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Abstract 

Rising global burden of cardiovascular disease (CVD) has spurred research exploring artificial 

intelligence (AI) and machine learning (ML) approaches for developing monitoring systems using 

biomedical signals. Photoplethysmography (PPG) has emerged as a viable biosensing option due to its 

non-invasive, affordable nature and inherent relationship to cardiovascular physiology. Current 

literature predominantly investigates two approaches - leveraging PPG signals to classify individuals at 

risk of CVD or to classify specific disease states. While generating high-performing ML classifiers, 

limitations remain in broad risk profiling or narrow disease classification for effective clinical 

translation. Clinical integration requires evidence-based predictions providing targeted insights to 

inform diagnostic plan formulation.   

An underexplored solution lies in the analysis of arterial pressure waveforms, as CVDs are known to 

influence their morphology, leading to distinct abnormal arterial pulse (AAP) patterns.  This thesis aims 

to leverage the combination of PPG signals and ML classifiers to identify abnormal arterial pressure 

waveform patterns that are predictive of specific AAP manifestations, thereby providing healthcare 

practitioners with more targeted diagnostic insights. To address the challenges in obtaining labeled 

clinical datasets of AAP waveforms, the work explores the use of the MIMIC-III database, which 

contains synchronous arterial blood pressure (ABP) and PPG recordings from intensive care unit 

patients.  

The key methodological aspects of this research involve optimizing the classifiers' parameters through 

both internal and external optimization techniques. The internal optimization focuses on fine-tuning the 

classifiers' hyperparameters using Bayesian optimization approaches, which can efficiently explore the 

high-dimensional hyperparameter space to identify optimal configurations. In parallel, the external 

optimization techniques aim to enhance the input predictors by extracting physiologically meaningful 

parameters from the PPG signals. This includes the application of dimensionality reduction methods, 

such as transformation-based techniques and metaheuristic optimization algorithms, to compress the 

feature space while preserving the most informative characteristics. Additionally, feature importance 

analysis is employed to identify the most relevant input predictors for the classification tasks.  

This dual-pronged approach of internal and external optimization aimed at enhancing the classifiers' 

performance in predicting both AAP patterns and blood pressure (BP) levels, addressing the prevalent 

issues of CVD and hypertension. Abnormal arterial pulses were first identified by referencing 

pathological examples, while BP levels followed clinical guidelines. Various ML classifiers are 

empirically evaluated to classify these variables, with some providing impressive performances 

attaining 100% accuracy. The proposed system is designed to be applicable for both clinical integration 

and consumer-oriented applications, with the former focusing on physiologically-relevant parameters 

and the latter emphasizing efficient and less complex preprocessing requirements for wearable device 

integration.  

Overall, this thesis presents a comprehensive framework for developing efficient PPG-based 

classifiers. Results suggest potential for convenient clinical-grade blood pressure monitoring beyond 

healthcare settings. Additionally, the system shows clinical potential as a non-invasive, cost-effective 

solution for applications such as doctor-assisted diagnosis, remote post-surgery monitoring, nursing 

alerts, and personalized health management through timely notifications, addressing needs while 

reducing the risks of current invasive practices. 

Keywords:   Abnormal arterial pulse pattern, Artificial intelligence, Blood pressure, Classification, 

Machine learning, Optimization, Photoplethysmography, Arterial pressure. 
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Résumé 

Le fardeau mondial croissant des maladies cardiovasculaires (MCV) a stimulé la recherche explorant 

les approches d'intelligence artificielle (IA) et d'apprentissage automatique (AA) pour développer des 

systèmes de surveillance utilisant des signaux biomédicaux. La photopléthysmographie (PPG) est 

apparue comme une option de biodétection viable en raison de son caractère non invasif, abordable et 

de sa relation inhérente avec la physiologie cardiovasculaire. 

La littérature actuelle explore principalement deux approches concernant l'exploitation des signaux 

PPG pour : classer les individus à risque de MCV, classer des états pathologiques spécifiques. Bien que 

ces approches aient généré des classifieurs AA performants, des limites subsistent dans le profilage 

général du risque ou la classification étroite des maladies pour une translation clinique efficace. 

L'intégration clinique nécessite des prédictions fondées sur des preuves fournissant des informations 

ciblées pour éclairer la formulation du plan de diagnostic. 

Une solution peu explorée réside dans l'analyse des formes d'onde de pression artérielle, car les MCV 

sont connues pour influencer leur morphologie, entraînant des motifs d'impulsion artérielle anormale 

(IAA) distincts. Cette thèse vise à exploiter la combinaison des signaux PPG et des classifieurs AA pour 

identifier les motifs anormaux des formes d'onde de pression artérielle qui sont prédictifs de 

manifestations spécifiques d'IAA, offrant ainsi aux praticiens de santé des informations diagnostiques 

plus ciblées. 

Les principaux aspects méthodologiques de cette recherche impliquent l'optimisation des paramètres 

des classifieurs par des techniques d'optimisation interne et externe. L'optimisation interne se concentre 

sur l'ajustement fin des hyperparamètres des classifieurs à l'aide de l’approche d'optimisation 

bayésienne. En parallèle, les techniques d'optimisation externe visent à améliorer les prédicteurs d'entrée 

en extrayant des paramètres physiologiquement significatifs des signaux PPG. Cela comprend 

l'application de méthodes de réduction de dimensionnalité, telles que les techniques basées sur la 

transformation et les algorithmes d'optimisation méta-heuristiques. 

Cette approche à double volet d'optimisation interne et externe vise à améliorer les performances des 

classifieurs dans la prédiction des motifs IAA et des niveaux de pression artérielle (PA), abordant ainsi 

les problèmes répandus des MCV et de l'hypertension. Divers classifieurs AA sont évalués de manière 

empirique pour classer ces variables, certains atteignant des performances impressionnantes de 100% 

de précision. 

Dans l'ensemble, cette thèse présente un cadre complet pour développer des classifieurs efficaces basés 

sur la PPG. Les résultats suggèrent un potentiel pour une surveillance pratique de la pression artérielle 

de niveau clinique au-delà des paramètres de soins de santé. De plus, le système montre un potentiel 

clinique en tant que solution non invasive et rentable pour diverses applications médicales. 

Mots clés : Apprentissage automatique, Intelligence artificielle, Motif d'impulsion artérielle 

anormale, Optimisation, Photopléthysmographie, Pression artérielle, Classification
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 الخلاصة

 الاصطناعيتحفيز البحوث التي تستكشف أساليب الذكاء  لىإ الدمويةلأمراض القلب والأوعية أدى العبء العالمي المتزايد 

قابل للحياة  كخيار الكهربائيةموجة الضوء أنظمة المراقبة باستخدام إشارات طبية حيوية. برز مقياس  لتطوير الآلي والتعلم

 .يعته غير الجراحية وميسورة التكلفة وعلاقته الضمنية بالفسيولوجيا القلبية الوعائيةللاستشعار الحيوي بسبب طب

لتصنيف الأفراد المعرضين  الكهربائيةموجة الضوء  استغلال إشارات -تستكشف الأدبيات الحالية بشكل أساسي اتجاهين 

ذات أداء  الآلي التعلم ت مصنفات   ل درغم من أنها ولخطر أمراض القلب والأوعية الدموية أو لتصنيف حالات مرضية محددة. على ال

، لا تزال هناك قيود في التنميط العام للخطر أو التصنيف الضيق للأمراض من أجل الترجمة السريرية الفعالة. تتطلب التكامل                                                                                                                       عال 

 .السريري توقعات مستندة إلى أدلة توفر رؤى موجهة لإعلام صياغة خطة التشخيص

لتي لم يتم استكشافها في تحليل أشكال موجة ضغط الشرايين، حيث من المعروف أن أمراض القلب تكمن إحدى الحلول ا

. تهدف هذه الأطروحة إلى الاستفادة من متميزة شاذةأنماط نبضات شرايين  والأوعية الدموية تؤثر على تشكيلها، مما يؤدي إلى

لتحديد أنماط شكل موجة ضغط الشرايين الشاذة التي يمكن التنبؤ  ليالآ التعلم ومصنفات الكهربائيةموجة الضوء  الجمع بين إشارات

 .المحددة، وبالتالي توفير ممارسي الرعاية الصحية بمعلومات تشخيصية موجهة بشكل أكبر أنماط نبضات شرايين بها لتجليات

ت التحسين الداخلية والخارجية. تنطوي الجوانب المنهجية الرئيسية لهذا البحث على تحسين معلمات المصنفات من خلال تقنيا

يركز التحسين الداخلي على الضبط الدقيق لمعلمات المصنف باستخدام نهج تحسين بايزي. في الوقت نفسه، تهدف تقنيات التحسين 

 .الكهربائيةموجة الضوء  الخارجية إلى تحسين المتنبئات الداخلية من خلال استخراج معلمات ذات معنى فسيولوجي من إشارات

 شاذةالشرايين النبضات  هذا النهج ثنائي الأوجه للتحسين الداخلي والخارجي يهدف إلى تعزيز أداء المصنفات في التنبؤ بأنماط

، مما يعالج المشاكل السائدة لأمراض القلب والأوعية الدموية وارتفاع ضغط الدم. يتم تقييم تجريبي لمجموعة ضغط الدم ومستويات

 .٪100لتصنيف هذه المتغيرات، مع بعض الأداء المبهر الذي يصل إلى دقة  الآلي مالتعل متنوعة من مصنفات

تشير النتائج إلى  .الكهربائيةموجة الضوء                                                                       بشكل عام، تقدم هذه الأطروحة إطارا  شاملا  لتطوير مصنفات فعالة قائمة على

                                      ة. علاوة على ذلك، ي ظهر النظام إمكانات إمكانات للرصد العملي لضغط الدم بمستوى سريري خارج إعدادات الرعاية الصحي

                                                                                                                   سريرية كحل غير جراحي وفعال من حيث التكلفة لتطبيقات مثل التشخيص المساعد من قبل الطبيب والمراقبة عن ب عد بعد الجراحة 

ليل المخاطر والتنبيهات التمريضية وإدارة الصحة الشخصية من خلال إشعارات في الوقت المناسب، مما يعالج الاحتياجات مع تق

 .الناجمة عن الممارسات الجراحية الحالية

 التحسين، الآلي،التعلم  التصنيف، الدم،ضغط  الاصطناعي،الذكاء  الطبيعي،نمط نبضات الشريان غير    : مفتاحية اتكلم 

 .ضغط الشريان الكهربائية،مقياس موجة الضوء 
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Cardiovascular disease (CVD) poses a major global health challenge, accounting for over 

17.9 million annual deaths worldwide according to the WHO [1]. The scale of this burden is 

projected to increase substantially if left unaddressed, as CVD often presents with mild, 

gradually worsening symptoms that can sometimes remain hidden until sudden cardiac arrest 

[2,3]. Early and precise detection is critically important to motivate lifestyle modifications and 

clinical intervention when required [4]. However, clinically diagnosing CVD presents 

difficulties due to heterogeneous and non-specific symptoms, leading to diagnostic delays and 

consequently poorer prognoses [5,6]. Furthermore, the standard methods for diagnosing CVDs 

are limited in terms of specificity and sensitivity, potentially leading to erroneous positive 

identifications [5]. Outside of clinical settings, the asymptomatic nature of CVD [7] poses 

additional challenges for management as affected individuals have no impetus to pursue 

medical care. Hence, to adequately address CVD management concerns both within and outside 

of clinical environments, healthcare must leverage advanced digital technologies, such as 

automated systems powered by AI. With such innovative solutions, we could help shorten time 

to accurate diagnosis and treatment, as well as uncover undiagnosed "occult" cases of CVD 

among asymptomatic populations. 

