors like dimensions, material composition, rotational speed, and friction 

pressure. Inadequate friction time can result in irregular heating distribution and weak bond 

strength, while excessive friction time reduces productivity and promotes coarse grain structure 

[21]. 
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Table I-5 - Main process parameters in friction stir welding [10] [24]. 

Parameters Effects 

Rotational speed Friction heat, “stirring,” oxide layer breaking and mixing of materials 

Tilting angle The appearance of the weld, thinning 

Welding speed Appearance, heat control 

Down force Friction heat, maintaining contact conditions. 

 

I.4. Torque in FSW 

Torque plays a crucial role in FSW process, influencing temperature in the stir zone, 

material state, weld quality, and is fundamental for process control and tool design, along with 

axial force. Researchers have established a strong correlation between torque and temperature, 

emphasizing its significance in understanding the FSW process. Torque is considered in 

equipment selection and process control, and its behavior is instrumental in detecting different 

phases of FSW. 

Several experimental studies have explored torque during FSW (Table I-6), investigating 

its behavior and the influence of key process variables. The primary factors affecting torque 

include welding and rotational speeds, tool geometry, plunging depth, and material properties. 

Observations indicate that torque decreases with higher rotational speeds and increases with 

higher welding speeds. The rotational speed tends to have a more significant impact on torque 

than welding speed. While the influence of welding speed is relatively smaller, the interaction 

of both speeds affects torque behavior. Tool geometry also exhibits a strong influence on torque, 

as evidenced by various experimental studies. 

Various models have been developed to describe torque behavior in the FSW process (Table 

I-7). Khandkar et al. [25] described torque as a function of the interfaces between the tool and 

material, using it to predict temperature distribution. Schmidt et al. [26] considered different 

contact conditions in the tool-material interface to describe torque, incorporating sticking, 

sliding, and partial sticking/sliding conditions. Pew et al. [27] utilized statistical models to 

describe torque behavior for specific aluminum alloys, incorporating tool depth and rotational 

and welding speeds as variables. 
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Table I-6 - Main experimental torque studies in FSW. 

 

 

Table I-7 - Main torque models for FSW reported in the literature. 

Year Author Sheet material Tool material Model type 

2003 Khandkar et al. [25] AA6061-T651 – Analytical 

2004 Schmidt et al. [26] AA2024-T3 Steel Analytical 

2007 Pew et al. [27] AA7075-T7351 H13 Experimental 

  AA5083-H32   

  AA2024-T3   

2009 Arora et al. [36] AA2524 – Numerical 

2010 Cui et al. [31] AA356 H13 Experimental 

2014 Zhang et al. [37] AA6061-T6 – Numerical 

 

I.5. conventional FSW machines and power source 

I.5.1 FSW machines 

Three types of machines are identified in the literature as viable for performing Friction Stir 

Welding (FSW). These include: 

1. Conventional Machine Tools: This category encompasses machines typically used for 

milling operations [38] [39]. They are adapted or repurposed for FSW processes. 

Year Authors Sheet material Tool material 
Welding speed 

(mm/min) 

Rotational 

speed (rpm) 

2005 Yan et al.  [28] AA2524-T351  - 126.6 150 − 800 

2007 Long et al.  [29] AA5083-O 

AA2219-T87 

AA7050-T751 

H13 102 Variable, with 

increment rate: 

1.4 rpm/mm 

2007 Pew et al.  [27] AA7075-T7351 

AA5083-H32 

AA2024-T3 

H13 127 – 279 

127 – 279 

51 – 152 

200 – 800 

200 – 700 

175 – 350 

2010 

 

Upadhyay et al.  

[30] 

AA7050-T7451 Shoulder: H13 

Pin: MP-159 

102 – 612 150 − 1000 

2010 Cui et al.  [31] AA356 H13 28 − 450 63 − 1400 

2012 Leitao et al.  [32] AA5083-H111 – 50 − 700 300 − 1100 

2012 Kumar et al.  [33] AA6082-T6 

AA5083-H112 

H13 80, 120 420, 500 

2013 Su et al.  [34] AA2024 – 40 − 120 600 − 1000 

2017 Quintana and 

Silveira  [35] 

AA5052-H34 H13 100 − 300 600 − 1500 
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2. Dedicated FSW Machines or Custom-Built Machines: Specifically designed machines 

tailored for FSW purposes fall into this category [40]. These machines are constructed with the 

sole intention of facilitating the FSW process efficiently. 

3. Industrial Robots: The use of industrial robots for FSW has been explored, providing an 

automated and flexible approach to welding [41] [42] [43]. Industrial robots are adapted or 

configured to execute FSW operations, offering versatility in handling various joint 

configurations. 

These machine types cater to different needs and preferences, providing options based on the 

specific requirements of the FSW application. 

I.5.1.1 Conventional machine tools 

The Friction Stir Welding (FSW) process shares fundamental operational principles 

with other technological manufacturing processes such as machining, deburring, grinding, and 

drilling. Essentially, these processes involve moving a rotating tool through a workpiece, 

resulting in material displacement within the workpiece. While conventional machine tools like 

milling machines can be adapted for FSW, it's crucial to consider the increased loads generated 

during the FSW process compared to other manufacturing operations [44]. The higher loads 

necessitate strengthening conventional machine tools to enhance their load-bearing capacity 

and stiffness [45] [46]. 

Modifications to conventional machine tools for FSW can occur on various levels, 

including structural, flexibility, decision-making, and sensing aspects [60]. Structural 

modifications involve reinforcing the equipment, such as replacing components like ways, 

guides, rails, motors, and spindles to make it more robust. Flexibility can be increased by 

integrating additional motors that provide extra degrees of freedom to the equipment. Given the 

substantial loads in FSW, many solutions implement force control to prevent equipment 

damage, ensure human safety, and achieve high-quality welds. Decision-making capabilities 

can be enhanced to enable simultaneous movement in multiple directions, and the machine can 

be equipped with various sensors to collect data for embedded control solutions. 

 

Conventional machine tools modified for FSW find popularity due to their widespread 

use in industries for machining purposes, making them readily available and well-understood. 

These modified machines are recommended for prototyping, small series production of various 

workpiece sizes and thicknesses, applications requiring high stiffness, and single- or multi-axis 
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applications. While these machines offer versatility, it's essential to note that they may exhibit 

lower production performance. An example of a modified milling machine for FSW is 

illustrated in Fig. I-2. 

I.5.1.2 Dedicated FSW machines 

Dedicated FSW machines are known for their superior load capacity, stiffness, 

accuracy, and availability compared to other types of FSW equipment [40]. These machines 

come in various configurations, offering different levels of flexibility. Custom-built machines, 

a subset of dedicated FSW machines, are designed specifically to meet unique product 

requirements, such as the fabrication of ship deck components. Requalifying these machines 

for different applications can be challenging in many cases, and their relative cost tends to 

increase with added flexibility. While dedicated FSW machines are relatively expensive, they 

are well-suited for high-series production of identical parts, including long or small workpieces, 

thick or thin workpieces, and applications demanding high stiffness or involving single- or 

multi-axis movements. Custom-built machines may be considered when alternative solutions 

are unavailable or prohibitively expensive. Fig. I-13 provides an example of a dedicated FSW 

machine. 

For welding high-temperature materials like steel, stainless steel, titanium, nickel alloys, 

etc., dedicated FSW machines are particularly recommended due to their robustness and 

structural stiffness, providing the necessary load support. 

There is a growing interest in the development of portable FSW machines, offering the 

potential for applications in remote locations, in-situ repairs, and component additions to large 

structures. Research on FSW tools, mechanisms, and loads has been conducted to facilitate the 

development of portable machines. The main challenges to portability include reducing the 

loads required for FSW and minimizing equipment weight. While there have been studies on 

portable FSW, as of now, there are no commercially available systems. The increasing 

popularity of mobile robots in recent years may contribute to the development of effective 

portable FSW solutions [47] [48]. 
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I.5.1.3 Robotic FSW machines 

A third category of machines introduced in FSW for metals involves robotic machines, 

specifically industrial robots. For several years, the limitations of low load capability (payload) 

and low stiffness in industrial robots hindered their use in FSW applications. However, recent 

advancements have resulted in the development and release of robotic equipment with high 

payloads, capable of performing FSW on materials with thin-to-moderate thickness. Robotic 

machines offer flexibility and process automation, leading to significant improvements in 

productivity. For example, in a workpiece requiring welds on multiple sides, a robotic solution 

allows welding on various sides in a single setup, reducing non-value-added materials handling 

and improving productivity, thereby lowering welding costs. Applications involving 3D 

welding paths have become more attractive and feasible with the use of robotic systems for 

FSW. Many such applications only require an industrial robot with five degrees of freedom 

(DOF), making the use of industrial robots more appealing, as most common robots in the 

market possess five or six DOF. 

Robotic-based solutions are available in two main categories: 

- Articulated arm robots [41] [42] [49] 

Fig. I-13 - dedicated FSW machine - FSW LegioTM  
[54] 
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- Parallel-kinematic robots [50] 

Articulated arm robots exhibit high repeatability and flexibility but lower accuracy, especially 

under high loads. When compared to dedicated FSW machines, articulated robots generally 

offer higher flexibility and decision-making capabilities at a significantly lower cost. However, 

they have relatively low stiffness and moderate load capacity, limiting their application. Despite 

their flexibility and cost-effectiveness, they may have a restricted range of materials for FSW 

due to the high loads required for welding certain materials. As a general guideline, the most 

robust robots can weld up to 6 mm thick aluminum material, with their capability in higher-

melting-point materials being somewhat reduced. Drawbacks include high compliance, leading 

to process stability issues [49] [51] [52]. 

 

 

The use of articulated arm robots is recommended for various applications, including: 

- Relatively thin materials 

- Applications requiring multiple welds that would otherwise need multiple setups 

- Dissimilar-thickness butt welds (tailor-welded blanks), which require both a travel angle and 

a work angle, making robots ideal for flexibility 

- Applications where multi-axis capability is required, involving different tool orientations 

- Higher work volume applications where productivity is crucial. 

Marcotte and Abeele [49] successfully developed a robotic FSW system based on an articulated 

arm robot, reporting the production of aluminum welds with 1D, 2D, and 3D welding paths Fig. 

I-15 illustrates an articulated arm robot capable of performing FSW with 1D, 2D, and 3D 

Fig. I-14 - robotic FSW of a multi welding part 

[186]. 
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welding paths. Additionally, the use of articulated arm robots for friction stir spot welding 

(FSSW), a variant process of FSW, has been reported as feasible and appealing [53]. 

The other basic robotic configuration is the parallel-kinematic robot. This type of robot supports 

higher loads and exhibits significantly higher stiffness than articulated arm robots. However, 

they can be notably more expensive, and their work volume is considerably smaller than that 

of articulated arm robots, along with a restricted range of orientation. A typical example of this 

family of robots is the Tricept [54] [55]. Parallel-kinematic robots are suitable for applications 

where: 

- The work volume of the workpieces is relatively small 

- The workpiece can be welded near or close to the horizontal plane 

- There are higher load or stiffness requirements. 

Welding small, thin, high-temperature materials is also possible with this type of robot. Shi et 

al. [56] developed a 3-PRS (Prismatic, Revolute, and Spherical joint) parallel mechanism to 

perform FSW with 3D welding paths. Table 3 provides a comparative analysis among the 

different machines. 

Fig. I-15 - articulated arm robot performing FSW at the university of Coimbra [54]. 
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Table I-8 bellow presents a comparison between the different types of FSW equipment. 

 

Table I-8 - FSW equipment features [54]. 

Characteristics Equipment     

↓ Milling 

machine 

FSW machine Parallel robot Articulated 

robot 

Flexibility Low Low/medium High High 

Cost Medium High High Low 

Stiffness High High High Low 

Work volume Medium Medium Low High 

Setup time Low High Medium Medium 

Number of programming 

options 

Low Medium High High 

Capacity to produce complex 

welds 

Low Medium High High 

Control type Motion Motion/force Motion Motion 

 

I.5.2 Electricity as a main power source 

The machines examined in this section of the thesis, dedicated to Friction Stir Welding 

(FSW), encompass a spectrum of technologies catering to diverse welding requirements. 

Amidst this diversity, a unifying factor across all these machines is their reliance on various 

forms of electrical power as a fundamental energy source. This reliance on electrical power is 

not merely a coincidental attribute; it reflects a deliberate design choice and is deeply embedded 

in the operational principles of each machine. 

 

In the realm of FSW, the adaptation of conventional machine tools involves the 

modification of milling machines, which inherently rely on electric motors for their rotary and 

linear motions. These modifications include structural enhancements, such as replacing 

components like motors, spindles, guides, and rails, all of which are crucial electrical elements 

contributing to the robustness and efficiency of the machine. Flexibility improvements, 

achieved by integrating additional electric motors for extra degrees of freedom, further 

emphasize the centrality of electrical power in tailoring conventional machines for FSW 

applications. 
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Dedicated FSW machines, renowned for their load capacity and stiffness, are custom-

built to exact specifications, often involving advanced control systems powered by electrical 

energy. The structural and operational enhancements that make these machines superior are 

intricately tied to the use of electrically driven components, ensuring precision and efficiency 

in executing FSW. The reliance on electrical power is particularly evident when these machines 

are employed for welding high-temperature materials like steel, stainless steel, titanium, and 

nickel alloys, where robustness and structural stiffness are essential for withstanding the high 

loads encountered during the process. 

 

Robotic FSW machines, a cutting-edge category, further underscore the pervasive use 

of electrical power in this domain. Whether articulated arm robots with high repeatability but 

lower accuracy, or parallel-kinematic robots with increased load-bearing capabilities, both 

configurations rely heavily on sophisticated electrical systems. These robots, equipped with 

electric motors for movement across multiple axes, showcase the integral role of electrical 

power in achieving the precision and flexibility demanded by FSW processes. The ability to 

execute 3D welding paths and perform automated, complex welding tasks is facilitated by the 

intricate interplay of electrical components within these robotic systems. 

 

In essence, the omnipresence of electrical power as the primary energy source for these 

FSW machines is a testament to the technological landscape's electrification and the inherent 

advantages offered by electrically driven systems. The efficiency, precision, and adaptability 

afforded by electrical power contribute significantly to the advancement and success of Friction 

Stir Welding technologies. As research and development in FSW continue, this reliance on 

electrical power is likely to persist, reflecting a broader trend in the industrial landscape towards 

electrification and automation for enhanced performance and efficiency. 

 

I.6. The concept of Pneumatic source in FSW 

 

Friction stir welding (FSW) machines, whether dedicated, robotic, or milling machines, 

traditionally utilize electrical motors to drive the movement of the FSW tool. These machines, 

categorized as heavy and stationary equipment, contribute to one of the inherent limitations of 

FSW – its lack of portability. Recognizing this drawback, researchers have been fervently 
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exploring solutions to develop a portable FSW machine over the years, as evidenced by various 

studies. Despite these efforts, historical conceptions of portable FSW machines predominantly 

relied on electrical power sources. 

 

A notable departure from this trend emerged in the recent work by Al-Sabur et al [57], 

who introduced a groundbreaking welding system that operates on a pneumatic power source. 

This innovative system is characterized by its compact design, consisting of a fixation table 

with an anvil serving as the backplate for the sheets to be welded, a rotary pneumatic tool, and 

an air compressor as the primary power source for driving the rotary pneumatic tool. This 

departure from traditional electrical power sources represents a significant advancement in 

FSW technology, offering newfound portability and flexibility to the welding process. 

 

The Al-Sabur et al. system addresses the long-standing challenge of FSW machine 

portability, opening avenues for applications in diverse environments and scenarios. This shift 

towards pneumatic power not only reduces the weight and bulkiness associated with traditional 

electrical systems but also facilitates on-site welding in locations where a stable electric power 

supply may be challenging to access. The incorporation of a pneumatic power source in FSW 

machines marks a pivotal step towards overcoming the historical constraints of non-portability, 

underscoring the importance of exploring alternative energy sources to enhance the versatility 

and applicability of friction stir welding technology. 

Fig. I-16 shows the setup proposed by Al Sabur and al. [57]. 

Fig. I-16 - pneumatic FSW setup [57]. 
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I.6.1 potential advantages of a pneumatic source in FSW 

The incorporation of a pneumatic power source into friction stir welding (FSW) 

technology offers a compelling avenue for innovation, unlocking a myriad of potential benefits. 

Notably, this shift holds the promise of ushering in a new era of more compact FSW equipment. 

Air motors, ubiquitous in pneumatic systems, exhibit a distinct advantage in size and weight 

compared to their electric counterparts. This downsizing potential could pave the way for the 

development of highly portable and efficient FSW machines, introducing greater flexibility and 

accessibility across a spectrum of applications. 

 

Furthermore, the adoption of pneumatic power introduces a novel dimension of mobility 

to FSW setups. With the utilization of mobile air compressors, FSW machines gain the ability 

to operate in diverse locations, presenting a level of versatility often unattainable with 

traditional electric-powered systems. This newfound mobility proves particularly advantageous 

in scenarios necessitating on-site welding, where access to a stable power supply is constrained. 

The transition to pneumatic sources also holds the potential to mitigate risks in hazardous 

environments by eliminating dependence on electric power, thereby bolstering safety protocols 

in FSW operations. 

 

Nonetheless, like any pioneering technological advancement, there remain areas that 

necessitate further exploration and optimization. Al-Sabur et al., trailblazers in the integration 

of pneumatic power sources, have identified several gaps warranting attention. One critical 

aspect involves the establishment of clear criteria for selecting pneumatic rotary tools, ensuring 

their alignment with the specific demands of FSW applications. Another area ripe for 

improvement is the identification of criteria for selecting an air compressor suitable for FSW 

operations, taking into account factors such as pressure, volume, and portability. 

 

Additionally, the lack of a well-defined system for fixing or controlling the movement of 

the rotary tool during welding poses a challenge. The movement was previously ensured 

manually, introducing considerable instability and inconsistency to the welding operation. 

Addressing this gap is crucial for attaining precision and control in Friction Stir Welding (FSW) 

processes, ultimately enhancing the overall efficiency and reliability of the technology. In 

summary, although the integration of pneumatic power sources into FSW technology holds 
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immense promise, ongoing research is essential to refine and optimize various aspects, ensuring 

a comprehensive and effective application of this innovative approach in the field of welding 

technology. 

 

Moving on to the thesis, it endeavors to fill a pivotal gap in the current understanding of 

the friction stir welding (FSW) process. The primary goal is to develop a comprehensive 

numerical model capable of predicting the torque requirements inherent in FSW. The model 

intricately crafted harvesting the power of machine learning’s artificial neural networks by 

considering various FSW parameters, places particular emphasis on the rotational speed – a 

user-defined input parameter crucial to the welding process. By integrating rotational speed and 

torque as input and predicted outcome parameters, respectively, the model facilitates the 

calculation of the motor power required for a given FSW scenario. This predictive capability 

becomes instrumental in making well-informed decisions pertaining to the selection of an 

appropriate pneumatic motor for a specific FSW process. 

 

The inclusion of rotational speed as a key input parameter is pivotal, given its significant 

role in influencing torque during the FSW process. The numerical model's capacity to account 

for this parameter, in conjunction with others, provides a holistic understanding of torque 

requirements, offering a more nuanced and accurate prediction. By translating the predicted 

torque into motor power requirements, this model contributes significantly to the optimization 

of the FSW process, aiding in the selection of an optimum pneumatic motor based on the 

specific demands of the welding operation. 

 

In summation, this thesis endeavors to bridge existing gaps in knowledge by presenting 

a numerical model that seamlessly integrates various FSW parameters, with a specific focus on 

rotational speed, to predict torque requirements. The resulting insights empower decision-

makers to make informed choices regarding the selection of pneumatic motors, ultimately 

contributing to the overall efficiency and effectiveness of the FSW process. 

 

I.7. Conclusion 

This chapter has systematically explored the principles and potential of friction stir welding 

(FSW), a unique joining process that utilizes a non-consumable tool to generate frictional heat 

and plastically deform materials without melting. We have critically examined the core 
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elements of FSW, including its operational mechanisms, tool configuration, joint design 

considerations, and its distinct advantages and limitations compared to traditional fusion 

welding methods. 

 

Furthermore, we have analyzed the influence of crucial FSW parameters on the process and 

final joint quality. This analysis highlighted the significance of tool rotational speed, travel 

speed, axial load, and material properties in controlling heat generation, material flow, and 

ultimately, the strength and integrity of the welded joint. 

 

The exploration then delved into the practical aspect of FSW by reviewing conventional 

FSW machines and their dedicated power sources. This section focused on their design 

configurations, operational characteristics, and potential limitations. Notably, the chapter also 

introduced the emerging concept of pneumatic power sources, recognizing their potential to 

offer improved energy efficiency and process control in future FSW applications. 

In conclusion, this chapter has established a comprehensive foundation for understanding 

the fundamentals of FSW. By dissecting the process, its parameters, equipment, and potential 

advancements, we have demystified this transformative technology and equipped readers with 

the necessary knowledge to navigate its intricacies and leverage its vast potential across diverse 

industrial applications. However, further research and development are necessary to optimize 

parameters, expand material compatibility, and explore innovative tool designs to fully unlock 

the capabilities of this dynamic joining technology. 
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Chapter II - METHODOLOGY 

II.1. Introduction 

In the previous chapter, we delved into the intricacies of Friction Stir Welding (FSW), 

elucidating its fundamental principles, machine configurations, and the emerging concept of 

utilizing pneumatic sources for enhanced efficiency. However, amidst the exploration of FSW's 

potential, a critical gap was identified, prompting the need for further investigation and 

intervention, which forms the cornerstone of this thesis. 

 

This chapter marks a pivotal transition towards numerical and parametric methodology, 

serving as the bedrock for our comprehensive study of the FSW phenomenon. Our approach 

integrates advanced techniques from the realm of Machine Learning and Deep Learning, 

namely Artificial Neural Networks (ANN), Random Forest (RF), and Polynomial Regression. 

These sophisticated methodologies are employed to construct predictive models capable of 

forecasting torque in FSW, leveraging ten pivotal input parameters that intricately influence 

the welding process. 

 

Beyond mere prediction, our endeavor extends to a parametric analysis facilitated by the 

innovative Shapley Additive exPlanations framework. This analytical tool allows for the 

classification of each variable's significance in shaping the outcomes of our predictive models. 

Through this elucidation, we gain invaluable insights into the nuanced interplay between input 

parameters and torque output in FSW. 

 

However, the pursuit of optimization transcends mere prediction and analysis. To unearth 

an optimum parameter configuration that minimize energy consumption in FSW operations, 

we employ a metaheuristic algorithm known as the Pelican Optimization Algorithm. This 

iterative optimization technique emulates the adaptive foraging behavior of pelicans, 

strategically navigating the expansive search space to identify parameter sets that yield 

optimum performance. 

 

Central to our methodology is the quest to uncover not only the requisite torque and 

rotational speed (RS) for welding various materials but also to ascertain an optimum pneumatic 
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motor or hand tool suited for each material's specific requirements. This endeavor underscores 

our commitment to bridging theoretical insights with practical implications, thereby facilitating 

informed decision-making in FSW operations. 

 

In this chapter, we provide a comprehensive elucidation of the methodologies employed in 

our thesis, laying the groundwork for a systematic exploration of FSW dynamics and the quest 

for optimized pneumatic welding solutions. 

 

II.2. Background of study methodology 

II.2.1 Deep learning 

Deep learning, an integral facet of machine learning (ML) methodologies, operates within 

complex hierarchical structures aimed at discerning intricate data representations [58]. These 

approaches encompass a spectrum of learning modes, including supervised, semi-supervised, 

and unsupervised paradigms. In supervised learning, the focus lies on classification tasks, 

whereas unsupervised learning endeavors to cluster similar features or characteristics [59]. The 

essence of deep learning lies in its innate capacity to extract features implicitly across multiple 

layers, signifying the profound "depth" of its network architecture (Fig. II-1). Notably, deep 

learning algorithms exhibit versatility, seamlessly adapting to both supervised and 

unsupervised learning scenarios. In unsupervised learning, where unlabeled data typically 

outweighs labeled data, deep learning emerges as particularly advantageous. By discerning 

optimal features, deep learning offers a comprehensive end-to-end solution [60] [59] [61]. 
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II.2.1.1 Classes of deep learning 

II.2.1.1.1 Generative Deep Architectures 

Generative Deep Architectures represent sophisticated neural network structures aimed at 

discerning high-order properties within visible or observed data, facilitating pattern analysis 

and characterization of statistical distributions associated with linked classes and observed 

data. This architecture can transition into a discriminative framework through the application 

of Bayes' rule [60]. 

II.2.1.1.2 Discriminative Deep Architectures 

True to their name, Discriminative Deep Architectures directly empower pattern analysis by 

distinguishing posterior divisions of various classes based solely on observed data. Notably, 

Convolutional Neural Networks (CNNs) serve as a prime example of this architecture type [60]. 

II.2.1.1.3 Hybrid Deep Architectures 

Hybrid Deep Architectures signify a fusion of generative and discriminative deep architectures, 

aiming to discriminate effectively while leveraging the strengths of generative architectures 

through advanced optimization techniques [60]. 

 

Fig. II-1 - graphical representation of neural 

networks [187]. 
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II.2.1.2 Deep learning techniques: 

II.2.1.2.1 Deep Neural Network (DNN) 

The Deep Neural Network (DNN) stands as a fundamental example of deep learning 

algorithms, comprising an artificial neural network (ANN) with numerous input and output 

layers. Distinguished by its depth derived from multiple internal layers, the DNN enables 

implicit feature extraction from data, optimizing the conversion of input into output, regardless 

of linear or nonlinear relationships. Operating as feedforward networks, DNNs transmit data 

from input to output layers without feedback loops, utilizing vast datasets and training 

parameters such as learning rate, size, and initial weights [62]. 

 

II.2.1.2.2 Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are another crucial algorithm within deep learning, 

aligned with the principles of traditional neural networks. Particularly prominent in tasks like 

speech recognition and computer vision, CNNs exhibit depth and operate as feedforward 

networks [60]. 

 

II.2.1.2.3 Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNNs) represent a distinctive class where data can flow 

bidirectionally, finding notable applications in language modeling [60]. 