Advances in ML have opened up new avenues for more proactive, predictive approaches 

to CVD screening, detection, and clinical management [8]. ML algorithms possess the capacity 

to integrate diverse biomedical data streams, including EHRs [9], MI [10] and test results [11], 

treatment plans [12], biosensor outputs [13], and genetic profiles [14]. The ability of ML to 

process and extract insights from such multifaceted data holds immense potential for early CVD 

prediction. Notably, bio-signal data such as ECGs and PPGs have demonstrated promise for 

non-invasive CVD prediction when combined with ML models [15]. Studies have validated 

ML's effectiveness in classifying CVD status using these physiological signals, with high-

performing systems developed for conditions like myocardial infarction, arrhythmias, CHD, 

CAD, cardiopathies, and aneurysms [16-21]. Additionally, other ML-based approaches have 

been designed to identify at-risk individuals [22-24], by leveraging PPG signals and associated 

respiratory events, such as rebreathing, heart rate variability, and sleep apnea [25]. 

Noninvasive cardiovascular profiling utilizing physiological signals fosters opportunities 

for earlier clinical intervention when treatment efficacy is optimal. However, prioritizing 

predictive performance exclusively may undermine the clinical utility of such systems, as 

enhancing healthcare delivery requires considerations beyond classification accuracy alone 
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[26]. For such systems to meaningfully augment medical services, the following questions 

warrant examination:                              

(1) By what mechanisms could these systems potentially aid physicians in screening and 

risk appraisal procedures? What technical and applied barriers remain to be addressed in 

order to realize their full clinical potential? 

(2) To what extent can clinical judgement be made independently of model transparency? 

Which approaches may engender confidence in such systems among healthcare 

practitioners? 

(3) Under prevailing methodologies, what typical elements inform AI model structure for 

CVD classification? Do conventional optimization strategies sufficiently facilitate the 

explainability and transparency intrinsic to healthcare decision contexts? 

The former inquiries address the predictive capacity of these systems. Models focused on 

singular disease classification in [18-21] may serve to corroborate diagnoses or refine risk 

profiles, yet their utility for comprehensive initial screening is limited. A classifier capable of 

discerning multiple potential conditions would offer a holistic perspective and guiding insights 

regarding the spectrum of possible CVDs. Conversely, models addressing general CVD risk in 

[22-24] offer constrained etiological insights to inform clinical decision-making processes. 

These approaches typically rely on datasets designed using observable respiratory events like 

rebreathing, heart variability, and apnea [25]. The inherent diversity and lack of disease-

specificity of such signs can complicate the prognostic process and delay accurate diagnosis 

[6]. Overall, an overemphasis on single-disease output or generalized risk profiling may restrict 

the clinical utility and real-world applicability of these emerging technologies. 

From a clinical perspective, the optimal system would possess the capacity for both broad 

screening and nuanced risk profiling, through evidence-based inputs and outputs. An 

unexplored solution lies in targeting ABP waveforms. Cardiovascular pathophysiology is 

known to influence ABP morphology, altering the normal pulse wave pattern. Different AAPs 

have been shown to correlate with specific cardiovascular conditions [27-29], presenting an 

opportunity to empower clinicians with a multimodal diagnostic system. Additionally, 

hypertension's prevalence and associated mortality risk [30,31], coupled with its effects on 

pulse wave morphology, further underscore the clinical utility of developing robust AAP 

classification capabilities. However, realizing this potential requires the non-invasive 

classification of AAPs through high-fidelity input signals. PPG offers a convenient, non-
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invasive biosensing solution due to the close correlation between ABP and PPG signals [32]. 

PPG data can provide insights into cardiovascular mechanisms [33], enabling ML algorithms 

to characterize patterns indicative of specific AAP manifestations. Nevertheless, the lack of 

pre-identified AAP datasets poses challenges [26], likely due to the inherent risks of ABP 

measurement [34]. This constraint has limited current literature to estimating BP trends [35] 

and classifying hypertension [36] via these signals. 

The subsequent inquiries address the imperative of clinical decision-making transparency. 

Evidence-based medical practice depends on a comprehensive understanding of underlying 

pathophysiology, rather than the sole consideration of model outputs [37]. Irrespective of 

whether a system is designed to predict specific diseases or general risk levels, a lack of 

explicability regarding its input predictors constrains its real-world applicability within clinical 

settings. Garnering acceptance and trust within the medical community necessitates the 

provision of more targeted, interpretable insights into the probable etiological factors driving 

the model's predictions. However, extant studies may inadvertently overemphasize system 

performance at the expense of transparency. For instance, employing complex optimization 

techniques on PPG signals to extract input features, as in [22, 23], is clinically irrelevant. What 

is truly needed are features that are physiologically meaningful and aligned with the clinician's 

understanding of cardiovascular pathologies, rather than perfect dimensionally reduced 

representations. 

Other key aspects for clinical transparency include algorithm architecture and parameter 

optimization, as emphasized by the latter inquiries. Within healthcare applications, 

explainability is of paramount importance [37]. Algorithms exhibiting more transparent 

architectures are preferable for XAI researchers exploring the logic and reasoning of clinical 

AI models. Selecting ML methods that maintain a certain level of interpretability allows better 

evaluation of functionality. However, current researches lack well-defined criteria for selecting 

less complex AI algorithms, often trading off interpretability for higher performance metrics. 

Furthermore, common optimization approaches focus solely on maximizing accuracy [22], 

regardless of model complexity. Thus, exploring alternative optimization strategies to manage 

this interpretability-performance equilibrium represents a critical frontier in advancing the 

clinical utility of AI-powered systems. 

This tension between predictive performance and model simplicity poses a significant 

challenge in the development of clinically viable ML classification systems. Failure to address 
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the disconnect between technical optimization and clinical relevance may relegate these 

innovative technologies to the periphery of clinical decision-making. However, it is reasonable 

to assume that the use of these systems outside the clinic could undermine the need to address 

this clinical transparency/system performance trade off. For example, by deploying high-

performing models on personal health tracking devices like smart watches and wristbands, 

could enable asymptomatic individuals to self-screen for CVDs and hypertension anytime, 

anywhere. This would help drive earlier detection and improved public health outcomes on a 

global scale, without requiring the same level of clinical transparency expected in a medical 

context.  

To address barriers limiting widespread cardiovascular management, this research aims to 

develop and validate a non-invasive classification system capable of integrating into affordable 

devices. Suitable ML classifiers will be explored to create a system able to predict key 

cardiovascular biomarkers, including systolic/diastolic blood pressure, hypertension status as 

well as identification of distinct AAP morphologies, all through non-invasive PPG signal 

analysis. This work seeks to address common limitations of existing approaches that have 

constrained the clinical translation and successful device implementation of such technologies, 

including: 

▪ Complex preprocessing requirements for features extraction. 

▪ Clinically irrelevant features extraction. 

▪ Lack of generalizability due to limited datasets. 

▪ Suboptimal handling of training data. 

▪ Improperly optimized parameters or model architectures. 

▪ Significant time and computational resources required for model training. 

Specific objectives to overcome these barriers are summarized as follows: 

Expanded and Diverse Dataset: Prior research in this field has often relied on relatively 

small and narrow datasets, limiting the generalizability and predictive performance of resulting 

AI models. To address this, the present study plans to collect and employ a substantially larger 

and more diverse dataset during model development and evaluation compared to earlier work, 

ensuring inclusion of varied systolic, diastolic pressures and types of AAP waveforms. 

Exposing the AI models to such a breadth of examples during training is expected to reduce 

potential biases and overfitting while strengthening classification reliability for novel cases 

compared to alternatives developed from narrow, less inclusive datasets. This enhanced 
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representation of real-world variability aims to produce more robust and translatable AI 

solutions. 

Addressing motion artefacts: While PPG-based monitoring shows promise, signal 

quality can degrade due to motion-induced noise [38], confounding cardiovascular parameter 

extraction. To minimize this motion interference, an automatic rejection system will be created 

to eliminate corrupted signals.  

Feature engineering for Clinical and Consumer Applications: Extracting features for 

clinical versus consumer-oriented applications requires distinct design considerations. From a 

clinical standpoint, deriving meaningful physiological features is paramount. However, PPG 

waveform morphologies exhibit inherent instability, necessitating precise signal processing. 

Therefore, custom detectors will be created and optimized to locate clinically important 

waveform characteristics, generating more stable inputs for the proposed classifier [26]. 

Conversely, these complex analytical methods may be less critical for personal health 

monitoring applications, as the user's primary concern is identifying potential health risks early, 

rather than dissecting the algorithmic logic. As such, this work will investigate time-frequency 

signal processing techniques to characterize dynamic PPG changes obscured from view with 

conventional methods. Engineering features capturing information in time-varying spectral 

content is expected to provide novel insights beyond basic waveform analyses [36]. 

Computational Efficiency: Dealing with large datasets usually prompts a preference for 

DL algorithms over ML due to their ability to handle complex and high-dimensional data [39]. 

However, this flexibility demands major computational resources for training and inference. 

Deep neural networks have substantial storage needs [40], due to the large number of weight 

parameters and requires expensive high-RAM GPUs to process their computationally intensive 

activation layers during prediction. This level of specialized hardware makes deploying DL 

models on resource-constrained wearable devices infeasible for most users. In contrast, ML 

training involves less complex optimization of fewer learned variables, allowing for use of basic 

processors. Trained ML models essentially comprise hyperparameters needing nominal storage. 

This research therefore aims to investigate computationally efficient ML techniques as an 

enabler of developing an affordable, clinically meaningful BP monitoring solution deployable 

directly through consumer-grade wearables.  

AAPs Modelling: The identification of AAPs poses a challenge due to the absence of clear 

guidelines and need for comprehensive understanding of their waveform characteristics [26]. 
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This research aims to present novel approaches and benchmarks to assist in modeling AAPs. 

Developing techniques specifically targeted towards AAP patterns has potential to advance 

understanding of underlying cardiovascular conditions. 

Multi-objective Hyperparameter Optimization: The efficacy of ML models is heavily 

contingent on the appropriate hyperparameter selection. This research endeavors to apply 

Bayesian optimization [41] to systematically tune the classifier’s internal hyperparameters. 

Studies reported the effectiveness of Bayesian optimization algorithm in outperforming other 

algorithms like random search or grid search [42]. Thus, it is anticipated that automated 

optimization through Bayesian theorem will develop models with enhanced predictive 

performance relative to arbitrary hyperparameter configurations. However, developing 

clinically viable ML classifiers necessitates formulating a multi-objective optimization problem 

considering model performance and interpretability. Potential solutions include: 

▪ Prioritizing inherently transparent model architectures that provide intelligible insight 

into the logic underlying cardiovascular assessments. 

▪ Incorporating XAI methods, such as feature importance analysis to identify impactful 

input variables. 

▪ Analyzing dynamic cardiac cycles within PPG signals to boost classification without 

compromising model simplicity. 

The growing global burden of CVD necessitates innovative solutions to enable earlier 

detection, both within clinical environments and on a population scale. ML has demonstrated 

promising advancements in cardiology through non-invasive techniques, such as PPG signal 

analysis. However, existing approaches remain limited by technical barriers that impede 

widespread clinical adoption and real-world application through consumer devices. This 

research aims to develop an optimized cardiovascular risk assessment and management system 

that targets these limitations. The key objective is to enable the non-invasive identification of 

various pressure-related abnormalities from PPG signals alone, going beyond the predominant 

focus on estimating ABP waveforms. This approach introduces a novel means of characterizing 

pathological hemodynamic phenotypes for improved CVD assessment. 