 

 

 

 

 

 

 

 

 

Fig. II-2 - graphical representation of deep belief network [63]. 
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Table II-1 - Difference between machine learning and deep learning [63] 

Machine learning Deep learning 

Machine learning algorithms enable 

the machine to make decisions 

Deep neural networks work on the 

principal of artificial neural networks 

(ANNs) 

ML algorithms work on less amount 

of data 

Deep learning techniques require a 

large amount of data to learn 

In ML, features need to be identified In DL, the machine learns the features 

automatically from the given data 

The problem solved by machine 

learning algorithms is divided into 

small parts, and then, each part is 

solved individually 

Problems in deep learning are solved 

by neural networks 

 

 

II.2.1.2.4 Deep Belief Network (DBN) 

Deep Belief Network (DBN) stands as a profound component within machine learning (ML), 

representing a deep neural network comprised of multiple layers featuring hidden units. While 

connections exist between layers, no direct connections are present between units within each 

layer. Often referred to as a generative graphical model, DBN is characterized by its 

composition of unsupervised, simple networks such as auto-encoders or restricted Boltzmann 

machines (RBMs). Notably, each sub-network's hidden layer serves as the visible layer for the 

subsequent one [60] [64] (Fig. II-2 and Table II-1). 

II.2.1.3 Metaheuristic algorithms: A methodology of search and optimization for 

parameters 

The term "optimization" denotes the process of determining the best values for various system 

characteristics to complete system design at the lowest possible cost [65] [66]. Real-world 

applications in artificial intelligence and machine learning are typically unconstrained or 

discrete [67]. Conventional optimization methods face challenges in finding optimal solutions 

due to drawbacks like convergence to local optima and an undefined search space [68]. Various 

stochastic methods have been developed to address these limitations and enhance system 

performance, minimizing computation costs [69] [70] [71]. Optimization problems span various 

scientific subjects [72] [73]. 

Stochastic algorithms, such as metaheuristic algorithms, optimize problems randomly, 

benefiting from higher avoidance of local optima compared to conventional optimization 
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algorithms [74] [75]. Metaheuristic algorithms, which guide subordinate heuristics iteratively, 

combine different concepts intelligently for exploring and exploiting the search space [76]. 

They are problem-independent algorithms, seeking approximate optimal solutions to complex 

and nonlinear optimization problems [77]. 

All metaheuristic algorithms consist of two main components, sharing characteristics like the 

search process divided into intensification (exploitation) and diversification (exploration) 

phases. Exploitation involves using local information to generate new, better solutions, often 

leading to high convergence rates but potentially getting trapped in local optima [78]. In 

contrast, exploration produces diverse solutions, avoiding local modes and facilitating global-

scale search but at the cost of slow convergence and increased computational effort [79]. 

A proper equilibrium between exploration and exploitation is crucial for an algorithm's 

performance. Overemphasis on either can result in suboptimal outcomes. To address these 

challenges, reviews and surveys about metaheuristic algorithms have been selected from the 

literature [80]. Hybridizing optimization algorithms can overcome issues like convergence 

speed [80]. 

In the realms of science and engineering, the solution of numerous optimization tasks poses 

considerable challenges, prompting a contemporary focus on the application of metaheuristic 

(MH) algorithms. The spotlight on metaheuristics has intensified in recent years, driven by the 

profound inspiration drawn from nature. The self-organization property observed in natural 

systems, such as the collective intelligence emerging from swarms of birds or colonies of 

insects, serves as a fundamental muse for the development of innovative problem-solving 

approaches [81]. 

Nature, with its inherent self-organizing principles, has demonstrated the remarkable ability of 

swarms or colonies, despite individual entities possessing minimal competence, to achieve 

intricate and essential activities vital for their survival. This realization has fueled the design 

and implementation of numerous MH algorithms that emulate and draw inspiration from these 

natural phenomena. The utilization of metaheuristics, rooted in the collective and adaptive 

behaviors observed in nature, offers a promising avenue for addressing complex optimization 

challenges in diverse scientific and engineering domains [81]. 

II.2.1.4 Working process of metaheuristics 

In this section, we delve into the intricate design process and methodology of Metaheuristic 

Algorithms (MHAs), presenting a comprehensive overview of their general framework. While 
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articulating the fundamental steps or tasks inherent in MH algorithms poses a considerable 

challenge, we strive to accomplish this by examining past advancements and envisioning 

potential future improvements geared towards augmenting their performance. Fig. II-3 

provides a visual representation of the general framework employed by MH algorithms, 

highlighting that, despite employing diverse search methodologies, they largely adhere to a 

common structure. The essential tasks within MH algorithms are outlined below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II.2.1.4.1 Initialization 

The initiation phase, typically executed randomly, significantly influences diversity and 

convergence in algorithm operation. Recognizing the pivotal role of initialization, researchers 

explore methods enhancing population diversity to ensure optimal solutions remain unaffected 

by starting decisions. While uniform distributions are commonly employed, their suitability 

varies across applications. Alternative initialization techniques, such as chaotic initialization, 

sequence-based deterministic initialization, opposition-based learning, and Latin hypercube 

sampling, offer diverse strategies [82]. 

II.2.1.4.2 Parameter Settings 

Initial parameter values exert considerable influence on solution quality, demanding optimal 

sets for performance metrics evaluation. As most metaheuristic algorithms are parameterized, 

Generation of  Population 

Parameters Setting 

Evaluating Objective function 

Returning a solution 

Updating the 

population 
Stop 

Condition 
No 

Yes 

Fig. II-3 - MH algorithms Working process. 
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the process of determining the best parameter set, known as parameter optimization or tuning, 

significantly impacts processing time and result quality. Task 2 encompasses critical 

parameters like the maximum number of iterations, error rate, and population size, emphasizing 

their importance in achieving optimal outcomes. 

II.2.1.4.3 Evaluate Objective Function 

In optimization problems, the objective function is represented by test functions, frequently 

benchmarked in publications to assess metaheuristic algorithm effectiveness. The absence of a 

standard test suite prompts researchers to use diverse test functions, complicating overall 

algorithm robustness evaluation. Utilizing a diverse set of functions and sensitivity parameters, 

such as dimensionality increase, enhances the assessment of newly developed algorithms. 

II.2.1.4.4 Stop Conditions 

A primary challenge in metaheuristics is the lack of effective termination criteria. Many 

algorithms terminate after a predefined number of iterations, potentially leading to premature 

conclusions or unnecessary prolongation. Combining the maximum number of iterations with 

specified tolerance or error rate remains an effective stopping criterion, aiming for a balance 

between computational efficiency and solution optimality. 

II.2.1.4.5 Update and Move Agents 

This task involves two subtasks: update and move. If stop conditions are unmet, the algorithm 

updates and performs the move task. "Update" refers to the meta-operation enabling algorithms 

to progress to the next iteration (I+1), improving results. The move subtask, often performed 

randomly, expands the search space, emphasizing the iterative nature of the update and move 

agent tasks. The repetition of these tasks continues until the set stop criteria are satisfied. 

II.2.1.5 Types of Metaheuristics 

In the literature, metaheuristic (MH) algorithms can be classified based on several criteria: 

population-based versus single-point search, nature-inspired versus non-nature-inspired, static 

objective versus dynamic objective function, and methods employing memory versus 

memoryless methods, as well as the utilization of various neighborhoods versus a single 

neighborhood. Consequently, each algorithm can be categorized into one of the following 

groups, depending on its source of inspiration: 

II.2.1.5.1 Evolutionary-based algorithms (EAs) 
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Evolutionary-based algorithms (EAs) represent the most prevalent and oldest type of 

metaheuristic, drawing inspiration from the principle of survival of the fittest observed in 

natural evolution. EAs initiate the optimization process with randomly generated solutions, 

which, over time and iterations, undergo improvement in fitness value through the creation of 

new solutions and the elimination of less fit ones. These algorithms demonstrate effectiveness 

without relying on specific assumptions about the underlying fitness landscape, often 

successfully identifying optimal or near-optimal solutions. 

II.2.1.5.2 Swarm intelligence-based algorithms (SI) 

Swarm Intelligence (SI) Algorithms constitute the most prominent class of metaheuristics, 

aiming to model the cooperative, adaptive, cognitive, and concerted gregarious behavior 

observed in natural flocks or communities. These communities encompass various entities such 

as schools of fish, flocks of birds, herds of mammals, colonies of insects like bees, and diverse 

flocks of other organism species. Researchers are increasingly drawn to this category of 

metaheuristics, which competes significantly with Evolutionary-based Algorithms (EAs).  

II.2.1.5.3 Natural science-based algorithms (NSAs) 

NSAs replicate specific chemical principles or physical processes found in nature, 

encompassing phenomena like gravity, electrical charges, ion motion, river systems, and more. 

II.2.1.5.4 Human-based algorithms (HBAs) 

Human-Based Algorithms (HBAs) fall within the realm of human behavior, encompassing 

non-physical activities such as thinking and associated societal perceptions. Researchers have 

witnessed a heightened interest in this category of algorithms over the past decade, with this 

enthusiasm continuing to surge. 

 

Table II-2 presents few of the latest developed metaheuristic algorithms 
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Table II-2 - A few recent metaheuristic algorithms 

Algorithm type Algorithm Ref. Inspiration Year 

Swarm Based 

Algorithms 

Beluga whale optimization 

(BWO) 

[83] Behaviors of beluga whales 2022 

Pelican Optimization Algorithm 

(POA) 

[84] Behaviors of Pelicans 2022 

Giant Trevally Optimizer (GTO) [85] Hunting strategies of giant 

trevallies 

2022 

Termite life cycle optimizer 

(TLCO) 

[86] Life cycle of a termite colony 2023 

Nutcracker Optimization 

Algorithm (NOA) 

[87] Intelligent behaviors of 

nutcrackers 

2023 

Natural 

Science-based 

algorithms 

Special Relativity Search (SRS) [88] Particles movement and 

interaction in 

an electromagnetic field 

2022 

Energy Valley Optimizer (EVO) [89] Stability and different modes of 

particle decay 

2023 

Young’s Double-Slit Experiment 

(YDSE) optimizer 

[90] Derived from Young’s double-slit 

experiment 

2023 

Human-based 

algorithms 

War Strategy Optimization 

Algorithm (WSO) 

[91] The strategic positioning of 

military forces during wars 

2022 

 

It is important to highlight that several Metaheuristic Algorithms (MHAs) have emerged in 

recent years, expanding beyond the previously mentioned categories. Some notable examples 

include: 

 

Sports-Inspired Algorithms: These algorithms draw inspiration from sports, replicating the 

procedures, regulations, and dynamics of various sports, with a primary focus on football. 

Examples include the League Championship Algorithm [92], World Cup Optimization [93], and 

Football Game Algorithm [94]. 

 

Music-Based Algorithms: Algorithms in this category find inspiration from music, 

incorporating musical principles into their design. Examples include Melody Search [95] and 

Harmony Search [96]. 
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Plant-Based Algorithms: Simulating the intelligence of plants, algorithms in this category 

mimic plant behaviors. Well-known examples include the Path Planning Algorithm [97], 

Rooted Tree Optimization Algorithm [98], and the Flower Pollination Algorithm [99]. 

 

Mathematics-Based Algorithms: Drawing on the principles of mathematics, algorithms in this 

class leverage mathematical characteristics. Notable metaheuristics in this category include the 

Sine Cosine Algorithm [100] and Arithmetic Optimization Algorithm [101]. 

 

Water-Behavior Algorithms: Inspired by the intelligent movements of water, algorithms based 

on water behavior have been developed. Examples include the Water Flow Algorithm [102] and 

Circular Water Wave Algorithm [103]. 

 

II.2.1.6 Advantages and disadvantages of Metaheuristics: 

Metaheuristic algorithms (MHAs) have gained prominence in stochastic optimization, 

showcasing promising performances and addressing various problems. The advantages of 

MHAs include their ease of implementation, applicability across diverse fields, ability to 

handle complex problems within reasonable timeframes, flexibility in population size, and the 

emergence of global behavior from simple individuals at the local level. 

 

II.2.1.6.1 Advantages of Metaheuristics 

Metaheuristic algorithms offer several advantages that contribute to their widespread 

application in various domains: 

1. Ease of Implementation: Metaheuristics are known for their simplicity in implementation. 

They provide a practical and straightforward approach, making them accessible even without 

prior extensive knowledge or ground truth information. 

2. Versatility Across Fields: MH algorithms demonstrate versatility, proving effective in 

addressing a wide array of problems across different fields. Their adaptability allows 

researchers and practitioners to apply them to diverse challenges, ranging from engineering 

and optimization to business and science. 

3. Efficient Problem Solving: A significant advantage lies in the ability of metaheuristic 

algorithms to solve complex problems within reasonable timeframes. This efficiency is 
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particularly crucial in scenarios where exact algorithms might struggle due to time constraints, 

providing practical solutions in a timely manner. 

4. Flexible Population Size: The flexibility in adjusting the population size is a fundamental 

aspect of MH algorithms. Unlike some optimization techniques, metaheuristics are not overly 

dependent on specific population sizes. This adaptability allows for effective control 

mechanisms, ensuring optimal performance without strict population constraints. 

5. Emergence of Global Behavior: One of the intriguing features of metaheuristics is their 

capacity to generate global behavior through interactions among relatively simple individuals 

operating independently at the local level. This emergent behavior contributes to the 

effectiveness of metaheuristic algorithms in finding optimal or near-optimal solutions. 

In summary, the advantages of metaheuristics encompass ease of implementation, versatility, 

efficient problem-solving capabilities, flexibility in population size, and the emergence of 

global behavior from local interactions. These attributes make metaheuristic algorithms 

valuable tools for addressing a diverse range of optimization challenges. 

 

II.2.1.6.2 Disadvantages 

Challenges in Solving Large-Scale Optimization Problems: When addressing large-scale 

optimization problems, the evaluation of the fitness function can pose a substantial 

computational bottleneck, especially when the function's complexity is high. This bottleneck 

becomes a critical consideration in optimizing the efficiency of metaheuristic algorithms. 

Risk of Premature Convergence in Decentralized MH Algorithms: Metaheuristic (MH) 

algorithms, lacking centralized control, face the inherent risk of becoming stuck or prematurely 

converging to a local optimum. To overcome this challenge, the development of adaptive 

mechanisms becomes imperative. These mechanisms ensure a continuous balance between 

exploration and exploitation within the search space, safeguarding against premature 

convergence and enhancing the robustness of MH algorithms. 

Time-Consuming Nature of MH Algorithms: Metaheuristic algorithms, known for their 

versatility, tend to be time-consuming techniques. Their efficiency is notably influenced by 

factors such as the dimensionality of the problem and the required number of iterations. 

Addressing these considerations becomes crucial, particularly in scenarios where 

computational resources are constrained or where time efficiency is a critical factor. 
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Lack of Standardized Structures for Algorithm Comparison: A notable limitation in the field is 

the absence of uniform structures or templates for well-known algorithms like PSO, FA, and 

GWA. This absence hinders the systematic comparison of newly introduced algorithms. To 

address this gap, there is a need for standardized frameworks or templates that facilitate a more 

comprehensive and transparent evaluation of the relative strengths and weaknesses of different 

algorithms. This would enable a more informed selection of algorithms based on specific 

optimization requirements. 

 

II.3. Methodology specifics 

II.3.1 Artificial Neural Network 

Artificial Neural Networks (ANNs) are a class of machine learning algorithms inspired by the 

structure and function of biological neural networks in the human brain. In this section, we 

provide an overview of ANNs, including their architecture, training process, and applications 

in regression and classification tasks. 

 

II.3.1.1 Architecture of ANNs 

ANNs consist of interconnected nodes organized into layers: an input layer, one or more hidden 

layers, and an output layer [104]. Each node (neuron) in the network processes input data using 

an activation function, transforming the input into an output signal [104]. The connections 

between nodes are characterized by weights, which are adjusted during the training process to 

optimize model performance [104]. 

 

II.3.1.2 Training Process 

   - ANNs are trained using an iterative optimization algorithm, typically gradient descent, to 

minimize a predefined loss function that measures the difference between predicted and actual 

outputs. During training, the model updates its weights using backpropagation, a technique that 

calculates the gradient of the loss function with respect to each weight and adjusts the weights 

accordingly to reduce prediction errors [105]. 
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II.3.1.3 Regression with Artificial Neural Networks 

   In regression tasks, ANNs are trained to predict continuous output values based on input 

features. The output layer typically consists of a single node, and the activation function used 

in this layer depends on the nature of the prediction task (e.g., linear activation for unbounded 

predictions or sigmoid activation for bounded predictions) [105]. 

 

II.3.1.4 Classification with Artificial Neural Networks 

   - In classification tasks, ANNs are trained to assign input data to predefined classes or 

categories. The output layer usually employs a softmax activation function for multiclass 

classification or a sigmoid activation function for binary classification, producing probability 

distributions over the classes [105]. 

 

II.3.1.5 Advantages of Artificial Neural Networks 

   - Flexibility: ANNs can model complex, nonlinear relationships between input and output 

variables, making them suitable for a wide range of tasks. Scalability, ANNs can scale to handle 

large datasets with thousands or millions of examples, given sufficient computational 

resources. Feature Learning, ANNs can automatically learn hierarchical representations of 

features from raw data, reducing the need for manual feature engineering [106]. 

 

II.3.2 Random Forest Algorithm 

 

The Random Forest algorithm is a powerful ensemble learning technique commonly used for 

both classification and regression tasks. It belongs to the family of decision tree-based 

algorithms and is renowned for its robustness, scalability, and ability to handle high-

dimensional datasets with complex interactions. This section provides an in-depth overview of 

the Random Forest algorithm, covering its key components, working principles, and 

implementation steps. 

 

II.3.2.1 Decision trees 

   - At the core of the Random Forest algorithm lie decision trees, which are hierarchical 

structures comprising nodes representing decision rules based on input features. Each decision 
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tree recursively partitions the feature space into regions, aiming to minimize impurity or 

maximize information gain at each split [107]. 

 

II.3.2.2 Ensemble Learning 

   - Random Forest operates on the principle of ensemble learning, where multiple decision 

trees are trained independently on random subsets of the training data. Each decision tree learns 

a different aspect of the data, capturing unique patterns and relationships [107]. 

 

II.3.2.3 Random Feature Selection 

   - During the construction of each decision tree, a random subset of input features is selected 

at each split point. This randomness introduces diversity among the trees, reducing the risk of 

overfitting and enhancing the model's generalization performance [107]. 

 

II.3.2.4 Bootstrapping 

   - Random Forest employs bootstrapping, a resampling technique where multiple bootstrap 

samples (random subsets of the training data with replacement) are generated. Each decision 

tree is trained on a different bootstrap sample, ensuring diversity in the training process [107]. 

 

II.3.2.5 Aggregation 

   - Once all decision trees are trained, predictions are made by aggregating the individual 

predictions of each tree. For regression tasks, the final prediction is typically the mean or 

median of the predictions from all trees in the forest. For classification tasks, the majority class 

prediction (for binary classification) or the class with the highest probability (for multiclass 

classification) is considered [107]. 

 

II.3.2.6 Hyperparameters 

   - Random Forest offers several hyperparameters that can be tuned to optimize model 

performance, including the number of trees in the forest (n_estimators), the maximum depth of 

each tree (max_depth), the minimum number of samples required to split a node 
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(min_samples_split), and the maximum number of features considered for splitting 

(max_features) [107]. 

 

II.3.2.7 Out-of-Bag (OOB) Error 

   - Random Forest utilizes the out-of-bag (OOB) error estimate as an internal validation metric. 

During training, each decision tree is evaluated on the data points not included in its 

corresponding bootstrap sample. The OOB error is then computed as the average error across 

all trees, providing an unbiased estimate of the model's performance [108]. 

 

II.3.2.8 Feature Importance 

   - Random Forest calculates feature importance scores based on how much each feature 

contributes to reducing impurity or increasing information gain across all decision trees. These 

scores can be used to identify the most influential features in predicting the target variable. 

 

II.3.3 Polynomial regression 

 

Polynomial regression is a type of linear regression model that extends the relationship between 

the independent variable 𝑥 and the dependent variable 𝑦 by incorporating polynomial terms. 

This section provides a detailed overview of polynomial regression, including its underlying 

principles, advantages, limitations, and implementation steps. 

 

II.3.3.1 Polynomial Regression Model 

   - Polynomial regression assumes that the relationship between the independent variable 𝑥 

and the dependent variable 𝑦 follows a polynomial function of degree 𝑛, given by: 

 

 

 

𝑦 = 𝛽0 +  𝛽1𝑥 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 +  𝜀 (II-1) 

𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑛 are the coefficients of the polynomial terms, and 𝜀 represents the error term. 
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II.3.3.2 Working Principle 

   - Polynomial regression fits a curve (polynomial function) to the data points by minimizing 

the sum of squared differences between the observed and predicted values. The goal is to find 

the optimal coefficients that best describe the relationship between 𝑥 and 𝑦. 

 

II.3.3.3 Advantages 

Flexibility, Polynomial regression can capture nonlinear relationships between variables, 

making it suitable for modeling complex data patterns. Interpretability, The coefficients of 

polynomial terms provide insights into the direction and magnitude of the relationship between 

𝑥 and 𝑦. Ease of Implementation, Polynomial regression can be implemented using standard 

linear regression techniques, requiring minimal additional preprocessing. 

 

II.3.3.4 Limitations 

Overfitting, As the degree of the polynomial increases, the model may become overly complex 

and prone to overfitting, especially with limited data. Extrapolation, Polynomial regression 

may not generalize well outside the range of the observed data, leading to unreliable predictions 

in extrapolated regions. 

 

II.3.3.5 Hyperparameters 

   - The main hyperparameter in polynomial regression is the degree of the polynomial 𝑛. 

Higher degrees allow the model to capture more complex relationships but increase the risk of 

overfitting. 

II.3.4 Shapley Additive Explanations (SHAP): Understanding Model 

Predictions 

 

II.3.4.1 Overview of SHAP 

SHAP is an interpreting model based on game theory [109] and local explanations [110]; it offers 

a means to estimate the contribution of each feature. Assuming an ANN model where a group 

N (with n features) is used to predict an output (N). In SHAP, the contribution of each feature 

(φi is the contribution of feature i) on the model output v(N) is allocated based on their marginal 
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contribution [111]. Based on several axioms to help allocate the contribution of each feature, 

shapely values are determined through: 

 

 

 

 

𝜑𝑖 =  ∑
|𝑆|! (𝑛 − |𝑆| − 1)! 

𝑛!
[𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)]

𝑆⊆𝑁{𝑖}

 (II-2) 

 

A linear function of binary features g is defined based on the following additive feature 

attribution method: 

 

 

 
𝑔(𝑧′) = 𝜑0 + ∑ 𝜑𝑖𝑧𝑖

′

𝑀

𝑖=1

 (II-3) 

 

Where  𝑧′ ∈ M, equals 1 when a feature is observed; otherwise, it equals 0, and M is the number 

of input features [112]. 

 

II.3.4.2 Working Principle 

SHAP values quantify the marginal contribution of each feature to the difference between the 

actual prediction and the expected prediction (baseline). By considering all possible 

combinations of features and their permutations, SHAP values ensure fairness and consistency 

in attributing credit to each feature [113]. 

 

II.3.4.3 Interpretability 

Positive SHAP values indicate features that contribute to increasing the model's prediction, 

while negative values suggest features that push the prediction towards lower values. The 

magnitude of SHAP values reflects the relative importance of each feature, allowing for a 

nuanced understanding of feature impact [113]. 

 

II.3.4.4 Advantages 

Individual Explanations: SHAP provides interpretable explanations for each prediction, 

enabling users to understand the model's decision-making process on a case-by-case basis.  
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Global Insights, Aggregating SHAP values across multiple predictions reveals overarching 

trends and patterns in feature importance, offering valuable insights into model behavior. 

Model-Agnostic, SHAP is compatible with a wide range of machine learning models, including 

tree-based models, linear models, neural networks, and more [113]. 

II.3.5 Pelican Optimization Algorithm (POA): Harnessing Nature's Wisdom for 

Optimization 

 

The Pelican Optimization Algorithm (POA) is a metaheuristic optimization algorithm 

inspired by the foraging behavior of pelicans. In this section, we delve into the key concepts, 

working principles, and applications of the POA in solving optimization problems. 

 

II.3.5.1 Concept and Inspiration 

 

The POA draws inspiration from the foraging behavior of pelicans, which exhibit 

efficient hunting strategies to locate prey in a vast and dynamic environment [84]. Pelicans 

employ a combination of exploration and exploitation strategies to search for food, adapting 

their movements based on environmental cues and the availability of resources. Fig. II-4 Shows 

the flowchart of the POA. 
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II.3.5.2 Working Principles 

   - The POA simulates the foraging behavior of pelicans through a population-based 

optimization approach. The algorithm maintains a population of candidate solutions (pelicans) 

Fig. II-4 – Flowchart of Pelican Optimization Algorithm [84] 
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that traverse the search space to find optimal solutions. Pelicans explore the search space 

through random movements and exploit promising regions based on the quality of solutions 

encountered [84]. 

II.3.5.3 Exploration Phase 

   - During the exploration phase, pelicans exhibit random movements across the search space, 

aiming to discover new regions with potentially better solutions. Pelicans explore the search 

space using stochastic methods such as random walks or perturbations to avoid getting trapped 

in local optima [84]. 

 

II.3.5.4 Exploitation Phase 

   - In the exploitation phase, pelicans focus on refining their search around promising regions 

identified during exploration. Pelicans adjust their movements based on the quality of solutions 

encountered, gravitating towards regions with higher fitness values [84]. 

 

II.3.5.5 Adaptive Behavior 

   - The POA incorporates adaptive mechanisms to balance exploration and exploitation 

throughout the optimization process. Pelicans dynamically adjust their exploration and 

exploitation rates based on the convergence behavior of the algorithm and the diversity of 

solutions in the population [84]. 

 

II.3.5.6 Applications of the Pelican Optimization Algorithm 

   - The POA has been successfully applied to a wide range of optimization problems, including 

engineering design [114], scheduling, financial portfolio optimization, and image processing. 

Its ability to efficiently explore complex search spaces and identify high-quality solutions 

makes it particularly well-suited for optimization tasks with nonlinear, multimodal, or high-

dimensional objective functions [84]. 

 

II.3.5.7 Advantages of the Pelican Optimization Algorithm 

   - Versatility: The POA can be adapted to different optimization problems by customizing its 

parameters and operators [115] [116] [117]. 

   - Robustness: The algorithm's population-based approach and adaptive behavior enable it to 

handle noisy or uncertain objective functions. 
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   - Efficiency: The POA often converges to near-optimal solutions with relatively few 

iterations, making it computationally efficient for large-scale optimization tasks. 