By leveraging the ubiquity of PPG signals, this research endeavors to create an affordable 

and accessible solution that can be seamlessly integrated into consumer-grade wearable devices. 

Additionally, the research's emphasis on addressing the tension between model performance 

and interpretability is crucial for the successful clinical adoption of AI-powered cardiovascular 
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decision support tools. The proposed multi-objective optimization strategies and the 

incorporation of domain-specific knowledge to derive clinically relevant features and model 

AAP patterns are key steps towards bridging the gap between technical advancements and 

practical clinical utility. Moreover, the research's focus on expanding and diversifying the 

dataset, as well as developing robust signal processing techniques, aims to enhance the 

generalizability and reliability of the proposed ML models.  

Overall, this research represents a significant stride towards realizing the full potential of 

ML-based technologies in revolutionizing CVD management. By addressing the technical, 

clinical, and translational barriers that have hindered the widespread adoption of such solutions, 

the proposed work promises to have a transformative impact on the early detection, risk 

assessment, and personalized care of cardiovascular conditions. 
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The present thesis is structured as follows to provide a systematic exploration of the 

research endeavor, guiding the reader through a logical progression from the foundational 

understanding of cardiovascular mechanisms to the development, evaluation, and practical 

implications of the proposed arterial pressure classification system: 

Chapter I: Understanding Blood Pressure Behavior in Health and Cardiovascular Pathology 

This opening chapter offers a comprehensive overview of the human cardiovascular system 

and its influence on blood pressure. It delves into the conventional blood pressure measurement 

techniques and their inherent limitations, setting the stage for the subsequent investigation of 

alternative approaches. Additionally, the chapter examines the emerging role of AI in 

enhancing the accuracy and accessibility of blood pressure assessment, underscoring the 

motivations behind the current research. 

Chapter II: Optimizing Arterial Blood Pressure-Based Risk Profiling 

Building upon the foundational knowledge established in the previous chapter, Chapter II 

focuses on analyzing existing classification schemes for cardiovascular conditions. It then 

proceeds to formulate the experimental plan for the proposed classification system, outlining 

the research objectives, hypotheses, and the overall experimental design. 

Chapter III: Operationalizing an Upgraded Classification Framework 

Guided by the experimental plan, this chapter introduces the proposed methodology, 

detailing the processes of data acquisition, pulse wave feature detection, AAP modeling, feature 

engineering, dataset creation, and the ML experiments conducted. This chapter elucidates the 

technical approaches employed to address the research objectives, laying the groundwork for 

the subsequent analysis and discussions. 

Chapter IV: Classification Approach Assessment and its Implications for Applied Health 

Management.  

The penultimate chapter presents the experimental results, provides in-depth analysis of 

the ML modeling process, and discusses the key findings. Importantly, comparisons are drawn 

between the current approach and prior related methods, allowing for a comprehensive 

evaluation of the research contributions. Furthermore, this chapter explores the clinical 

implications of the study, including potential medical applications, system integration 

opportunities, and the challenges associated with translating the research outcomes into 

practical solutions. 
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Conclusions: Summarizing Contributions, Limitations, and Future Directions 

Finally, the thesis concludes with a summary of the main contributions, an 

acknowledgment of the limitations, and an outline of potential directions for future work. This 

final section serves to consolidate the research findings, reflect on the progress made, and 

inspire further investigations in the pursuit of innovative cardiovascular monitoring solutions.
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Chapter I 

Understanding Blood Pressure Behavior in 

Health and Cardiovascular Pathology 

Conventional Monitoring Strategies and the Prospect of 

AI-Driven Care  
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1. Overview of the Human Cardiovascular System 

1.1. Cardiovascular Anatomy and Architecture 

The cardiovascular system, or circulatory system, acts as the body's transport network, 

circulating blood and its contents throughout the entire human body [43]. Principally, it is 

responsible for distributing oxygenated blood, nutrients, hormones, carbon dioxide and 

metabolic waste products between the tissues and organs [44]. Blood comprises various cellular 

components including red blood cells which carry oxygen, white blood cells integral to immune 

function, platelets aiding hemostasis, as well as plasma consisting of water, proteins, and 

electrolytes [45]. Of note, red blood cells facilitate oxygen transport from the lungs to peripheral 

tissues whilst simultaneously removing carbon dioxide created during cellular respiration for 

exhalation [44]                                

 
Figure I.1.  Blood circulation 

Major anatomical structures of this system include the heart which pumps blood, and a 

network of arteries, veins and capillaries that carry blood (Figure I.1). The heart pumps 

oxygen-rich blood to all parts of the body through arteries, and oxygen-depleted blood is 
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returned to the heart via veins [46]. Tissues are supplied with blood through a vast network of 

microscopic capillaries that branch out from arteries into every organ and cell (Figure I.2). 

Through coordinated interactions between its structural and cellular components, the 

cardiovascular system ensures adequate delivery of oxygen and substrates to sustain cellular 

metabolism throughout the body's tissues and organs. This supports homoeostatic functions 

necessary for health, growth, and repair. Derangements to any components within this 

integrated circulatory infrastructure can impair cardiovascular function and compromise 

systemic homeostasis if left unaddressed. A deeper understanding of normal cardiovascular 

physiology as well as pathological disease mechanisms remains integral to improving clinical 

outcomes. 

 

Figure I.2.  Organs blood supply 

1.2. Heart function 

As illustrated in Figure I.1, the human heart functions as a dual-pump system, directing 

blood flow throughout the cardiovascular system. It is divided into right and left sides, with the 

right side receiving deoxygenated blood and pumping it to the lungs, while the left side receives 

oxygenated blood from the lungs and pumps it to the body. The heart's primary role is to 

continuously pump blood via precisely coordinated contractions, occurring about 70 times per 
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minute across four chambers [47]. The cardiac cycle consists of systole, when the heart 

contracts to eject blood, and diastole, when the heart relaxes and fills with returning blood 

(Figure I.3).  

 
Figure I.3.  Cardiac cycle of the heart 

Specifically, during systole, atrial contraction propels blood into the relaxed ventricles. 

Ventricular contraction then rapidly increases intraventricular pressure [48], forcefully ejecting 

blood into the pulmonary and systemic arteries. As ventricular relaxation commences diastole, 

the atrioventricular valves reopen, and atrial contraction further fills the ventricles. Through 

this precisely timed sequence of contractions and relaxations, the heart maintains a consistent 

CO of around 5-6 liters per minute [49], ensuring adequate blood flow and tissue perfusion 

throughout the body. 

1.2.1. The function and significance of heart valves 

The four heart valves - the tricuspid, mitral, pulmonary, and aortic valves - are essential 

for regulating unidirectional blood flow through the cardiovascular system by opening and 

closing in coordination with the cardiac cycle [44]. The atrioventricular valves (tricuspid and 

mitral) separate the atria and ventricles, opening passively during ventricular diastole to allow 
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blood flow, and closing during systole to prevent backflow. The semilunar valves (pulmonary 

and aortic) are situated at the exits of the ventricles, opening when ventricular pressure exceeds 

arterial pressure to allow outflow. 

Proper valve function, driven by the dynamic pressure gradients across the heart, is critical 

for optimizing the heart's pumping efficiency and matching blood flow to metabolic needs. 

Valve dysfunctions like stenosis or regurgitation can disrupt hemodynamics, leading to volume 

overload, compensatory cardiac remodeling, and eventual heart failure if left untreated [50,51]. 

Understanding the mechanics and pathologies of the cardiac valves is essential for managing 

various cardiovascular disorders and optimizing the heart's performance as the central 

circulatory pump.  

1.2.2. Conduction System of Heart 

The heart has a specialized electrical conduction system that coordinates the contractions 

of the four cardiac chambers (Figure I.4). The SA node, located in the right atrium, acts as the 

heart's natural pacemaker, generating electrical impulses around 70 beats per minute [52]. 

These impulses spread rapidly through the atrial walls, causing the atria to contract. The AV 

node then intentionally delays the propagation of the signals, allowing time for the ventricles 

to fill with blood before contracting. The impulses then travel down the bundle of His, into the 

right and left bundle branches, and ultimately through the extensive Purkinje fiber network 

within the ventricular myocardium. This organized conduction system facilitates the 

synchronized contraction of the ventricles. 

 

Figure I.4.  Heart conduction system 
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The coordinated electrical activity of the heart's pacemaking and conduction tissues can be 

noninvasively monitored using an ECG, which provides insights into the sequential 

depolarization and repolarization of the cardiac chambers [44]. Disturbances in the timing or 

morphology of the ECG waveforms can indicate underlying conduction abnormalities [53]. 

Proper function of the heart's electrical conduction system is essential for maintaining the heart's 

efficient pumping rhythm. Disruptions can lead to cardiac arrhythmias. Figure I.5 illustrates 

the normal waveform characteristics of an ECG signal during a single cardiac cycle. 

 

Figure I.5.  Normal ECG waveform 

1.3. Arterial network 

1.3.1. Structure 

The human body's arterial network (Figure I.6) is an intricate system that originates from 

the heart and branched vessels that deliver oxygenated blood to the various tissues and organs 

throughout the body. At the center of this network lies the aorta, the largest and most proximal 

artery in the body, which emerges from the left ventricle of the heart and serves as the primary 

conduit for distributing blood. Branching off from the aortic arch are the major, or central, 

arteries responsible for supplying blood to specific regions of the body. For instance, the carotid 

arteries branch off the aortic arch and travel up the neck to deliver blood to the head and brain, 

while the subclavian arteries also branch off the aortic arch and eventually give rise to the 

brachial and radial arteries that supply the upper limbs. 
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Figure I.6.  Arterial network 

As the arteries travel deeper into the body, they become smaller and more muscular, taking 

on the role of regulating blood flow and pressure. These muscular, or peripheral, arteries, such 

as the coronary arteries that nourish the heart muscle, the cerebral arteries that supply the brain, 

and the mesenteric arteries that feed the digestive system, are crucial for maintaining the 

delicate balance of oxygen and nutrient delivery. The radial artery, which originates from the 

brachial artery in the upper arm, is also considered a peripheral artery as it travels down the 

forearm. 

In the lower part of the body, the abdominal aorta gives rise to the iliac arteries, which then 

continue as the femoral arteries in the thighs. The femoral arteries are a vital part of the 

peripheral arterial network, supplying blood to the lower limbs. Ultimately, the arterial network 

becomes increasingly intricate, with the peripheral muscular arteries giving rise to smaller 

vessels called arterioles. These arterioles play a vital role in controlling the flow of blood into 
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the capillary beds, where the exchange of oxygen, nutrients, and waste products takes place 

between the blood and the surrounding tissues. 

1.3.2. Importance of the Arterial Network in Cardiovascular Health 

The arterial network is the primary focus of clinical attention, as it is responsible for the 

delivery of oxygenated blood from the heart to the body's tissues and organs. Monitoring ABP, 

which reflects the force exerted by blood against the arterial walls [54], is a fundamental metric 

for evaluating cardiovascular health. Disruptions or abnormalities in ABP can be indicative of 

various cardiovascular diseases [27-31], as the arterial network is more susceptible to 

pathological changes like atherosclerosis, aneurysms, and vascular spasms [55, 56]. These 

arterial disorders can directly impact BP and tissue perfusion, leading to serious complications. 

In contrast, the venous network primarily functions to return deoxygenated blood back to 

the heart. Venous pressure is generally much lower than arterial pressure, and venous pressure 

measurements are typically less clinically significant than arterial pressure measurements. 

While the venous system is essential for maintaining circulatory integrity, its functional 

importance is relatively lower compared to the arterial network. The arterial network and its 

regulation of BP are the primary focus of cardiovascular risk assessment and management, as 

disruptions can have significant consequences for overall health and well-being. 

1.4. The systemic Circulatory System and Arterial Pressure Regulation 

The systemic circulation is responsible for the transport of oxygenated blood from the heart 

to the body's organs and tissues. This process is facilitated by the coordinated activity of two 

interacting pumps [57]:  

▪ The left ventricle, which acts as the systolic pump, forcefully contracting to eject blood 

into the aorta. 

▪ The aorta and other major elastic arteries, which serve as the diastolic pump, 

maintaining blood flow during ventricular relaxation. 

This dual-pump model, comprising the synchronized activity of the left ventricle and the 

compliant arterial system, provides deeper insights into the hemodynamic regulation of arterial 

pressure. 

Arterial pressure refers to the force exerted by the circulating blood against the walls of 

the arteries [54]. It is typically measured in millimeters of mercury (mmHg), where 1 mmHg is 

equivalent to 133 Pascals [58]. The pressure generated during ventricular contraction is termed 
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systolic pressure, while the pressure during ventricular relaxation is known as diastolic pressure. 

However, arterial pressure incorporates both steady and pulsatile components that fluctuate 

throughout the cardiac cycle [57], as depicted in Figure I.7: 

 

Figure I.7.  Arterial pressure components  

▪ Pulse arterial pressure (PAP): Reflects the fluctuations between systolic and diastolic 

pressures around the MAP value. 

▪ Mean arterial pressure (MAP): Represents the steady pressure component averaged 

over the cardiac cycle. MAP is typically calculated from brachial systolic and diastolic blood 

pressures using the formula: MAP = DBP + 1/3(SBP - DBP). For a more precise calculation, 

the integral of the arterial pressure curve can be used to determine the true mean value. 

The cardiovascular system can be conceptualized as a hydraulic circuit, with the heart 

acting as a rhythmic pump that propels blood through the arterial network, which repeatedly 

divides into smaller vessels to reach the body's tissues. This analogy to an electrical circuit is 

useful, as Ohm's law can be applied to describe the relationship between blood pressure, cardiac 

output, and systemic vascular resistance [57], as shown in Figure I.8. According to Ohm's law, 

the difference in pressure between two points in a circuit (ΔP) is equal to the product of flow 

(CO) and resistance (SVR): ΔP = CO × SVR. This relationship can be further expanded, as 

cardiac output is the product of stroke volume (SV) and HR: ΔP = SV × HR × SVR. This 

formula describes MAP, which tends to remain relatively stable throughout the arterial tree.  
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Figure I.8.  Circulatory system as an electric circuit 

However, this three-parameter model (SV, HR, SVR) is not sufficient to fully explain BP 

values [57], as demonstrated by the example of two individuals (Figure I.9 (a) and (b)) with 

the same MAP but different systolic and diastolic pressures. Comprehensive cardiovascular 

hemodynamic analysis must account for both the steady component of MAP and the pulsatile 

component of PAP. While MAP depends on HR, SV, and SVR, PAP is influenced by the 

interaction between the forward pressure wave originating from left ventricular ejection and the 

reflected pressure waves in the arterial system [59]. Hence, both MAP and PAP must be 

considered for a thorough understanding of arterial pressure regulation. 

 

Figure I.9.  Two PAPs sharing similar MAPs but different pressure values 

2. The Role of Blood Pressure in Cardiovascular Health and Disease 

The human cardiovascular system undergoes inherent dynamic changes over the cardiac 

cycle, manifested as pulsatile arterial pressure (PAP) waveforms. With each heartbeat, the 
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coordinated contractions of the heart chambers pump oxygenated blood into the arteries. The 

resulting pressure pulse then propagates away from the heart throughout the arterial system. 

Under normal physiologic conditions, these waves have a characteristic morphology or shape 

that varies predictably throughout the cardiac cycle. However, CVDs can disrupt the normal 

function and structure of the heart and blood vessels, altering the usual pulse wave morphology 

and resulting in AAPs clinically recognized to be disease indicators [27-29]. 

2.1. Blood Pressure and Cardiovascular Function 

Analysis of the ABP waveform's shape, amplitude, and duration provide a wealth of 

information that aids in the diagnosis and management of different conditions [60]. However, 

the correct interpretation of these waveforms requires a clear understanding of their normal 

characteristics, their connection to the cardiac cycle, and the distinctions in waveforms captured 

from different arterial locations [61].  

During systole, the left ventricle ejects blood into the aorta, resulting in the aortic pressure 

reaching its peak value, known as SBP, followed by a decline to its foot value referred to as 

DBP [59]. A slight notch is often observed on the ascending limb of the aortic pressure pulse, 

also known as an anacrotic notch [62]. This notch gives rise to two distinct waves, namely the 

anacrotic and tidal waves. Furthermore, the descending limb is interrupted by an incisura, a 

sharp dip produced by the aortic valve closure, followed by a smaller wave before a more 

gradual decrease in pressure until the next systole [27].  

As the arterial pulse propagates towards the peripheral arteries, several changes occur, 

including a steeper initial upstroke, a less pronounced anacrotic notch, a higher SBP and a lower 

DBP [27,59,62]. Additionally, the tidal wave becomes smaller compared to the initial wave, 

which is known as the percussion wave [62]. Moreover, the central aortic pulse's incisura 

progressively disappears and is replaced by a lower dip referred to as the dicrotic notch, which 

is then succeeded by the appearance of a positive wave known as the dicrotic wave [27]. Figure 

I.10 compares the central aortic pulse and the peripheral radial pulse waveforms, illustrating 

their distinct features that align with the aforementioned characteristics. 
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Figure I.10.  Central and peripheral arterial pulse characteristics 

2.2. Blood Pressure Profiles in Cardiovascular Pathologies  

2.2.1. Arterial Pulse Waveforms in Cardiovascular Diseases 

The pathophysiological mechanisms underlying CVD impact the morphological patterns 

of the ABP waveform through changes to its characteristic shape, amplitude and duration. 

Careful analysis of these biometric changes provides valuable insights for diagnosing and 

managing various conditions such as diabetes, obstructive sleep apnea, diastolic dysfunction, 

hypertension, and coronary artery disease [60].  

Distinct AAP waveform morphologies have been linked to specific cardiovascular 

pathologies. For instance, the bisferiens pulse, characterized by two prominent systolic waves, 

has been observed in patients with pure AR, hypertrophic cardiomyopathy, or the coexistence 

of AS and severe AR [28]. Conversely, severe AS may cause a weak (parvus) pulse with a 

delayed systolic peak (tardus) [61], as well as an anacrotic pulse, which is typically 

characterized by a small premature systolic peak prior to reaching the main peak. 

Another notable AAP waveform pattern is the dicrotic pulse, which features a dicrotic 

notch nearly reaching the baseline, followed by a large dicrotic wave. This pulse morphology 

has been associated with various cardiac conditions characterized by reduced cardiac output, 

such as pulmonary embolism, constrictive pericarditis, pericardial tamponade, and 

cardiomyopathies [63-65]. Similarly, a deep dicrotic notch with a steep downstroke may 

indicate low systemic vascular resistance [59], as well as sepsis [66]. 
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Furthermore, the bounding pulse, characterized by a rapid upstroke and widened PP [67], 

can be present in hyperkinetic states (e.g., thyrotoxicosis, fever, anemia) or pathological 

conditions like arteriovenous fistula and AR [28]. A specific type of bounding pulse, known as 

the water hammer pulse, is commonly observed in cases of severe AR, marked by a quick rise 

followed by a sharp descent in pressure [68].  

The following figure further illustrate the aforementioned abnormalities: 

 

Figure I.11.  Abnormal arterial pulse patterns in cardiovascular diseases 

2.2.2. Hypertension 

Hypertension, or elevated blood pressure, is a highly prevalent medical condition and 

significant risk factor for premature mortality worldwide. It not only elevates systolic and 

diastolic blood pressure values but also alters pulse wave morphology through its various 

cardiovascular effects that can develop over a person's lifetime, including coronary disease, left 

ventricular hypertrophy, valvular heart diseases, atrial fibrillation, cerebral stroke, and renal 

failure - each potentially manifested as unique AAP forms. Unfortunately, hypertensive 
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individuals often remain unaware of their condition until they experience serious health 

complications. Beyond its direct effects on cardiovascular health, hypertension has far-reaching 

consequences, causing decreased productivity, economic losses, and even contributing to traffic 

accidents [3,4]. 

3. Conventional Blood Pressure Measurement Techniques 

Considering the widespread burden of CVD and the often-asymptomatic nature of 

hypertension, careful preventative attention and regular ABP monitoring are essential to 

mitigate adverse public health consequences. Healthcare professionals routinely measure ABP, 

either directly through invasive methods or indirectly through non-invasive techniques. 

The invasive approach involves the direct measurement of continuous ABP curves to 

identify any fluctuations or abnormalities within the waveforms. This method typically requires 

the insertion of a catheter into the radial artery (Figure I.12), as it presents a relatively low-risk 

and highly palpable access point [69]. By continuously monitoring the ABP waveform, 

clinicians can obtain valuable insights into the underlying pathophysiological mechanisms and 

patterns associated with various cardiovascular conditions, as emphasized in the previous 

sections. 

 

Figure I.12.  Invasive blood pressure measurement 

On the other hand, non-invasive methods using cuff-based devices (Figure I.13) offer safer 

and more cost-effective alternatives for ABP measurement. These techniques are commonly 

employed to determine systolic and diastolic pressure values, which are then used to assess the 

presence of high BP (hypertension) or low BP (hypotension). While lacking the level of detail 
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provided by invasive monitoring, non-invasive BP measurement remains a widely adopted 

approach in clinical practice due to its accessibility and reduced risk to the patient. 

 

Figure I.13.  Cuff-based blood pressure measurement 

3.1. Limitations and Challenges  

Currently, auscultation (refer to Figure I.13) is considered the clinical gold standard for 

intermittent BP measurement [70]. However, this method requires trained personnel to perform 

the measurement accurately and relies on the observer's hearing ability, which can sometimes 

lead to variability in readings. Alternatively, automated devices offer more independent self-

monitoring (refer to Figure I.14) but have limitations, such as discomfort during cuff use and 

inaccuracies resulting from improperly fitting cuff sizes or unique arm dimensions [71-75]. 

 

Figure I.14.  Automated cuff-based blood pressure measurement 

In contrast, invasive arterial catheterization facilitates continuous ABP monitoring and 

AAP identification through direct arterial access. Although this technique serves as the gold 
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standard for continuous ABP measurement [76], it is mainly reserved for critical care settings 

due to the potential complications, including embolism, ischemic damage, bleeding, 

pseudoaneurysm, and infection [34]. 

Noninvasive alternatives, such as vascular unloading (Figure I.15) and arterial tonometry 

(Figure I.16), provide another avenue for continuous ABP measurement. Vascular unloading 

involves using a variable finger-cuff and a PPG sensor to estimate the intra-arterial pressure by 

analyzing changes in blood volume over time [77]. However, prolonged cuff use induces 

discomfort, numbness and arterial congestion [78]. Arterial tonometry employs a pressure 

transducer for cuff-less measurement but may exhibit reduced accuracy in obese individuals 

due to slowed pulse wave propagation to the skin [78]. 

 

Figure I.15.  Principle of vascular unloading measurement  

 

Figure I.16.  Principle of tonometry measurement  
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Ultimately, whatever the continuous measurement approach employed, it still requires 

medical expertise to interpret waveforms for AAP waveforms identification. Thus, advances 

are warranted to non-invasively identify these abnormalities through high-fidelity signals and 

specialized systems, bridging the gap between clinical expertise and patient self-care. 