 

II.4. Some applications of Machine Learning, Deep Learning, and 

metaheuristics in FSW 

 

Table II-3 provides a comprehensive overview of the multifaceted applications of Machine 

learning, deep learning, and metaheuristic algorithms. This meticulously organized table 

delineates various research papers, offering insights into the year of publication, the materials 

subjected to welding, the input parameters considered, the resultant output findings, and the 

accuracy achieved through the methodologies employed. The breadth of applications 

showcased in this table underscores the versatility of these methodologies, spanning across 

diverse domains such as modeling, prediction, and optimization of parameters. Through these 

methodologies, researchers have explored and addressed a myriad of challenges, thereby 

advancing the efficacy and precision of welding processes in various industrial and academic 

contexts. 
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Table II-3 - Some of the Deep learning & metaheuristics used with FSW technology [118] 

 
No Ref Implemen

tation 

Inputs Outputs Material type Target Accuracy 

rate (%) 

Applied 

method/s 

1 [119] Similar Plastic strain, strain rate, and 

temperature 

Microstructure AA6082 T6 Modeling 

prediction 

0.72 ANN 

2 [120] Similar Weld speed, tool rotation speed Tensile strength, yield strength, 

elongation, hardness, hardness of 

heat affected zone 

Hot rolled 

aluminim 

Modeling 

prediction 

98 ANN 

3 [121] Similar Plastic strain, strain rate, and 

temperature 

Microstructure AA7075-T6 Modeling 

prediction 

Less %50 

than 

analytical 

method 

ANN 

4 [122]   Rotational speed, penetration depth, 

dwell time 

Max. tensile force, plunging load, 

process time 

AA6061-T6 Modeling 

prediction 

optimization 

N/A ANN 

GA 

5 [123] Similar Tool rotational speed, welding speed Ultimate tensile strength, yield 

stress, percentage elongation, 

hardness (HAZ), hardness (weld 

mat) 

AA1080 Modeling 

prediction 

optimization 

99 ANN 

GA 

6 [124]   Rotational speed and welding speed Residual stress N/A Optimization N/A NSGA-II 

7 [125] Similar Plastic strain, strain rate, and 

temperature 

Microstructure, microhardness Ti-6Al-4V Modeling 

prediction 

N/A ANN 

8 [126] Similar Tool type, tool probe diameter and 

shoulder flat surfaces 

Weld strength, weld cross-section 

area, average grain size of weld and 

average grain size of TMAZ 

Al alloy Modeling 

prediction 

0,76(ANN) 

0,923(FL) 

ANN 

fuzzy logic 

9 [127] Dissimilar Rotational and traverse speeds Tensile strength Al-Mg and 

CuZn34 

Modeling 

prediction 

97 ANN 
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10 [128]   CSRR and contact gap conductance 

parameters a and b 

CSRR and contact gap conductance 

parameters a and b 

AA7449 Modeling 

prediction 

N/A ANN 

11 [129] Dissimilar Rotational speed, traverse speed Tensile shear force, hardness AA7075-O 

and AA5083-

O 

Modeling 

prediction 

optimization 

98 ANN 

PSO 

12 [130] Similar Rotational speed, feed rate, 

longitudinal position and thickness 

percentage 

Microhardness AZ31 

magnesium 

Modeling 

prediction 

96 ANN 

13 [131] Similar Acoustic emission signals Tool profile, tool rotation speed, 

travel speed, tensile strength 

AA1050H24 Signal processing 

prediction 

99 Wavelet 

ANN 

14 [132] Similar Number of passes, tool rotation 

speed, tool traverse speed, addition of 

nanosized Al2O3 powder 

Microhardness Mild steel Modeling 

prediction 

N/A ANN 

15 [133] Dissimilar Rotational speed, translational speed, 

axial load, tool geometry 

Tensile strength AA6061 and 

AZ61 

Modeling 

prediction 

100 ANN 

16 [134] Similar Rotational speed of the tool, welding 

speed, axial force, shoulder diameter, 

pin diameter, tool hardness 

Yield strength, tensile strength, 

notch-tensile strength and hardness 

of welding zon 

AA 7075-T6 Modeling 

prediction 

0.99 ANN 

17 [135] Dissimilar Tool plunge rate, Tool rotation speed, 

preheating time 

Plunging forces, torques, 

temperatures, shear resistance 

Polycarbonate 

sheets 

Modeling 

prediction 

95 ANN 

18 [136] Similar Pin diameter and shoulder diameter Heat-affected zone, thermal and 

strain values on weld zone 

AA5083 Modeling 

prediction 

98 ANN 

19 [137] Similar Tool rotational speed, welding speed Tensile strength, hardness and 

elongation 

Al Alloy  Prediction 

optimization 

97 Fuzzy 

ABC 

ICA 

20 [138] Similar Base metal, tapered cylindirical pin, 

triangular pin 

Microhardness AA6061 Modeling 

prediction 

84.79 ANN 



CHAPTER II : Numerical and parametric study via Deep Learning and metaheuristic algorithms 

60 

 

21 [139] Similar Rotational speed, translational speed, 

maximum temperature and the slope 

of the heating curve, p (mm) 

Microhardness and ultimate tensile 

strength 

AA5754 Modeling 

prediction 

96 ANN 

22 [140] Dissimilar Tool pin profile, rotational speed, 

welding speed and axial force 

Tensile strength AA6351-

AA5083 

Modeling 

prediction 

95 ANN 

23 [141] Dissimilar Tool rotational speed, welding speed, 

shoulder diameter and pin diameter 

Tensile strength, microhardness and 

grain size 

AA5083-O-

AA6063-T6 

Modeling 

prediction 

optimization 

98 ANN 

GA 

24 [142] Similar Spindle speed, plunge force, welding 

speed and empirical force 

Ultimate tensile strength AA2219-T87 Modeling 

prediction 

93 ANN 

ANFIS 

25 [143] Similar Rotational speed, translational speed, 

shoulder diameter 

Intergranular corro- sion 

susceptibility 

AA5083 Modeling 

prediction 

N/A ANN 

26 [144] Similar/Di

similar 

Material type, tool traverse speed, 

tool rotation spedd 

Tensile strength Al7075-O and 

Al7075-T6 

Modeling 

prediction 

97 ANN 

27 [145] Similar Dispersion, asymmetry and excess Tensile strength AA1100 Modeling 

prediction 

3,08 

0,53(AAP

E) 

ANN 

SVM 

28 [146] Dissimilar Tool rotational speed, tool traverse 

speed and axial force 

Tensile Strenght, yield strength, 

elongation 

AA6061-T6 

and AA6351-

T6 

Prediction 

optimization 

97 ABC 

29 [147] Similar Process parameters and extracted 

signal features 

Tensile strength, yield strength AA1100 Signal processing 

prediction 

94 Wavelet 

ANN 

30 [148] Similar Reinforcing particles type, rotational 

speed, traverse speed 

Axial force, hardness, ultimate 

tensile strength 

A356 cast 

alloy 

Modeling 

optimization 

N/A ANN 

NSGA-II 

31 [149] Similar Rotational speed, traverse speed Silicon particle size, hardness, axial 

force, tensile strength 

A356 cast 

alloy 

Modeling 

optimization 

N/A ANN 

NSGA-II 

32 [150] Similar Tools, tool rotation, tilt angle, 

welding speed 

Tensile strength, impact strength AA6082-T6 Modeling 

prediction 

optimization 

N/A ANN 

GRA 
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33 [151] Similar  Plunge depth, tool rotational speed, 

welding speed, tool geometry, 

shoulder diameter, pin diameter, tool 

pin length and dwell time 

Ultimate tensile strength, yield 

stress, percentage elongation, 

bending angle and hardness 

AA1100 Modeling 

prediction 

optimization 

93 ANN 

GA 

DE 

34 [152] Similar Tool rotational speed, tool travel 

speed and tool tilt angle 

Tensile strength, microhardness and 

corrosion resistance 

AA2219  Modeling 

prediction 

optimization 

99 ANN 

GA 

35 [153] Similar Feed rate, EFI, rotational speed Welding quality  AA-2219-T87 Prediction 

filtering 

optimization 

100 kNN 

fuzzy-kNN 

ABC 

36 [154] Similar Tool rotation speed, the plunge depth, 

and the stirring time 

Lap-shear fracture load High-density 

polyethylene 

(HDPE) 

Modeling 

prediction 

99.01 ANN 

37 [155] Similar Tool rotation speed, welding speed, 

shoulder diameter and pin diameter 

Tensile strength AA1100 Modeling 

prediction 

99 ANN 

38 [156] Similar Tool rotation speed, welding speed, 

shoulder diameter and pin diameter 

Tensile strength AA1100 Modeling 

prediction 

%-28 max. 

error 

ANN 

39 [157] Dissimilar Tool rotational speed, welding speed, 

axial force and the tool pin profile 

Wear rate AA6061 T6-

AA5083-0 

Modeling 

prediction 

95 ANN 

40 [158] Dissimilar Governing parameter, measurement 

datas 

Tensile strength AA6061-T651 Modeling 

prediction 

100 SVM 

41 [159] Similar Rotational speed, welding speed, 

rotational speed to welding speed 

ratio and processing time 

Vertical force AZ31 Modeling 

prediction 

0,9918 

0,9449 (R) 

ANN 

SVM 

42 [160] Similar Pin profile, tool angle, rotational 

speed, weld speed 

Horizontal force, vertical force, 

grain size, temperature, tensile 

strength, hardness, joint thickness, 

elongation 

AA1100 Modeling 

optimization 

N/A ANN 

NSGA-II 
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43 [161] Similar Rotational speed, groove width, 

traverse speed, type of ceramic 

particle 

Wear rate AA6082 Modeling 

prediction 

95 ANN 

44 [162] Similar Forces and accelerations in three 

spatial directions, spindle torque, and 

temperatures for tool shoulder and 

tool probe 

Welding quality EN AW-6082 

T6 

Modeling 

prediction 

99.1 ANN 

45 [163] Similar Rotational speed, welding speed Tensile strength AA6061-T6 Modeling 

prediction 

N/A ANN 

46 [164] Similar Tool parameters Ultimate tensile strength, yield 

stress, percentage elongation, 

bending angle and hardness 

AA1100 Modeling 

prediction 

optimization 

99 ANN 

PSO 

GA 

DE 

47 [165] Dissimilar Rotating velocity, welding speed, Zn 

interlayer thickness, ultrasound 

power 

Tensile shear load      AA7075-T6 

AZ31BMg 

Modeling 

prediction 

optimization 

90 ANN 

GWOA 

48 [166] Similar Shoulder diameter, rotational speed, 

traverse speed 

Ultimate tensile strength, 

elongation, impact strength 

AA6082-T6  Modeling 

Prediction 

optimization 

95 ANN 

NSGA-II 

FFO 

PSO 
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II.5. Conclusion 

 

In conclusion, the methodology chapter serves as the linchpin of our research endeavor, 

delineating a systematic framework for the comprehensive study of Friction Stir Welding 

(FSW) dynamics and the integration of pneumatic sources for enhanced operational efficiency. 

Through the amalgamation of advanced techniques from the realms of Machine Learning, Deep 

Learning, and Metaheuristic Optimization, our methodology embodies a multifaceted approach 

aimed at unraveling the intricacies of FSW processes. 

 

The utilization of Artificial Neural Networks (ANN), Random Forest (RF), and Polynomial 

Regression techniques enables us to construct predictive models capable of forecasting torque 

in FSW, leveraging a comprehensive set of input parameters. These models lay the foundation 

for informed decision-making and process optimization, empowering practitioners to anticipate 

and mitigate potential challenges in FSW operations. 

 

Furthermore, the application of the Shapley Additive exPlanations framework enriches our 

understanding of the underlying factors influencing torque output in FSW. By elucidating the 

relative importance of each input parameter, this analytical tool provides valuable insights into 

the complex interplay between process variables and welding outcomes. 

 

However, the true essence of our methodology lies in its pursuit of optimization. Through the 

Pelican Optimization Algorithm, we navigate the vast parameter space inherent in FSW 

operations, systematically identifying parameter sets that minimize energy consumption while 

maximizing welding efficiency. This iterative optimization process mirrors the adaptive 

foraging behavior of pelicans, ensuring the exploration of diverse solution spaces and the 

identification of optimal configurations tailored to specific material requirements. 

 

In essence, the methodology chapter lays the groundwork for a comprehensive exploration of 

FSW dynamics and the integration of pneumatic sources, underscoring our commitment to 

bridging theoretical insights with practical applications. By leveraging cutting-edge techniques 

and innovative methodologies, our research endeavors to propel FSW technology into new 

frontiers, unlocking unprecedented efficiency, precision, and operational excellence in material 

joining processes. 
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Chapter III - Modeling and parametric importance Analysis of 

torque in FSW 

III.1. Introduction 

This chapter delves deeply into the development of artificial neural network (ANN), random 

forest (RF), and polynomial regression (PR) models aimed at predicting torque during friction 

stir welding (FSW), particularly for a variety of materials, the majority of which are aluminum 

alloys. 

 

The predictive capability of these models hinges on ten carefully selected input parameters: AS 

TS, RS TS, L0, R1, R2, R3, L1, Alpha, WS, and RS. Parametric studies are conducted to assess 

and rank the importance of each parameter in terms of its impact on torque predictability within 

the developed models. Performance evaluation metrics such as mean squared error (MSE), 

mean absolute error (MAE), and mean absolute percentage error (MAPE) are utilized for 

comparative analysis. 

 

III.2. Materials and Methods 

III.2.1 Experimental studies 

The current study was built based on data from 287 experiments conducted in 21 previous 

studies for aluminum alloys, as shown in Table 1. The study included the most used categories 

in FSW studies, which are AA1xxx, AA2xxx, AA5xxx, AA6xxx, and AA7xxx alloys with 

different heat treatment ranges. 