4. The Emergence of AI-Driven Blood Pressure Assessment Approaches 

4.1. Introduction to Machine Learning  

ML is a field of AI that enables systems to learn and improve from experience without 

being explicitly programmed [79]. It refers to algorithms that can automatically learn from 

patterns within data to make future predictions. ML algorithms use statistical techniques to 

perform specific tasks effectively, such as classification, regression, clustering, and prediction, 

without relying on rule-based programming. The main types of learning include: 

(1) Supervised learning: Algorithms learn based on labeled examples in a training dataset 

containing input-output pairs. Models learn the mapping function from input to output to 

make predictions on new unlabeled data. This approach is well-suited for regression 

(predicting continuous values) or classification (predicting discrete labels) tasks like blood 

pressure prediction.  

(2) Unsupervised learning: Algorithms find hidden patterns within unlabeled data. Models 

cluster or group similar inputs to discover relationships without labeled responses. This 

technique is useful for exploratory analysis but not prediction. 

(3) Reinforcement learning: Algorithms learn optimal actions through trial-and-error 

interactions with an environment to maximize a reward function. Agents are not told which 

actions to take but learn via feedback to solve problems over time. This method is applied in 

game environments but less suitable for clinical prediction tasks. 

Supervised algorithms are well-suited for blood pressure prediction given availability of 

labeled physiological signals and outcomes. Through mapping input features to target outputs 

like systolic, diastolic or arterial pressure patterns, ML shows potential for non-invasive 

hemodynamic assessment. Rigorous model development following best practices can help 

validate this application both within and outside the clinical.  

4.2. Supervised Learning Model Development  

Developing a supervised learning model involves several steps: 
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(1) Data collection and curation: Gathering high-quality, representative, and relevant data 

is crucial for model performance.  

(2) Data preprocessing and feature engineering: Preparing the data by handling missing 

values, encoding categorical variables, and extracting relevant features. 

(3) Algorithm selection: Choosing the appropriate ML algorithm based on the problem type 

(classification or regression.) and the characteristics of the data. 

(4) Training & Validation: The model is fitted to training data and evaluated on validation 

data to optimize hyperparameters and prevent overfitting. 

(5) Testing: Final model performance is assessed on an unlabeled test set to predict new 

examples. 

4.3. Evaluating a Supervised Learning model 

Evaluating the performance of a supervised learning model is a crucial step in the model 

development process. This involves assessing the model's ability to make accurate predictions 

on unseen data, as well as identifying potential issues like overfitting and underfitting.  

Overfitting occurs when the model performs exceptionally well on the training data but 

fails to generalize to new, unseen data [80]. This results in high-performance metrics on the 

training data but significantly worse performance on the test data. Conversely, underfitting is 

characterized by low performance on both the training and test data [81], indicating that the 

model is too simple to capture the underlying patterns in the data. 

4.2.1. Classification Metrics for Categorical Outcomes 

Common performance metrics used to evaluate classification models include accuracy, 

precision, recall (sensitivity), and F1 score. For example, in hypertension classification, a 

machine learning model produces four possible outcomes: 

(a) Hypertensive data correctly classified as hypertensives. (b) Hypertensive data 

incorrectly classified as non-hypertensives. (c) Non-hypertensive data correctly classified as 

non-hypertensives. (d) Non-hypertensive data incorrectly classified as hypertensives. 

Accuracy: Percentage of correct predictions (a and c) out of total data samples (a, b, c and 

d). 

Precision: Percentage of true positive predictions (a) relative to the total number of positive 

predictions (a and d). 
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Recall (sensitivity): Percentage of true positive predictions (a) relative to the actual number 

of positive samples (a and b). 

Specificity: Percentage of negatives (c) correctly identified among all actual negative 

samples (c and d). 

F1 Score: Harmonic mean of precision and recall. 

4.2.2. Regression Metrics for Continuous Outcomes 

Regression models are often simpler to evaluate, as the targets are continuous rather than 

categorical. Considering a model trained to estimate BP values like SBP, DBP, or MAP, error-

based metrics are frequently employed to quantify the differences between actual and predicted 

BP values:  

Mean Absolute Error (MAE): Average absolute difference between predictions (BP 

estimates) and targets (Actual BP values). 

Mean Squared Error (MSE): Average squared difference between predictions and targets. 

Standard Deviation (STD): Squared root variance of predictions/targets errors. 

4.2.3. Cross-validating a model 

To reliably estimate real-world performance, metrics should be calculated via k-fold cross-

validation on the test set rather than a single train-test split [82]. This involves repeatedly 

training and evaluating the model on different subsets of the data:  

Cross-Validation: Data is split into k equally sized subsets, with k-1 used for training and the 

remaining subset for validation. The process is repeated k times, each time using a different 

validation set. Results are averaged to improve accuracy. 

By Comparing the aforementioned performance metrics across supervised algorithms and 

their hyperparameters can help identify the most suitable model for the ABP prediction tasks. 

4.4. Leveraging Machine Learning for Non-Invasive Monitoring 

Given the limitations associated with conventional BP measurement techniques, 

researchers have begun to explore the potential of ML for improving sustained BP monitoring. 

Technological advancements in wearable PPG sensors, coupled with the emergence of 

sophisticated ML models, have shown promise for the non-invasive estimation of BP trends 

and the classification of hypertension status. 
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Typically, two main approaches have been explored in this domain. The first approach 

relies exclusively on PPG signals, extracting a variety of informative attributes from the 

waveforms. These attributes span the time-domain, frequency-domain, time-frequency domain, 

and morphological features, capturing various aspects of the underlying cardiovascular 

dynamics. The extracted characteristics are then fed as input parameters into ML models to 

produce distinct predictions, such as SBP, DBP, MAP, as well as categorical BP class-level for 

classification purposes (e.g., normotensive, prehypertensive, hypertensive). 

The second approach incorporates PPG signals alongside other physiological data, such as 

ECG recordings. This bio-signal combination is typically used to compute the PAT or PTT 

parameters - the elapsed time from when the heart produces a pulse until that same pulse wave 

eventually surfaces at the PPG sensing site. The PAT or PTT measurements are used alongside 

other PPG features as inputs into ML models for BP estimation and classification tasks. 

 By leveraging the inherent relationships between the PPG and ECG signals or the 

exclusive use of PPG signals, these ML-based techniques aim to provide a non-invasive, cost-

effective, and continuous alternative to traditional BP measurement methods. Ongoing research 

in this field continues to explore the optimal feature engineering techniques, ML model 

architectures, and multimodal data integration strategies to further enhance the performance 

and reliability of non-invasive BP monitoring systems.  

4.3.1. Principles of Photoplethysmography 

PPG is a non-invasive optical technique that has been employed for over 80 years to 

measure changes in blood volume within living tissues [83]. This technology utilizes light-

based sensing to quantify signals from convenient sites like the wrist, finger, or earlobe [84]. 

The sensor design can be either transmissive, where the light source and photodetector are 

positioned on opposing sides of the tissue, or reflective, where they are positioned on the same 

(Figure I.17). Regardless of configuration, PPG employs skin surface optical signals without 

direct contact, enabling non-invasive tracking of cardiovascular dynamics. The underlying 

principle lies in the fact that the amount of light absorbed or reflected from vascularized skin 

varies dynamically with shifts in blood volume within the sensing area, encompassing arteries, 

veins and capillaries [83].  
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Figure I.17.  Photoplethysmography measurement from a finger 

PPG signals provide a wealth of physiological data that can aid in identifying abnormal 

health conditions in both outpatient and clinical settings [85, 86]. These signals consist of 

pulsatile (AC) and non-pulsatile (DC) elements [87]. The AC element conveys volumetric 

changes related to the cardiac cycle, enabling HR measurement. In contrast, the DC portion 

offers insight into vascular volume fluctuations influenced by factors such as respiration, 

sympathetic activity and thermoregulation [88].  

By optically monitoring microvascular blood displacement at easily accessible superficial 

sites, PPG serves as a convenient non-invasive and cost-effective tool for cardiovascular 

monitoring without need for intrusive devices [86, 89]. This allows detection of various 

hemodynamic parameters through a single sensor, including blood oxygen saturation, heart 

rate, blood pressure, cardiac output, respiration, arterial stiffness, endothelial function, 

microvascular blood flow, and autonomic nervous system activity [86]. This ability to evaluate 

microcirculatory impacts through simple optical sensing carries promise for expanding 

applications in hemodynamic assessment. 

4.3.2. Electrocardiography, Photoplethysmography and Arterial Blood Pressure 

The ABP, ECG, and PPG signals are closely interrelated as they provide insights into 

cardiovascular physiology. Similar to the ECG waveform, the AC component of the PPG signal 

can be used to estimate heart rate [90]. However, the underlying principles by which they 

capture this physiological parameter differ, as illustrated in Figure I.18. The ECG measures 



Chapter I: Understanding Blood Pressure Behavior in Health and Cardiovascular Pathology 

 

33 

 

the electrical activity of the heart, whereas the PPG monitors the mechanical effects of these 

electrical stimulations through changes in blood volume within the pressurized arteries.  

 

Figure I.18.  Heart rate measurement in PPG and ECG signals 

Specifically, the ECG's QRS complex represents the electrical depolarization of the 

myocardium or heart muscle. This electrical activation triggers the mechanical contraction of 

the heart to forcibly pump blood into the systemic arteries, generating the systolic arterial 

pressure wave. Meanwhile, the ECG’s T wave corresponds to the ventricular relaxation, during 

which the aortic valve closes, and the aorta and elastic arteries continue to squeeze the blood 

while the heart refills. This arterial compliance leads to the formation of the diastolic arterial 

pressure wave, completing the arterial pulse wave. 

This electromechanical coupling alters arterial pressures, leading to rapid fluctuations in 

blood flow volume that attenuate the PPG sensor's light source. This permits detection of blood 

flow volume changes throughout the cardiac cycle. As Figure I.19 depicts, the PPG waveform's 

systolic, dicrotic, and diastolic components closely resemble those of the ABP signal. By 

identifying the characteristic ECG R-wave peaks and PPG/ABP systolic peaks, heart rate can 

be extracted from each signal by computing their coinciding peaks over one minute. 
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Figure I.19.  Waveform similarities between an ABP and PPG signals 

The temporal relationship between the ECG R wave and corresponding PPG systolic 

upstroke is termed the PAT or PTT, depending on measurement points [83]. This time interval 

provides valuable data about vascular properties as it is influenced by factors such as arterial 

stiffness and pressure wave propagation through the arterial tree [91]. The complementary 

nature of ECG and PPG signals has facilitated multimodal ML approaches integrating these 

waveforms to enhance ABP monitoring accuracy and robustness, especially for wearable health 

technologies and clinical applications. 

4.3.3. Potential and Challenges of Current Machine Learning Approaches  

Recent research on BP monitoring has explored various approaches, each with distinct 

design considerations regarding the sensing device, input features, ML algorithms, and target 

output. Table I.1 outlines the different design aspects currently reported in the literature. 

Table I.1 Different design aspects currently reported in the literature. 