Notably, the data pool exhibited a mixed nature, with numeric data complemented by values 

extracted from graphical representations. The dataset contains experiments on similar and 

dissimilar plates. All pins are either cylindrical or conical in shape. A type of correlation was 

used to overcome the lack of pin length in several studies. A distinctive feature of the dataset 

was the replacement of pin-related attributes. The dataset's summary statistics in Table 2 offer 

insights into the dataset's distribution and central tendencies, where T is torque, RS is the 

rotation speed of the tool, and WS is velocity. R1, R2, and R3 are the radius of the shoulder, 

pin base, and pin tip, respectively. L0 is plate thickness, L1 is the tool's pin length, and Alpha 
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represents the tilt angle. The AS TS and RS TS are the tensile strengths of the advancing and 

retreating plate sides, respectively. 

 

 

Table III-1 - Welding configurations of the examined studies [167] 

SID Advancing side Retreating Side 
Plate thickness 

(mm) 
Source 

1 A356 (Al-7Si-0.3Mg)  A356 (Al-7Si-0.3Mg)  6.4 [31] 

2 AA6061-T6 AA6061-T6 6 [168] 

3 AA2024-T3  AA2024-T3  6 [169] 

4 AA5052-H34  AA5052-H34  5 [35] 

5 AA2024-T3 AA2024-T3 9.5 [170] 

6 AA5083-130 HV AA6082-T6 3 [171] 

7 AA5083-130 HV AA6082-T6 3 [171] 

8 AA6061-T6 AA6061-T6 6 [172] 

9 AA6061-T651 AA6061-T651 32 [173] 

10 AA6061-T651 AA6061-T651 25 [173] 

11 AA7050-T7451  AA7050-T7451  6.35 [30] 

12 AA6061-T6 AA5083-H111 3 [174] 

13 AA5052-H34 AA5052-H34 5 [175] 

14 AA5754  AA5754  2 [176] 

15 AA1100-H14  AA1100-H14  8 [177] 

16 AA7039-T6 AA7039-T6 9.5 [178] 

17 AA7039-T6 AA7039-T6 9.5 [178] 

18 AA7039-T6 AA7039-T6 6.3 [178] 

19 AA2219-T87  AA2219-T87  9.5 [29] 

20 AA2219-T87  AA2219-T87  8.3 [29] 

21 AA2219-T87  AA2219-T87  9.5 [29] 

22 AA2524-T351  AA2524-T351  6.4 [28] 

23 AA2024-T4 AA2024-T4 5.9 [34] 

24 AA7075-T6  AA7075-T6  3.5 [179] 

25 AA6092/17.5 SiCp-T6 
composite  

AA6092/17.5 SiCp-T6 
composite  

6 [180] 

26 AA6061-T6 AA6061-T6 4.7 [181] 

III.2.2 Methodology  

III.2.2.1 ANN model 

The neural network model, with its architecture illustrated in Fig. III-1 was designed and 

trained to predict torque values based on a comprehensive set of input features. The model 

architecture is constructed using Python scripts and libraries like TensorFlow and Keras. The 
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model comprises multiple layers. Standardization of the feature set was implemented using 

StandardScaler to ensure consistent scaling across variables. 

 

 
Fig. III-1 - Architecture of the ANN model [167] 

There is a first dense layer with 520 neurons and a rectified linear unit (ReLU) activation 

function in the neural network architecture. After that, three hidden layers were added, and 

each one had 220 neurons activated by ReLU. Empirical findings during model development 

served as a guide for choosing these layer sizes, with a focus on balancing model complexity 

and generalization performance. The output layer consists of a single neuron responsible for 

predicting torque values. 

For optimization, the Adam optimizer was employed. The loss function chosen was mean 

squared error (MSE), aligning with the objective of minimizing the difference between 

predicted and actual torque values. During training, the model was subjected to 700 epochs 

with a batch size of 276. Early experimentation revealed that a validation split of 20% yielded 

optimal results, enabling the model to generalize effectively while avoiding overfitting. 

A Python script was employed to partition it into training, validation, and test sets. Specifically, 

the data was divided into feature variables (X) and a target variable (y). The training and 

validation data, constituting 70% of the dataset, were separated from the test data (30%) using 

the train_test_split function, with a random state of 70 to ensure reproducibility. The statistics 

of the experimental data used for training, testing, and validating the ANN model are shown in 

Table III-2. 
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Table III-2 - Statistics of the dataset used in this study [167] 
modal 

parameters  
mean std min 25% 50% 75% max 

AS TS 371.05 130.68 133.96 262.00 326.00 492.00 567.00 

RS TS 370.58 131.00 133.96 262.00 326.00 492.00 567.00 

L0 10.82 9.44 2.00 5.00 6.40 9.50 32.00 

R1 10.12 3.09 5.00 7.50 10.00 12.70 17.50 

R2 4.03 1.61 1.50 3.00 3.55 6.00 6.25 

R3 3.48 1.73 1.25 2.00 3.00 5.00 6.25 

L1 7.56 4.64 1.20 4.00 6.00 9.35 15.90 

alpha 1.25 1.19 0.00 0.00 2.00 2.50 3.00 

WS 184.51 263.67 28.00 76.20 102.00 202.92 1800.00 

RS 646.28 500.47 52.41 265.00 549.73 900.00 2800.00 

T 88.09 96.15 6.18 14.87 48.56 105.92 340.49 

 

 

III.2.2.2 Random Forest Algorithm  

The operation commenced with the collection of experimental data stored in a CSV file. The 

dataset contains information on various parameters such as the radius of the shoulder (R1), pin 

base (R2), pin tip (R3), tool's pin length (L1), tensile strengths of advancing (AS TS) and 

retreating (RS TS) plate sides, plate thickness (L0), tilt angle (alpha), rotation speed of the tool 

(RS), and velocity (WS). The target variable considered for regression analysis is torque (T). 

Data was loaded into a pandas DataFrame for further processing. 

 

The independent variables (features) essential for constructing the Random Forest model were 

identified as R1, R2, R3, L1, AS TS, RS TS, L0, alpha, WS, and RS. The target variable, T, 

was specified as the torque. 

 

The dataset was split into training and testing sets using the `train_test_split` function from the 

scikit-learn library. Approximately 70% of the data was allocated to the training set, with the 

remaining 30% reserved for testing. 

 

A Random Forest Regressor was instantiated with specific hyperparameters: 10000 estimators, 

a maximum depth of 10, and a random state of 70 for reproducibility. The model was trained 
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using the training data (X_train, y_train) on all the dataset to create a global model. Afterwards 

a local model was created for each of the 26 experimental setups (see Table III-1) individually.  

 

The SHAP library was employed to interpret the output of the Random Forest model. SHAP 

values were calculated for each observation in the dataset to understand the contribution of 

individual features to the model's predictions. A SHAP summary plot was generated to provide 

a visual representation of feature importance. 

 

Predictions were made on the test set using the trained Random Forest model, and various 

regression metrics were calculated, including Mean Squared Error (MSE), Mean Absolute 

Error (MAE), and R-squared (R²) score. These metrics serve as indicators of the model's 

performance in predicting torque values. 

 

To enhance interpretability, a scatter plot comparing actual torque values to predicted values 

was generated. Additionally, a diagonal line representing perfect predictions was overlaid on 

the plot. 

III.2.2.3 Polynomial Regression 

Python's machine learning library "sklearn" was used to find a polynomial equation that fits 

our dataset. The dataset was split into training and testing data X and Y, respectively, then 

systematically varied the degree of the polynomial from 1st to 5th degree and captured the 

performance of each of the polynomials through multiple metrics (R square, mean square error, 

mean absolute percentage error, mean absolute error, and sum square error) for later 

comparisons with the other two models. 

 

The comprehensive methodology, spanning data preprocessing, modeling, exploration, 

optimization, and visualization, was meticulously executed using the Python programming 

language. Key libraries, including pandas, scikit-learn, joblib, matplotlib, and shap, were 

instrumental in realizing the entire process. The code implementation occurred within a Jupyter 

Notebook environment, facilitating seamless experimentation and thorough analysis. 

 

 



CHAPTER III: Modeling and parametric importance Analysis of torque in FSW 

70 

 

III.3. Results and discussion 

III.3.1 ANN model 

The architecture and training parameters that were chosen for the current model helped to 

rapidly reach a low loss of value, as shown in Fig. III-2. The training was stopped after 700 

epochs when it reached a meager loss value and avoided overfitting. The trained model also 

showed impressive predictive capability, as illustrated in Fig. III-3, where the predicted values 

are relatively accurate. 

  

 
Fig. III-2 - Predicted values of torque loss for training and validation datasets [167] 

 

 

  
Fig. III-3 – ANN Predicted and experimental torque comparison. 
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Several criteria were employed to assess the accuracy of the predictive model. The resulting 

R-squared of 99.50% can be referred to as the variability in torque requirements, which can be 

effectively attributed to the input parameters. This result underscores the model's robust 

explanatory capacity. The limited values of MAE = 2.98 indicated that the predicted torque 

does not deviate from the experimental sets. Moreover, the MAPE of 3.85% reflects its 

reliability in estimating torque requirements with a high degree of fidelity. Finally, the RMSE 

of 6.78 shows the precision of the predictions. 

III.3.2 Random Forest Algorithm 

 

Fig. III-4 - Local and Global models prediction of RF vs true values 
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Fig. III-4 offers a detailed juxtaposition of the predicted values derived from both the global 

and local models against the actual experimental results across various experimental 

configurations. Generally, there is a remarkable consistency between the predictions of the 

local and global models, suggesting a robust predictive capability across most scenarios. 

However, a notable deviation is observed for SID 13, where the predictions diverge noticeably. 

Similarly, for SID 2 and 14, the models demonstrate a degree of variance from the experimental 

values, highlighting instances where the predictability is less precise. Nevertheless, for the 

majority of cases, the models exhibit a commendable level of predictability, reaffirming their 

efficacy in forecasting torque outcomes. In the other hand Fig. III-5 shows the overall 

comparison between the predictivity of the global RF model and the experimental values, 

where it shows great fit and correlation except for the higher range of torque values 

approximately above 250 N.m where it RF shows a little distortion in values. 

 

 

 

 
Fig. III-5 - RF Predicted and experimental torque comparison. 
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Fig. III-6 - Metrics of the RF models (Global and Local) 
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Various criteria were utilized to evaluate the accuracy of the predictive models. The R-

squared value, boasting an impressive 99.60%, signifies the substantial variability in torque 

requirements that can be effectively explained by the input parameters. This result underscores 

the robust explanatory power of the model, indicating its ability to capture and account for the 

complexities inherent in the torque prediction process.  

 

Furthermore, the limited values of Mean Absolute Error (MAE) at 3.25 indicate minimal 

deviation between the predicted torque values and the corresponding experimental data sets. 

This suggests that the predictive models consistently provide accurate estimations of torque 

requirements across different scenarios, reinforcing their reliability and precision. 

 

Moreover, the Mean Absolute Percentage Error (MAPE) of 4.54% highlights the high 

degree of fidelity in the model's predictions, indicating a relatively small average percentage 

deviation from the actual torque values. This underscores the model's capability to provide 

reliable and consistent estimations of torque requirements, essential for optimizing friction stir 

welding processes. 

 

Finally, the Root Mean Square Error (RMSE) value of 6.15 further accentuates the precision 

of the predictions, indicating the average magnitude of the residuals between predicted and 

observed torque values. This metric reinforces the overall accuracy and effectiveness of the 

predictive models in capturing the intricacies of torque prediction in friction stir welding 

processes. 

III.3.3 Polynomial regression 

 

Fig. III-7 provides valuable insights into the discrepancy between the overarching polynomial 

regression model and its localized counterparts. It illustrates a substantial variance between the 

predictions generated by the global model and those derived from individual local models, 

emphasizing notable divergences across various experimental setups. However, it's noteworthy 

that despite this disparity, instances of alignment between the global and local models are 

observed, particularly evident in scenarios such as SID 1.  

 

Moreover, referring to Fig. III-8, a comprehensive overview of the global model's performance 

is presented, highlighting its efficacy in capturing the underlying trends of the dataset. Notably, 
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the scatter plot depicted in Fig. III-8 reveals a cohesive distribution of predicted values in 

relation to their experimental counterparts, underscoring the overall robustness of the global 

model's predictive capabilities. This indicates that while discrepancies exist between the global 

and local models, the global model still serves as a reliable predictor, showcasing its 

adaptability and generalizability across various experimental conditions. 

 

 

 

Fig. III-7 - Local and Global models prediction of PR vs true 

values 
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Fig. III-8 - PR Predicted and experimental torque 

comparison. 
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Fig. III-9 - Metrics of the PR models (Global and Local) 
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 As stated in Table III-3, The comparisons show that the current ANN model performed better 

than the polynomial regression on testing data however RF model shows better results than 

both other models. Collectively, these metrics explain the outstanding performance of the three 

models in predicting torque. 

 

 

Table III-3: Comparing results of polynomial regression, ANN model, and the RF model 

 ANN model RF Model 
Polynomial 

Regression 

MSE 45.97 37.13 206.19 

R2 0.995 0.996 0.978 

MAE 2.98 3.24 8.97 

MAPE 3.85% 4.54% 21.24% 

RMSE 6.78 6.09 14.36 

SSE 13192.49 10656.92 59175.34 

 

 

III.3.4 Artificial Shapley Additive exPlanations (SHAP) 

 

For the Random Forest (RF) model, the mean absolute SHAP values indicate the relative 

importance of each input parameter in predicting torque. Notably, the parameter "RS" stands 

out with the highest average impact of 30.97, suggesting that variations in this parameter 

significantly influence torque predictions. Similarly, parameters like "R2" and "R3" exhibit 

considerable impacts of 16.89 and 12.70, respectively, highlighting their importance in the RF 

model's decision-making process. On the other hand, parameters such as "AS TS" and "RS TS" 

demonstrate relatively low impacts, indicating their limited influence on torque predictions 

within the RF model. 

 

Conversely, for the Artificial Neural Network (ANN) model, the mean absolute SHAP values 

present a different pattern of parameter importance. Here, the parameter "RS" again emerges 

as highly impactful, with an average impact of 43.61, reinforcing its significance in 

determining torque values. Interestingly, parameters like "alpha" and "R3" also exhibit notable 

impacts, suggesting their substantial roles in the ANN's predictive capabilities. Conversely, 

parameters like "L1" and "AS TS" demonstrate comparatively lower impacts in the ANN 

model, indicating their relatively lesser influence on torque predictions within this framework. 



CHAPTER III: Modeling and parametric importance Analysis of torque in FSW 

79 

 

 

Collectively, these mean absolute SHAP values provide valuable insights into the parameter 

importance for each model. While both models prioritize certain parameters such as "RS," they 

also differ in their emphasis on other parameters, reflecting their unique approaches to torque 

prediction. Understanding these nuances can inform parameter selection strategies and enhance 

model interpretability and performance in real-world applications.  

 

 

 

Fig. III-11 - SHAP values for the predictive ANN torque 

model 

Fig. III-10 - mean absolute SHAP values for ANN. 
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Fig. III-12 - SHAP values for the predictive RF torque 

model 

Fig. III-13 - mean absolute SHAP values for RF 
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Table III-4 - Absolute mean SHAP values for the impact of each parametes on the model's 

output 

Parameters ANN RF 

RS 43.61 30.97 

WS 4.86 1.88 

alpha 22.16 0.83 

R1 11.22 3.59 

R2 9.58 16.89 

R3 20.91 12.70 

L1 2.21 9.29 

AS TS 2.42 0.54 

RS TS 6.73 0.54 

L0 7.76 9.58 

 

The Random Forest (RF) model, known for its ensemble learning technique, showcases 

remarkable predictive performance across various metrics. With a Mean Absolute Percentage 

Error (MAPE) of 4.54% and a Root Mean Squared Error (RMSE) of 6.09, the RF model 

demonstrates exceptional accuracy and precision in forecasting torque values. Moreover, its 

impressive R² Score of 0.996 indicates a robust ability to explain the variance in the target 

variable, further reinforcing its reliability. 

 

In contrast, the Polynomial Regression (PR) model, despite its simplicity, lags behind in 

predictive accuracy and precision. Its relatively high MAPE of 21.24% and RMSE of 14.36 

reveal substantial discrepancies between predicted and actual values, suggesting limitations in 

capturing the underlying patterns in the data. While the PR model may offer interpretability, 

its performance metrics underscore its challenges in accurately modeling the torque 

requirements. 

 

Meanwhile, the Artificial Neural Network (ANN) model demonstrates competitive 

performance, boasting a MAPE of 3.85% and an RMSE of 6.78. These values, although slightly 

inferior to the RF model, still reflect the ANN's proficiency in predicting torque values with 

high accuracy and precision. Furthermore, the ANN's R² Score of 0.995 signifies strong 

explanatory power, indicating its capacity to capture the complex relationships within the 

dataset. 
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Overall, while the RF model emerges as the top performer in terms of predictive accuracy and 

precision, the ANN model closely follows suit, underscoring its effectiveness in torque 

prediction. Conversely, the PR model's comparatively higher error metrics highlight its 

limitations in capturing the nuanced dynamics of torque data. These insights illuminate the 

strengths and weaknesses of each model, enabling informed decision-making in selecting the 

most suitable approach for torque prediction tasks. 

 

III.4. Conclusion 

This investigation into the predictive modeling of torque in friction stir welding (FSW) 

processes has yielded insightful findings regarding the performance of artificial neural network 

(ANN), random forest (RF), and polynomial regression (PR) models. Leveraging a dataset 

encompassing ten crucial input parameters, we meticulously evaluated the predictive 

capabilities of each model across diverse experimental setups. 

 

The artificial neural network (ANN) model exhibited impressive performance metrics, with a 

mean absolute percentage error (MAPE) of 3.85% and a root mean squared error (RMSE) of 

6.78, indicative of its high accuracy and precision in torque prediction. Furthermore, its robust 

explanatory power, exemplified by an R-squared (R²) score of 0.995, underscores its efficacy 

in capturing the intricate relationships within the dataset. 

 

Similarly, the random forest (RF) model emerged as a standout performer, boasting exceptional 

accuracy and precision with a MAPE of 4.54% and an RMSE of 6.09. Its ability to elucidate 

the variance in torque values, coupled with low error metrics, highlights its robustness in 

forecasting torque requirements across a range of experimental conditions. 

 

Conversely, the polynomial regression (PR) model, while offering interpretability, 

demonstrated limitations in predictive accuracy and precision. With a relatively higher MAPE 

of 21.24% and an RMSE of 14.36, it struggled to capture the underlying patterns in the data, 

thereby hindering its effectiveness in accurately modeling torque requirements. 

 

Our comprehensive analysis provides valuable insights for practitioners and researchers in the 

FSW domain. By understanding the nuanced dynamics of torque prediction, informed 

decisions can be made in selecting the most suitable model for specific applications. 
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Furthermore, the utilization of advanced machine learning techniques such as ANN and RF 

holds promise for enhancing process optimization and efficiency in FSW operations. 

 

Moving forward, further research efforts could focus on refining and fine-tuning the developed 

models, exploring additional input parameters, and investigating the integration of advanced 

optimization algorithms to enhance predictive accuracy and efficiency. By continually 

advancing predictive modeling techniques, we can pave the way for innovation and excellence 

in the field of friction stir welding. 
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Chapter IV - A hybrid Artificial intelligence approach for Tool 

and Motor Selection in a Pneumatic FSW setup 

IV.1. Introduction 

In the preceding chapter, we delved into the development and validation of various machine 

learning models using empirical data. Building upon this foundation, this chapter introduces a 

novel hybrid approach that integrates the power of metaheuristic algorithms, specifically the 

Pelican Optimization Algorithm (POA), with the previously established machine learning 

models. This fusion aims to optimize the FSW process by leveraging the predictive capabilities 

of machine learning models within the objective function of the POA. The overarching goal is 

to minimize power consumption while iteratively searching for the most optimal solution. 

 

The results obtained from the POA yield a comprehensive set of values encompassing tool 

geometry, welding speed (WS), rotational speed (RS), torque, and power requirements for 

welding each of the input materials. To ensure the robustness of the approach, a diverse set of 

commonly used materials in FSW have been meticulously selected as our sample for 

optimization and search. 

 

Ultimately, the outcomes derived from the hybridization of the POA with machine learning 

models, specifically pertaining to torque, rotational speed, and power, will play a pivotal role 

in informing decision-making processes regarding the selection of a pneumatic motor for the 

FSW process across the sampled materials. This demonstration of effectiveness underscores 

the significance of our approach in addressing the research gap concerning the identification 

of a suitable pneumatic motor (or rotary hand tool) for pneumatic portable FSW applications. 

 

IV.2. Materials and Methods 

IV.2.1 Materials 

The sample materials selected for this study are extracted from the dataset since these materials 

are the commonly used materials with FSW. The welding plated are of similar and dissimilar 

types, each plate is represented in our modeling by its thickness and base tensile strength,.Table 

III-1 has the list of the chosen materials for our welding configuration. 
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IV.2.2 Methodology 

 

IV.2.2.1 Population initialization 

 

The population initialization process was meticulously crafted to ensure randomness and 

reflect the inherent relationships between key parameters in FSW process. Each parameter's 

initial value were randomly selected from intervals defined by the minimum and maximum 

experimental values stated in Table 13, ensuring a diverse and representative starting point for 

the optimization process. 

 

However, for parameters R2, R3, and L1, a more nuanced approach was employed to 

accurately capture their interdependencies with other parameters. Specifically, R2 and L1 were 

represented as ratios relative to their associated parameters, R1 and L0, respectively. For 

instance, R2 was expressed as the ratio R2/R1, leveraging the inherent relationship where R2 

is always less than or equal to R1. Similarly, L1 was characterized by the ratio L1/L0, 

acknowledging the dependence of pin length on plate thickness. 

 

Moreover, the parameter R3 was defined by the ratio R3/R2, acknowledging the 

proportional relationship between the top radius of the pin and its bottom radius due to its 

tapered conical shape. This tailored approach ensured that the initial population was not only 

randomly generated but also appropriately scaled and reflective of the intricate relationships 

between these critical parameters in the FSW process. By incorporating these considerations, 

we laid a solid foundation for the subsequent optimization process, enabling more effective 

exploration of the parameter space and ultimately enhancing the quality of the optimization 

outcomes. The intervals for the parameters are as follows: 

 

• R1: Values ranging from 5.0 to 17.5, incremented by 0.5. 

• R2: Values ranging from 17% of R1 to 67% of R1, incremented by 2%. 

• R3: Values ranging from 42% of R2 to 100% of R2, incremented by 2%. 

• L1: Values ranging from 50% of L0 to 100% of L0, incremented by 2%. 

• alpha: Values ranging from 0.0 to 3.0, incremented by 0.5. 

• WS: Values ranging from 28.0 to 1800.0, incremented by 10.0. 

• RS: Values ranging from 52.41 to 2800.0, incremented by 10.0. 
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IV.2.2.2 Objective function 

The objective function seeks to minimize power consumption within FSW process and is 

defined as the product of rotational speed by the torque predicted from the machine learning 

model (IV-1). This objective function underscores the central objective of the research: to 

optimize FSW parameters to achieve superior weld quality and operational efficiency, while 

also pinpointing the tool geometry suitable for low-power FSW. 

 

 

 

𝑃𝑝𝑟𝑒𝑑 = 𝑇𝑝𝑟𝑒𝑑. 𝑅𝑆.
2𝜋

60
 (IV-1) 

 

 

IV.2.2.3 Values update 

To update the position of the agents, the algorithm employs techniques derived from the 

Pelican Optimization Algorithm framework. Specifically, the position update equations are 

formulated to balance exploration and exploitation, ensuring a comprehensive exploration of 

the solution space while also exploiting promising regions. Both the exploration and 

exploitation phases update equations involve stochastic mechanisms that introduce randomness 

into the search process, enabling the algorithm to escape local optima and discover globally 

optimal solutions. Through these equations, the algorithm iteratively refines the positions of 

the agents, gradually converging towards optimal solutions. This exploration phase plays a 

crucial role in the effectiveness of the optimization algorithm, allowing it to efficiently explore 

the solution space and identify regions with the potential for further improvement.  

 

IV.2.2.3.1 Exploration phase: 

Since the values of the parameters are derived from a prechosen set of values, our equations 

for updating the position of the agents represents a random method to pick a value from the 

prechosen ones instead of generating new ones. Equation (IV-2) shows the value updating 

method. 

 

 
𝑃𝑜𝑠𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑢𝑛𝑑 (𝑃𝑜𝑠𝑜𝑙𝑑 + 𝑟𝑎𝑛𝑑 . (𝑃𝑜𝑠𝑝𝑟𝑒𝑦 − 𝑟𝑎𝑛𝑑2 .  𝑃𝑜𝑠𝑜𝑙𝑑)) % 𝑛 (IV-2) 
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𝑃𝑜𝑠𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛: the position of the value on the values vector. 

𝑟𝑎𝑛𝑑: is a random real number between 0 and 1.  

𝑟𝑎𝑛𝑑2 is a random number of the set {1, 2}. 

𝑃𝑜𝑠𝑜𝑙𝑑: is the old position of the agent. 

𝑃𝑜𝑠𝑝𝑟𝑒𝑦: is the position of the prey. 

n: The number of values in the vector of values. 

IV.2.2.3.2 Exploitation Phase: 

In this phase each parameter is updated using the following equation: 

 

 

 

𝑃𝑜𝑠𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝑃𝑜𝑠𝑜𝑙𝑑 + 𝑟. (1 −
𝑖

𝑖𝑚𝑎𝑥
) . (2 . 𝑟𝑎𝑛𝑑 .  𝑃𝑜𝑠𝑜𝑙𝑑) % 𝑛 (IV-3) 

𝑃𝑜𝑠𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛: the new position of the value on the values vector. 

𝑟𝑎𝑛𝑑: is a real number generated randomly between 0 and 1. 

𝑃𝑜𝑠𝑜𝑙𝑑: old position of Pelican. 

r: One of the POA parameters, in this case we consider it 0.5. 

 

 

IV.3. Results and discussion 

 

IV.3.1 POA-ANN 

Fig. IV-1 depicts the iterative progression of power value prediction, While the ANN-POA 

hybrid model demonstrates encouraging advancements in optimizing power consumption, 

occasional instances of generating unrealistic predictions, such as negative values for power 

and torque, raise concerns regarding its reliability in certain scenarios. 

 

The emergence of negative power and torque values suggests potential limitations or anomalies 

within the optimization process. These discrepancies may arise from inaccuracies in data 

representation, deficiencies in model training, or inherent complexities within the dynamics of 

the FSW system that the model may struggle to adequately address. 
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Despite intermittent inconsistencies, the ANN-POA hybrid model effectively achieves 

reductions in power consumption across successive iterations. Its capacity to identify 

optimization opportunities and methodically diminish power requirements represents a 

significant stride toward enhancing efficiency and sustainability in FSW operations. 