Research Sensor Features Algorithm Dataset  Output Performance 

 

[35] 

 

PPG 

 

Spectral and 

morphological 

features 

 

ANN 

 

58,795 

ABP/PPG 

signals 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg)  

 

 

MAE ± STD: 

  4.02 ± 2.79  

2.27 ± 1.82  
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[92] 

 

PPG 

 

Time-domain and 

morphological 

features  

 

RF 

 

11492 PPG 

pulse signals 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg)  

 

MAE ± STD: 

4.21 ± 7.59 

3.24 ± 5.39 

 

[93] 

 

PPG 

 

Temporal and 

frequency 

features  

 

CNN (ResNet) 

 

700 hours of 

ABP&PPG 

recordings 

 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

 

MAE: 

9.43 

6.88 

 

[94] 

 

PPG 

 

Raw pulse wave 

signal  

 

CNN  

 

50,000 PPG 

pulse wave 

 

 

BP values: 

SBP (mmHg) 

 

 

STD: 

11.40 

 

[95] 

 

PPG 

 

Time-domain and 

morphological 

features 

 

 

LSTM 

 

9000 PPG 

segments 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

 

MAE ± STD: 

 3.23 ± 4.74  

1.59 ± 1.96 

 

 

[96] 

 

 

PPG 

 

1024 PPG 

samples 

 

CNN 

 

127,260 

ABP&PPG 

segments 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

MAP (mmHg) 

 

 

MAE ± STD: 

5.727 ± 9.162 

2.310 ± 4.437 

3.449 ± 6.147  

 

[97]  

 

ECG & 

PPG  

 

PTT, heart rate, 

PPG 

morphological 

features 

 

 

SVM 

 

4254 

ABP&PPG 

signals 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

MAP (mmHg) 

  

 

MAE ± STD: 

12.38 ± 16.17 

6.34 ± 8.45 

7.52 ± 9.51 

  

[98] 

  

ECG & 

PPG 

 

 

PAT, heart rate, 

Time-domain and 

morphological  

PPG features 

 

 

AdaBoost 

 

3663 

ABP&PPG 

signals  

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

MAP (mmHg) 

 

 

MAE ± STD: 

11.17 ± 10.09 

5.35 ± 6.14 

5.92± 5.38 

 

[99] 

 

PPG 

 

 

256 PPG 

samples 

 

CNN 

 

100 

ABP&PPG 

signals 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

MAP (mmHg) 

 

 

MAE ± STD: 

3.68 ± 4.42  

1.97 ± 2.92 

2.17 ± 3.06 

  

[100] 

 

PPG  

 

625 PPG 

samples 

 

CNN 

 

1227 

ABP&PPG 

signals 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

MAP (mmHg) 

 

 

MAE ± STD: 

7.95 ± 10.35 

4.11 ± 5.5 

3.83± 5.13 

  

[101] 

 

PPG  

 

RGB PPG 

images 

 

CNN 

 

12000 

ABP&PPG 

signals 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

 

 

 

MAE ± STD: 

7.419 ± 6.849 

3.395±3.414 

 

 

[102] 

 

PPG 

 

Time-domain and 

morphological 

features 

 

 

ANN 

 

2000 

ABP&PPG 

signals 

 

 

BP values: 

SBP (mmHg) 

 DBP (mmHg) 

 

 

MAE ± STD: 

4.23 ± 5.30 

 4.46 ± 6.37 

 

  

[36] 

 

PPG  

 

TF-features using 

STFT 

 

 

BLSTM 

 

900 PPG 

segments 

 

 BP level trials: 

NT vs. HT 

NT vs. PHT 

 (NT+PHT) vs. 

HT  

 

 

F1 scores: 

97.29 % 

97.39 % 

93.93 % 
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 [103] 

  

PPG 

 

2100 PPG 

features points 

 

 

KNN 

 

900 PPG 

segments 

 

BP level trials: 

NT vs. HT 

NT vs. PHT 

 (NT+PHT) vs. 

HT  

 

 

F1 scores: 

100 % 

100 % 

90. 80 % 

 

[104] 

 

PPG 

 

RGB images 

using CWT 

(scalogram) 

 

 

CNN 

 

2904 PPG 

images 

 

BP level trials: 

NT vs. HT 

NT vs. PHT 

 (NT+PHT) vs. 

HT  

 

 

F1 scores: 

80.52 % 

92.55 % 

82.95 % 

 

[105]  

  

ECG & 

PPG 

 

PAT and 10 PPG 

features 

 

 

KNN 

 

121 

ABP&PPG 

signals  

 

BP level trials: 

NT vs. HT 

NT vs. PHT 

 (NT+PHT) vs. 

HT  

 

 

F1 scores: 

84.34 % 

94.84 % 

88.49%  

As the table illustrates, researchers have predominantly focused on addressing the 

limitations of traditional BP measurement methods. This is typically achieved through either 

estimating continuous BP values or classifying BP into discrete levels. The underlying 

motivation behind these studies is to address the prevalence and asymptomatic nature of 

hypertension [30, 31], leveraging the capabilities of portable and wearable devices. Studies in 

[95, 100-102] have achieved good results in BP estimation tasks, meeting the standards set by 

the BHS and the AAMI [106, 107]. Similarly, the proposed classification systems have reported 

impressive F1 scores up to 100%. While these technical achievements are commendable, to 

realize desirable public health outcomes, the research objectives must extend beyond system 

performance. Factors such as accuracy, reliability, accessibility, and seamless integration into 

clinical workflows should be prioritized to ensure the successful translation of these ML-based 

solutions into practical, user-friendly, and clinically relevant tools. 

Recent investigations [108,109] have compared the performance of ML models that 

integrate features from both ECG and PPG data, against models relying solely on PPG-derived 

features. Findings indicate that the use of combined ECG and PPG features can lead to relatively 

improved BP performance. However, the results were unable to exceed the outstanding 

performance attained by other approaches focusing solely on PPG-based BP estimation 

techniques [110-113, 95]. 

One key challenge with ECG-based approaches is the precise positioning of chest 

electrodes. This specific electrode arrangement protocol may be unfamiliar and inconvenient 

for the general public [114, 115], particularly in the context of wearable applications where the 
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ECG unit may protrude beneath the user's clothing [116]. Accounting for these integration 

challenges discussed, PPG emerges as the most convenient sensor to be utilized in wearable or 

portable health technologies [114, 117]. This is particularly relevant as modern smartphones 

and smartwatches are increasingly equipped with PPG sensing functionality [116]. 

While the integration of PPG signals holds promise for ML-based BP monitoring, there 

are notable technical challenges that need to be addressed. Despite the reduced errors reported 

in BP prediction studies [92, 95, 97, 98, 102, 105], extracting morphological features from PPG 

signals is impractical. PPG is susceptible to motion artefacts [38], which constrains the 

flexibility in the feature extraction process due to the complex preprocessing requirements and 

potential for outlier interference. An optimal BP model would benefit from a simpler yet high-

performing design. Time-domain and transform techniques, such as TF analysis, may be more 

reasonable for applications on affordable devices. 

Additionally, the computational complexity of DL approaches can compromise the 

usability of these systems on low-cost technologies. DNN require powerful GPUs during the 

training phase, which can be a barrier to enabling accessible BP monitoring on affordable 

devices. For instance, the BLSTM model proposed by Tjahjadi et al. [36] and the CNN model 

developed by Liang et al. [104] required over 33 and 350 minutes of training time, respectively, 

even with smaller datasets. Similarly, the ResNet-GRU model utilized in [93] is 

computationally expensive and exhibits slow convergence. This confirms the exceptional 

hardware demands of DL algorithms. While cloud computing could address some of the 

challenges posed by DNN architectures, it introduces concerns related to latency, costs, and 

privacy due to the transmission of personal health data. 

Furthermore, most studies have inadequately accounted for dataset diversity, which is 

essential for ensuring the generalizability of the developed models. For example, the figshare 

database used in [36, 104] lacked diversity in systolic and diastolic BP values. Similarly, some 

studies have excluded extreme high and low BP readings without clear justification [102], while 

others have removed records containing AAP patterns, such as the bisferiens pattern, despite 

its potential association with hypertension [105]. This underestimation of AAP pattern diversity 

goes beyond just data collection. Previous studies have predominantly focused on estimating 

ABP waveforms using ML and DL techniques [118, 119], neglecting the importance of 

identifying abnormalities that may occur in these waveforms. Exploring AAP morphologies 

has the potential to revolutionize cardiovascular assessment beyond just pressure values or 
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predicted waveforms. Nonetheless, even without addressing these gaps, ideal datasets for ML-

based BP monitoring should, at a minimum, account for both the size and the diversity of AAP 

patterns, alongside comprehensive representation of BP values.  

5. Motivation and Rationale for the Current Research 

The field of arterial pressure prediction has seen a proliferation of research, exploring PPG 

signals in conjunction with various ML and DL approaches. These efforts have resulted in 

successful estimations of SBP, DBP, MAP, and even ABP waveforms, as well as classifications 

of normotension, prehypertension, and hypertension. However, despite these advancements in 

utilizing PPG signals, the non-invasive identification of the morphological state of ABP 

waveforms remains an area of concern in the existing literature. This is particularly important 

as specific CVDs have been linked to distinct AAP morphologies. 

Some studies have attempted to address this issue by relying on TCPD [120], which involves 

classifying the radial pulse into different morphological patterns, each corresponding to 

different diseases and syndromes in TCM [121,122]. However, in western medicine, the 

classification of arterial pulses and their relation to diseases differs from the approach used in 

TCM. 

Therefore, advancements are needed to non-invasively characterize AAPs through PPG 

signals and specialized systems, bridging the gap between clinical expertise and patient self-

care. This would enable the development of comprehensive cardiovascular assessment tools 

that go beyond just predicting pressure values or waveform estimates, and instead, identify 

abnormalities that may be indicative of underlying health conditions. Addressing this gap in the 

existing literature could revolutionize the field of arterial pressure prediction, allowing for more 

holistic and clinically relevant non-invasive monitoring solutions. By incorporating the 

identification of AAP morphologies, these advancements could enhance the potential of PPG-

based systems to provide valuable insights into an individual's cardiovascular health status. 

5.1. Addressing the Need for Improved Cardiovascular Management 

Ongoing arterial pressure research generally aims to either provide more convenient 

alternative BP measurement solutions or contribute to early CVD diagnosis through 

hypertension risk classification. While both approaches ultimately relate to cardiovascular 

management through hypertension profiling, the latter approach is more impactful when 

considering global health outcomes. This is due to the poor public understanding of acceptable 
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BP values [123]. For example, over half of volunteers in one study struggled to correctly 

estimate a normal BP range [124], highlighting the need for simplifying BP monitoring systems 

beyond just non-invasiveness. An ideal method would promptly notify patients if their BP 

becomes abnormal, making classification approaches potentially more suitable than regression 

techniques. 

Nevertheless, classifiers could also facilitate targeted CVD identification beyond 

hypertension alone while still utilizing arterial pressure waveforms. This can be achieved by 

capitalizing on the inherent association between CVDs and AAP patterns within these 

waveforms, alongside the correlating nature between PPG and ABP signals. Specifically, PPG 

signals provide insights into cardiovascular functioning, enabling AI to identify abnormal 

patterns predictive of specific AAP manifestations linked to underlying CVDs. Unfortunately, 

while PPG has been used to predict various diseases, its use in predicting arterial pressure 

abnormalities is limited to hypertension and hypotension [90]. Although AAPs have historically 

related to CVDs, current literature has not fully exploited arterial pressure predictive 

capabilities. 

Accordingly, this research aims to develop a classification system capable of predicting 

not only hypertension risk but also the most common abnormalities that manifest within arterial 

pressure waveforms. Additionally, the classifiers will be optimized to provide more accurate 

BP value estimates. These objectives are based on an optimization strategy that adopts 

additional classification parameters beyond ML’s internal hyperparameters. Overall, the 

overarching goals are to enable accessible sustained self-monitoring, facilitate early disease 

detection, assist clinical decision-making, and ultimately contribute to improved global 

cardiovascular health outcomes. 

5.2. Bridging the Gap between Technical Advancements and Clinical Adoption 

The development of effective ML classifiers for arterial pressure prediction necessitates a 

clear delineation of the intended usage environment and target end-users. The design 

considerations for clinical applications may differ significantly from those for consumer-

oriented technologies. 