 

  Nevertheless, rectifying the issue of unrealistic predictions necessitates further exploration 

and refinement of the model. Strategies such as fine-tuning optimization algorithm parameters, 

augmenting data preprocessing methodologies, and implementing additional constraints or 

validation checks to prevent negative predictions could bolster the reliability and robustness of 

the ANN-POA hybrid model. 

 

 

 

IV.3.2 POA-RF 

 

Fig. IV-2 illustrates the progressive reduction in predicted power values across successive 

iterations. This evolution is indicative of the promising capability of the hybrid model, 

combining Random Forest (RF) with the Pelican optimization algorithm (POA), to 

systematically decrease power consumption. Such a trend is significant as it foreshadows the 

Fig. IV-1 - Power level during the iterations of the ANN-POA model 
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potential for developing lighter pneumatic equipment tailored specifically for friction stir 

welding (FSW) operations. 

 

The steady decline in predicted power consumption implies the model's adeptness at 

identifying and optimizing key parameters influencing energy usage during FSW. By 

leveraging the collective power of RF's predictive prowess and POA's optimization algorithms, 

the hybrid model effectively navigates the complex landscape of FSW dynamics, pinpointing 

opportunities for efficiency enhancement. 

 

The implications of this trend extend beyond mere reduction in power consumption. Lighter 

pneumatic equipment translates to enhanced maneuverability and agility during FSW 

operations, contributing to overall process efficiency and productivity. Additionally, decreased 

power requirements signify potential cost savings and environmental benefits, aligning with 

sustainable manufacturing practices. 

Moreover, the ability of the hybrid model to consistently drive down power consumption 

underscores its versatility and adaptability across varying operational scenarios. This 

adaptiveness ensures that the model remains relevant and effective in addressing evolving 

challenges and requirements within the FSW domain. 

  

IV.3.3 Pneumatic motor selection 

Given the fundamental characteristics of pneumatic motors, namely torque, rotational speed, 

and power, we can tailor our selection of pneumatic motors or rotary hand tools to suit each 

welding scenario. Power estimation can be approximated using the equation below [31]: 

 

 

 

 

𝑄𝐹𝑆 =  𝑃𝑇𝑜𝑜𝑙  = 𝑀𝜔 + 𝐹𝑥𝑣 ≈ 𝑀𝜔 (IV-4) 
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In light of the underperformance of polynomial regression and the occasional occurrence of 

unrealistic values with the ANN model, a strategic decision has been made to place our reliance 

on the RF-POA approach for the final outcomes. The values attained by RF-POA, as detailed 

in Table IV-2, offer a comprehensive reference for users of pneumatic FSW setups or machines. 

This dataset serves as an invaluable resource, guiding users in the selection of optimal motors 

or rotary hand tools and FSW equipment tailored to their specific welding requirements, 

accounting for material compositions and thicknesses. Furthermore, our study extends 

invaluable recommendations concerning the ideal parameter levels, including welding speed 

(WS), tilt angle, and rotational speeds, custom-fitted to meet the demands of each unique 

application. 

 

Yet, the significance of our research extends beyond mere data aggregation. It marks the 

culmination of a robust hybrid machine learning model, blending the predictive prowess of 

Random Forest (RF) algorithms with the sophisticated optimization capabilities of the Pelican 

optimization algorithm. This synergistic fusion not only ensures accurate predictions but also 

enables efficient parameter optimization, elevating welding performance and productivity. 

 

Fig. IV-2 - Power level during iterations of RF-POA 
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Table IV-1 - ANN-POA Optimal parameters for selection of pneumatic FSW motor (hand 

tool) and FSW tool geometry 

 Tool geometry 
Process 

Parameters 

Motor characteristics 

SID R1 R2 R3 Pin 

Length 

Tilt 

Angle 

WS RS Torque ≈ 𝐏𝐓𝐨𝐨𝐥 

1 5.00 3.35 1.41 5.50 2.00 580.00 52.41 37.47 205.63 

2 5.00 1.55 1.46 6.00 1.50 610.00 2800.00 0.06 17.20 

3 5.00 3.35 1.41 6.00 2.50 28.00 52.41 27.46 150.71 

4 5.00 3.35 1.41 5.00 2.00 540.00 52.41 33.61 184.46 

5 5.00 0.85 0.75 9.50 2.00 250.00 2560.00 0.06 16.74 

6 5.00 3.35 1.41 3.00 1.50 690.00 52.41 30.86 169.38 

7 5.00 3.35 1.41 3.00 1.00 160.00 52.41 32.75 179.73 

8 5.00 1.25 0.93 6.00 1.50 590.00 2800.00 -0.08 -24.64 

9 5.00 0.85 0.48 23.04 3.00 780.00 2800.00 -1.85 -542.20 

10 5.00 2.25 0.95 24.50 3.00 670.00 2800.00 -1.47 -430.46 

11 5.00 3.35 1.41 5.46 2.50 28.00 52.41 25.68 140.96 

12 5.00 3.35 1.41 3.00 1.00 800.00 52.41 31.77 174.36 

13 5.00 2.85 1.25 3.50 1.50 790.00 52.41 34.25 187.95 

14 5.00 3.35 1.41 2.00 1.00 900.00 52.41 34.85 191.24 

15 5.00 2.25 2.07 8.00 2.50 50.00 2800.00 0.10 29.17 

16 5.00 3.35 1.41 6.46 3.00 28.00 52.41 25.55 140.22 

17 5.00 0.85 0.46 9.50 1.50 540.00 2750.00 -0.40 -114.56 

18 5.00 3.35 1.41 6.05 2.50 28.00 52.41 25.31 138.93 

19 5.00 0.85 0.43 9.50 2.50 550.00 2800.00 -0.71 -209.29 

20 5.00 3.35 1.41 5.98 2.50 28.00 52.41 27.42 150.48 

21 5.00 3.35 1.41 6.27 3.00 28.00 52.41 26.20 143.81 

22 5.00 1.65 0.69 3.20 0.50 28.00 52.41 34.55 189.60 

23 5.00 1.75 0.74 2.95 0.50 28.00 52.41 34.13 187.31 

24 5.00 3.35 1.41 3.50 2.00 28.00 52.41 26.76 146.86 

25 5.00 3.35 1.41 5.88 2.00 28.00 52.41 28.96 158.93 

26 5.00 3.35 1.41 3.29 1.00 790.00 52.41 31.60 173.42 

 

 

Table IV-2 - RF-POA Optimum parameters for selection of pneumatic FSW motor (hand 

tool) and FSW tool geometry 

 Tool geometry Process 

Parameters 

Motor characteristics 

SID R1 R2 R3 Pin 

Length 

Tilt 

Angle 

WS RS Torque ≈ 𝑷𝑻𝒐𝒐𝒍 

1 5.50 2.20 2.07 3.71 0.50 28.00 710.00 16.52 1228.01 
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2 5.00 2.20 2.11 3.84 0.00 100.00 600.00 14.23 893.89 

3 5.00 2.10 2.10 4.20 0.50 50.00 710.00 13.26 985.73 

4 5.00 2.20 1.80 3.60 0.50 130.00 600.00 13.79 866.72 

5 5.00 1.50 1.50 4.75 2.00 28.00 330.00 35.43 1224.28 

6 5.00 2.20 2.11 2.88 0.00 80.00 600.00 15.56 977.69 

7 5.50 1.54 1.14 3.00 0.50 50.00 600.00 16.13 1013.53 

8 5.00 2.20 2.11 3.72 0.00 100.00 600.00 14.30 898.50 

9 6.00 1.68 0.84 24.96 1.00 210.00 52.41 274.67 1507.50 

10 6.50 1.69 1.62 12.50 0.00 210.00 52.41 259.52 1424.33 

11 5.00 3.30 2.64 4.19 2.00 40.00 330.00 31.78 1098.14 

12 5.50 2.09 2.09 3.00 0.00 660.00 600.00 15.28 960.14 

13 5.00 2.20 1.80 3.80 0.00 110.00 600.00 13.21 830.20 

14 5.00 2.20 2.07 2.00 0.00 100.00 600.00 18.29 1148.99 

15 7.00 2.38 1.43 4.48 1.00 140.00 52.41 243.17 1334.60 

16 5.00 1.10 0.62 5.13 2.00 40.00 330.00 34.82 1203.23 

17 6.50 2.86 2.17 5.51 3.00 30.00 330.00 32.87 1136.00 

18 5.50 0.99 0.53 3.40 0.50 40.00 710.00 17.78 1321.92 

19 5.50 3.19 2.17 4.75 1.50 30.00 330.00 33.30 1150.70 

20 5.00 2.50 2.20 4.15 2.00 40.00 330.00 31.21 1078.38 

21 7.50 1.50 1.44 4.75 0.50 150.00 52.41 247.39 1357.75 

22 5.50 1.10 0.51 3.20 0.50 40.00 710.00 17.71 1316.92 

23 5.00 2.10 1.93 3.78 0.50 30.00 710.00 13.23 983.81 

24 5.50 2.20 1.94 3.36 0.50 50.00 600.00 15.57 978.35 

25 5.00 2.20 1.94 3.60 0.00 50.00 710.00 13.30 988.69 

26 5.00 2.10 1.97 3.85 0.00 300.00 600.00 15.00 942.17 

 

 

IV.4. Conclusion 

 

This chapter has introduced a novel hybrid approach for tool and motor selection in 

pneumatic Friction Stir Welding (FSW) setups, integrating metaheuristic algorithms with 

machine learning models to optimize power consumption. Through meticulous methodology 

and rigorous exploration, we have demonstrated the potential of this approach to drive 

innovation and sustainability in pneumatic FSW technology. 

 

The results of our hybridization efforts, particularly with the POA-RF model, have shown 

promising advancements in reducing power consumption, paving the way for lighter pneumatic 

equipment tailored for FSW operations. However, occasional inconsistencies observed with 
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the ANN-POA hybrid model underscore the need for ongoing refinement and validation to 

ensure reliability and effectiveness. 

 

Looking ahead, future research endeavors will focus on addressing these challenges while 

exploring additional optimization strategies and incorporating more comprehensive datasets. 

By continuously refining our approach and embracing innovation, we can unlock the full 

potential of pneumatic FSW technology, driving efficiency, productivity, and sustainability in 

manufacturing processes. 

 

Furthermore, the development of software integrating our model will streamline its practical 

application, enhancing its predictive capacities and positioning it as an indispensable asset in 

the field. By leveraging the collective power of machine learning and optimization algorithms, 

we can propel the pneumatic FSW industry forward, ushering in a new era of excellence and 

advancement. 

 

This chapter marks a significant step forward in the quest to optimize FSW processes, laying 

the groundwork for future innovations and discoveries. With dedication, collaboration, and a 

commitment to excellence, we can revolutionize pneumatic FSW technology and shape the 

future of manufacturing. 
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GENERAL CONCLUSION 

This thesis culminates in a comprehensive exploration of friction stir welding (FSW) processes, 

with a primary focus on optimizing efficiency and minimizing power consumption through the 

integration of pneumatic sources. Structured across four chapters, the study navigates through 

theoretical foundations, methodological frameworks, predictive modeling endeavors, and 

innovative optimization techniques, ultimately offering insights and solutions that propel FSW 

technology into new frontiers. 

 

The journey begins with an in-depth examination of FSW fundamentals, emphasizing the 

transformative potential of pneumatic sources in enhancing portability and energy efficiency. 

This foundational understanding sets the stage for subsequent investigations into predictive 

modeling and optimization strategies tailored for pneumatic FSW applications. 

 

In the methodology chapter, a multifaceted approach emerges, integrating advanced machine 

learning techniques such as artificial neural networks (ANN) and random forest (RF) 

algorithms with innovative optimization algorithms like the Pelican Optimization Algorithm 

(POA). This synergistic fusion enables the development of predictive models capable of 

forecasting torque and power consumption in FSW operations, while the POA facilitates the 

identification of optimum parameter configurations that minimize energy consumption and 

enhance efficiency. 

 

The validation of these models in the predictive modeling chapter underscores their efficacy 

and reliability, with impressive performance metrics and robust explanatory power. However, 

occasional inconsistencies observed with certain hybrid models necessitate ongoing refinement 

and validation efforts to ensure their reliability and effectiveness in real-world applications. 

 

In the final chapter, a novel hybrid approach emerges, leveraging metaheuristic algorithms with 

machine learning models to optimize power consumption and streamline tool and motor 

selection in pneumatic FSW setups. The outcomes of this hybridization effort demonstrate 

promising advancements in reducing power consumption, while also addressing the critical 

need for portability in welding operations. By integrating pneumatic sources, the thesis not 
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only contributes to efficiency and sustainability but also enhances flexibility and mobility in 

modern welding applications. 

 

Looking ahead, future research endeavors will focus on addressing remaining challenges, 

refining optimization strategies, and embracing innovation to unlock the full potential of 

pneumatic FSW technology. The development of software integrating predictive models will 

further enhance their practical application, positioning them as indispensable assets in the field 

of manufacturing. 

 

In essence, this thesis marks a significant milestone in the quest to optimize FSW processes, 

offering a holistic framework that combines theoretical insights with practical solutions. By 

embracing interdisciplinary approaches and fostering collaboration, we can revolutionize 

pneumatic FSW technology and shape the future of welding in manufacturing. 
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