In clinical settings, where these technologies will be directly integrated into healthcare 

workflows, transparency and interpretability of the ML models are of paramount importance 

[37]. Unlike consumer-oriented systems, where performance optimization may be the primary 

concern, clinically deployed models must be explainable and aligned with evidence-based 
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medical practices. An ML model that is exclusively optimized for performance, regardless of 

the underlying parameters or algorithmic details, lacks clinical validity. For example, relying 

on TF analysis-based predictors to boost the model's performance yields a black-box system 

that is unintelligible not only to healthcare practitioners but also to the engineers who developed 

the system. Rather than obscure feature sets, evidence-based inputs, such as time-domain or 

morphological features, would be more appropriate. 

Algorithm selection is also problematic for the clinical translation of these technologies. 

As discussed previously, wearable technologies demand computationally efficient algorithms, 

avoiding the use of resource-intensive DNN architectures. However, the algorithmic constraints 

are even tighter in clinical contexts, requiring the use of simpler architectures. Parametric 

models offer a simple and transparent design structure, as the connection between variables is 

explicitly denoted by a set of parameters [57]. However, this simplicity may limit their ability 

to capture the nonlinear relationships within PPG inputs. Non-parametric models, on the other 

hand, provide more flexibility in handling such nonlinearity. Nevertheless, training such models 

on large datasets may compromise their transparency. 

By reviewing these challenges, emphasis should be placed on constraining the classifiers' 

optimization by minimizing their internal parametric structure while maintaining acceptable 

performance potential. This balanced approach can help ensure the clinical relevance and 

adoption of the developed solutions. By addressing these critical challenges, this research aims 

to advance the state-of-the-art in ML-powered, non-invasive cardiovascular assessment. This 

would empower clinicians to proactively manage heart health and mitigate the global burden 

of CVDs through comprehensive arterial pressure waveform analysis. 
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1. Analysis of Existing Cardiovascular Disease Classification Approaches 

1.1. Current State of the Art  

The healthcare industry has witnessed a growing interest in leveraging ML techniques for 

CVD management. Numerous studies have explored the potential of PPG-based systems in 

predicting and classifying various cardiovascular conditions, as illustrated in Table II.1. 

Table II.1 Current CVD classification systems. 

Authors Features Research 

subjects  

Output Classifier Performance 

 

Liu et al. [125] 

 

Time-domain 

features 

 

228 

 

Arrhythmias 

 

CNN 
Accuracy: 

85% 

 

 
Al Fahoum et al. [126] 

 

Time-domain and 

morphological 

features  

 

360 

 

CVDs group 

vs. healthy  

 

NB 

ANN 

KNN 

Accuracy: 

94.44% 

89.56% 

82.08% 

 

 

Putra et al. [19] 

 

 

Time and 

frequency-domain 

features  

 

 

58 

 

 

CHD 

 

 

KNN 

 

Accuracy: 

90.9% 

 

 

Hackstein et al. [18] 

 

 

Frequency-

domain features  

 

 

55 

 

Aortic 

aneurysms 

 

KNN 

NB 

Average accuracy: 
60% 

 

 

Hosseini et al. [20] 

 

 

Time-domain 

features  

 

 

48 

 

 

CAD 

 

 

KNN 

 

Accuracy: 

81.5% 

 

 

De Moraes et al. [21] 

 

 

Time-domain 

features  

 

 

32 

 

 

Cardiopathies 

 

 

KNN 

MLP 

 

Accuracy range: 

88.57%-100% 

 

 

Chiang et al. [127] 

 

 

PPG perfusion 

index (AC/DC) 

 

 

74 

 

 

Blood flow & 

stenosis degree 

 

 

 

SVM 

 

Accuracies: 

88.61% & 87.84% 

 

 

Kang et al. [128] 

 

 

Morphological 

features 

 

 

64 

 

 

Cerebral 

artery stenosis 

 

 

 

LDA 

 

Accuracy: 

92.2% 

 

Väliaho et al. [129] 

 

Time-domain and 

morphological 

features 

 

 

359 

 

 

Atrial 

fibrillation 

 

LR 
Sensitivity, specificity: 

96.4%, 96.3%  

One such study by Liu et al. [125] utilized 10-second PPG segments annotated by 

cardiologists against their corresponding ECGs exhibiting various arrhythmias, including sinus 

rhythm, premature ventricular contraction, premature atrial contraction, ventricular 

tachycardia, supraventricular tachycardia, and atrial fibrillation. A CNN model evaluated the 

segments, achieving 85% overall classification accuracy. In a separate study, Al Fahoum et al. 
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[126] employed seven distinct machine learning classifiers to sort PPG-derived features into 

two classes. The first class consisted of healthy subjects, while the second encompassed five 

different cardiovascular disorders: deep vein thrombosis, atrial fibrillation, acute coronary 

syndrome, heart failure, and cerebrovascular accident. The NB classifier demonstrated the best 

performance, attaining 94.44% classification accuracy. 

Another study by Putra et al. [19] focused on the detection of CHD. They explored 

different feature selection methods to optimize the KNN model's performance, achieving an 

impressive accuracy of 90.9% using the Pearson Correlation selection method. Hackstein et al. 

[18] used NB and KNN classifiers with feature selection to predict aortic aneurysms, reaching 

60% overall accuracy. Hosseini et al. [20] employed a set of time-domain PPG features in a 

KNN model to identify the risk of CAD, achieving an accuracy of 81.5%. De Moraes et al. [21] 

used time-domain input features to classify cardiopathies reaching an accuracy of up to 100% 

with MLP and KNN models. 

Researchers have also explored the use of PPG signals for specific cardiovascular 

assessments. For example, Chiang et al. [127] utilized SVM to evaluate blood flow volume and 

the degree of stenosis at arteriovenous fistulas in individuals undergoing hemodialysis, 

achieving accuracies of 88.61% and 87.84%, respectively. Kang et al. [128] employed LDA on 

PPG features to identify cerebral artery stenosis subjects, achieving high classification rates of 

93.8% sensitivity, 90.6% specificity and 92.2% accuracy. Additionally, Väliaho et al. [129] 

investigated the utility of ten PPG features for atrial fibrillation detection using LR, resulting in 

96.4% sensitivity and 96.3% specificity. 

Beyond disease-specific predictions, researchers have also explored the potential of PPG 

signals for broader cardiovascular risk classification (Table II.2). For instance, Soltane et al. 

[130] utilized dimensionally reduced PPG features to differentiate between healthy individuals 

and those at vascular risk. The study reported classification accuracies of 94.7% and 91.17% 

using MLP and GMM approaches, respectively. Shobitha et al. [131] investigated the 

classification of PPG data into healthy or at-risk of CVD categories. The researchers established 

466 feature combinations and employed ELM and SVM classifiers to perform the task. The 

study achieved sensitivities of 90.33% and 91.33%, and specificities of 89.33% and 89.67%, 

for the ELM and SVM models, respectively. Ramachandran et al. [24] extracted PPG features 

through singular value decomposition, statistical analysis, and discrete wavelet transform, 

which were evaluated using a SDC and GMM, achieving an accuracy of 97.88% and 96.64%, 
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respectively. Prabhakar et al. [23] explored metaheuristic optimization methods to reduce PPG 

dimensionality before various classifier models, achieving 99.48% accuracy using ANN and 

LR classifiers. Palanisamy et al. [22] tested 12 classifiers on dimensionally reduced PPG 

waveforms, with harmonic search classifiers demonstrating 98.31% accuracy.  

Table II.2. Cardiovascular risk classification systems. 

Authors Features Research 

subjects  

Classifier Performance 

 

 

Soltane et al. [130] 

 

 

Dimensionally reduced 

time-domain features 

 

 

48 

 

 

MLP 

GMM 

 

Accuracy: 
94.7% 

91.17% 

 

 

Shobitha et al. [131] 

 

 

Time-domain and 

morphological features  

 

 

60 

 

 

 

ELM 

SVM 

 

Sensitivity, specificity: 
89.33%, 90.33% 

89.67%, 91.33% 

 

 

Prabhakar et al. [132] 

 

 

Fuzzy-inspired and 

Dimensionally reduced 

features  

 

 

42 

 

 

 

KNN 

SVM 

MLP 

LR 

 

Accuracy: 
85.03% 

95.06% 

92.19% 

88.81% 

 

 

Ramachandran et al. [24] 

 

 

Statistical and wavelet 

features 

 

 

42 

 

 

 

SDC 

GMM 

 

Accuracy: 
97.88% 

96.64% 

 

 

Prabhakar et al. [23] 

 

 

Dimensionally reduced 

features 

 

 

42 

 

 

ANN 

LR 

 

Accuracy: 
99.48% 

99.48% 

 

 

Palanisamy et al. [22] 

 

 

 

Frequency-domain 

features 

 

 

42 

 

 

Harmonic 

search 

 

 

Accuracy: 
98.31% 

 

Beyond ML techniques, studies further emphasize PPG’s potential for improving CVD 

management by providing diagnostic parameters including PR, PRV, RR, SI, JVP, and ABI 

among others [133].  

PR and PRV measured via PPG are important vital signs for patient health assessment. PR 

provides a convenient, continuous heart rate monitor, a key indicator of cardiovascular status. 

Abnormal heart rates like bradycardia or tachycardia may indicate underlying conditions [134]. 

PRV correlates with HRV [135], linked to development and progression of various CVDs [136-

138]. RR is another parameter that can be derived from PPG in a non-invasive manner [139-

142]. RR is an important indicator of overall cardiovascular health, as it is closely coupled with 

the cardiovascular system. For example, heart failure is known to have a significant influence 

on the respiratory system [143], and studies have found that patients with poor left ventricular 

function often exhibit breathing disorders [144]. 
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PPG has also shown promise in the assessment of arterial stiffness [145], a key marker of 

cardiovascular health. Studies have reported the effectiveness of PPG-derived SI in identifying 

patients at higher risk of future cardiovascular events [146, 147]. The JVP is also a useful 

parameter in diagnosing potential cardiovascular abnormalities [133], and different PPG 

designs have been explored to enable the non-invasive measurement of JVP with impressive 

results [148-151]. Additionally, the ability to estimate the ABI - the ratio of ankle to arm blood 

pressures - from PPG has been investigated [152, 153], as ABI is commonly used in assessing 

PAD and CAD [154].  

Furthermore, the diagnostic potential of PPG and its derivatives has been investigated for 

a range of cardiovascular conditions [133]. The link between PPG derivatives and 

cardiovascular mortality has been reported in the literature [155]. Researchers have developed 

prototype PPG devices for the detection of HF [156], while others used PPG to monitor 

obstructive sleep apnea [157], and assessment of JVP [158] in HF patients. The identification 

of cardiac abnormalities, such as venous occlusion and HOCM, using PPG signals has also 

been explored [159, 160]. 

1.2. Potential Benefits and Technical Limitations of Existing Approaches 

1.2.1. Shortcomings of Input Predictor and predictive capability 

Current CVD research primarily focuses on leveraging the diagnostic value of PPG signals 

to enable early disease detection. This is achieved either through ML classifiers directly 

predicting disease (Table II.1), assessing CVD risk (Table II.2), or through ML-independent 

derivation of diagnostic parameters, as exemplified previously. While all these methods may 

contribute to CVD management, challenges remain regarding clinical decision support. 

Specifically, ML classifiers addressing the prediction of particular diseases, such as those 

presented in [18-21, 125-129], may be useful in confirming already established diagnoses. 

However, these models do not offer a holistic perspective or guiding insights regarding the 

spectrum of possible cardiovascular conditions during initial screening. A more desirable 

approach would be the development of classifiers capable of differentiating between multiple 

potential CVDs, providing a comprehensive assessment and guidance on the probable 

etiologies. 

Similarly, the CVD-risk assessment classifiers presented in [22-24, 130-132] provide 

limited information into the underlying causes driving these predictions, as their outputs do not 

suggest clear diagnostic plans due to the lack of etiological insights. In fact, the PPG inputs 
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involved in these studies are labeled based on observable respiratory signs like rebreathing, 

heart variability, and apnea [25]. Such a variety of symptoms can often result in a poor 

prognosis and delayed diagnosis [6]. Besides, risk-based systems overlook asymptomatic 

individuals as they rely on symptom-defined classes. Furthermore, despite established links 

between PPG-derived biomarkers—including PR, PRV, RR, JVP, ABI—and CVDs [133], their 

utilities remain limited, similar to the symptom-based and specific-disease classifiers. 

Moreover, while predictive capacity is important, direct outputs irrespective of underlying 

logic limit explainability in clinical settings. For instance, the complexity of the optimization 

techniques used in [23, 130, 132] for feature extraction may be clinically irrelevant. Clinicians 

often prefer evidence-based, physiologically interpretable parameters over perfectly 

dimensionally reduced features that lack explanatory connections to the underlying 

cardiovascular mechanisms. Overall, maximizing the clinical translatability of ML demands 

intelligible, multi-condition predictions that guide comprehensive evaluation and management 

of cardiovascular diseases. 

1.2.2. Challenges in Algorithm Selection  

Selecting optimally capable, transparent and computationally efficient algorithms aligned 

to clinical needs and data characteristics remains an ongoing challenge in developing trusted 

medical classification systems. Techniques such as SVM, BLSTM, CNN, and GMM, have 

demonstrated impressive performance, as highlighted in [24, 125, 127, 130-132]. However, the 

intricacy of their internal structure and mechanisms poses difficulties in terms of interpretation 

and explanation. 

For instance, BLSTM and CNN models operate as black-box models, making it 

exceedingly challenging to elucidate the rationale behind their predictions [161]. These DL 

models also exhibit high sensitivity to hyperparameter tuning, require extensive training 

datasets, and may inadvertently learn spurious correlations present in the data. Similarly, MLPs 

and other ANNs exhibit a high degree of complexity due to multiple hidden layers and 

numerous neurons, further complicating their interpretability. These architectures are also 

susceptible to potential convergence issues stemming from vanishing or exploding gradients 

during the training process [162]. 

SVMs introduce additional complexity, particularly when non-linear kernel functions are 

employed [163]. Challenges associated with SVMs include the selection of suitable kernel 

functions, handling imbalanced datasets, and the computational burden of solving the quadratic 
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optimization problem, especially for large-scale datasets. Furthermore, the complexity of 

GMMs increases as the number of components and the dimensionality of the data increase 

[164]. GMMs also face issues such as sensitivity to initialization, the necessity to specify the 

number of components, and a propensity for overfitting, particularly in high-dimensional spaces 

with limited data. 

On the other hand, ML techniques such as LR, NB, KNN, and DTs, as created in [18-21, 

126, 129, 132], may be more appropriate for such medical classification tasks. These algorithms 

offer several benefits that make them appealing choices in the context of healthcare 

applications. 

LR is particularly valued for its straightforwardness and ease of interpretation, providing 

clear insights into the relationship between the dependent variable and one or more independent 

variables by estimating the probabilities of outcomes. This interpretability is crucial in medical 

applications where understanding the contribution of each variable is essential for clinical 

decision-making. However, the linear assumption of LR may not hold when the features are 

non-linearly linked to the targets, as evidenced in [132]. 

NB models, which are based on Bayes' theorem, are efficient and perform well with small 

to medium-sized datasets. NB models assume feature independence [165], which simplifies the 

computation and often leads to robust performance in high-dimensional spaces. NB models are 

especially effective in medical diagnosis applications where the conditional independence 

assumption may reasonably hold, making them both simple and powerful. However, the 

performance of NB models can be hindered if the independence assumption is violated, as 

evidenced by the low performance results in [18] when exploring different input features. 

KNN is an instance-based learning algorithm that is intuitive and easy to implement [166]. 

Unlike LR and NB, KNN makes no assumptions about the underlying data distribution, making 

it a versatile choice for various types of data. It makes predictions based on the closest training 

examples in the feature space [167], which can be particularly intuitive in clinical settings where 

similar cases are expected to have similar outcomes. This explains the prevalent use of this 

algorithm in current research [18-21, 126, 132]. The ability of KNN to adapt to the complexity 

of the data through the selection of the parameter 'k' allows for flexibility in achieving a balance 

between bias and variance. KNN does not require a training phase, which can be an advantage 

in terms of computational efficiency, although it can be slower during prediction as it requires 

calculating the distance to all training examples. 
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DT models are highly interpretable, as they provide a clear, visual representation of 

decision rules based on the features [168, 169]. DTs can handle both numerical and categorical 

data, making them versatile for different types of medical data. They are also capable of 

capturing non-linear relationships between features and the target variable, making them 

suitable for various types of classification tasks. However, DTs can be prone to overfitting, 

especially with deep trees, which can be mitigated through techniques like pruning. 

Ultimately, the choice of the most appropriate model depends on the specific requirements 

of the clinical task, the nature of the data, and the need for model interpretability in medical 

decision-making. 

1.2.3. Dataset Constraints and Lack of Diversity   

To ensure effective CVD classification, datasets should encompass comprehensive 

representation of varied pathologies. However, the previously discussed studies [18-20, 125-

129] appear to be biased towards specific disease categories, with the most diverse datasets 

covering only three [21] or five [126] CVD categories. Notably, the latter dataset was 

improperly evaluated, with all pathologies sorted into a single class versus healthy. 

Additionally, at-risk CVD studies using heterogeneous respiratory symptom annotations [25] 

provide insufficient insight for risk prediction. Such inadequate data representation can lead to 

suboptimal model performance and limited generalizability. 

Moreover, sufficient sample size is also crucial for training and evaluating robust ML 

models. While size requirements may vary depending on the task complexity and the chosen 

ML algorithm, larger datasets tend to yield more generalizable models resistant to overfitting. 

However, prior studies were limited by small sample sizes (see Tables II.1-2), potentially 

leading to overfitting and poor performance when deployed in real-world clinical settings. 

Addressing these data representation and sizing issues will be important to develop models 

capable of reliably distinguishing the full spectrum of CVDs with high accuracy. 

1.2.4. Ineffective Optimization Strategies 

Achieving optimal model performance and generalizability crucially relies on determining 

parameter configurations yielding highest predictive capability. This is conventionally realized 

via internal or external optimization approaches. Internal optimization involves fine-tuning the 

model's hyperparameters using techniques such as grid search, random search, Bayesian 

optimization [170]. On the other hand, external optimization focuses on enhancing the model's 

predictive ability by identifying the most contributory feature subsets. This can be 
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accomplished through dimensionality reduction using metaheuristic optimization, 

transformation, or feature selection methods. 

For instance, Hosseini et al. [20] applied sequential floating selection to dimensionally 

compress PPG data before empirically determining k=8 yielded maximal KNN accuracy. 

Similarly, De Moraes et al. [21] experimentally evaluated diverse MLP hyperparameter 

configurations and modified KNN's k value from 3 to 7 for different classification tasks. 

Prabhakar et al. [23] dimensionally reduced PPG data via probabilistic, search-based and 

model-based metaheuristics. Ramachandran et al. [24] applied dimensionality reduction 

techniques to preprocess PPG data. Singular value decomposition compressed 144,000 PPG 

samples to 7,200. Discrete wavelet transforms using db4, Haar and sym8 wavelets reduced 200-

sample PPG segments to 13, 7 and 20 samples respectively. Additionally, expectation-

maximization optimized the GMM model, estimating parameters from the probabilistic 

modeling of PPG data as a combination of Gaussian distributions. 

Furthermore, Väliaho et al. [129] implemented a backward feature selection process to 

determine independent and statistically significant features. Prabhakar et al [132] dimensionally 

reduced fuzzy-inspired PPG representations via nature-inspired heuristics, including 

differential search, shuffled frog leaping, wolf search and animal migration optimization. Al 

Fahoum et al [126] leveraged data-mining to extract classifiers' most predictive attributes. 

Palanisamy et al [22] optimized PPG via Hilbert transform, nonlinear regression and 

metaheuristics including artificial bee colony, particle swarm, cuckoo search and dragonfly 

optimization. 

However, while the reviewed studies have significantly advanced CVD classification using 

PPG data through feature optimization, several limitations and shortcomings merit further 

consideration. A primary focus has been dimensionality reduction via metaheuristic, 

transformational and feature selection techniques. However, internal model parameter 

optimization has generally relied on arbitrary or empirical approaches like trial-and-error, 

sweeping, and predefined values. For example, some determined KNN k-values and MLP 

parameters through experimentation without systematic optimization [18, 20, 21]. Similarly, 

GMM parameters were set via expectation-maximization without rigorous tuning methodology 

[24]. This reliance on trial-and-error or heuristic-based parameter tuning, rather than a more 

systematic and principled approach, raises concerns about the robustness and generalizability 

of the developed models. Incorporating validation techniques or Bayesian optimization can 
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better ensure configurations align with underlying data characteristics rather than result from 

arbitrary adjustment.   

Nevertheless, the exclusive focus on performance maximization through extensive feature 

engineering and parameter optimization can lead to increasingly complex 'black-box' models. 

While this may be acceptable for consumer-oriented systems where the primary concern is 

profiling health status, in the healthcare domain, where trust and transparency are paramount, 

model interpretability and reliability are equally important. Simpler models with carefully 

calibrated internal structures may prove more clinically appropriate. Incorporating XAI 

methods like feature importance analysis, better fulfills clinical needs relative to maximizing 

prediction alone. By addressing these limitations and shifting the focus towards developing 

interpretable, simplified yet optimized models can significantly advance clinical decision-

making and ultimately improving patient outcomes. 

2. The Proposed Classification System 

Considering the limitations of current CVD classification systems in fully meeting clinical 

needs and enabling personalized screening applications, we propose a new arterial pressure 

classification system. This system utilizes exclusively PPG signals for noninvasive multi-

purpose prediction.  

Current systems are either focused solely on specific CVD prediction or broad CVD risk 

profiling. To address this, our proposed system predicts AAP patterns which have established 

clinical associations with various CVDs. This includes anacrotic, bisferiens, dicrotic, deep, 

tardus, parvus et tardus, bounding and water hammer patterns. By providing this 

multidimensional output, the aim is to guide healthcare professionals towards more targeted 

clinical insights beyond singular profiling.  

However, achieving this multi-purpose predictive capability requires high performing 

classifiers. This generally leads preferences for complex nonlinear models, which can lack 

clinical relevance. Rather than solely optimizing internal model complexity, we first aim to 

enhance the input predictors by precisely extracting features tied to underlying cardiovascular 

physiology. Subsequently, we will apply feature selection techniques based on importance 

analysis to refine the feature set, as will be discussed further in upcoming sections. 

For consumer-oriented personalized health monitoring systems, interpretability of internal 

logic may be less crucial compared to identifying potential health issues prompting users to 
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seek medical advice. In this context, features will be extracted using advanced transformation 

methods and compressed via statistical and metaheuristic optimization techniques. The goal is 

to boost predictive performance for self-screening applications. 

We also propose leveraging the classification capabilities of ML models to improve BP 

estimation. Current approaches broadly assign target BP values across wide ranges, requiring 

extensive analysis to reduce model variance errors. Narrowing target ranges may improve 

stability but raises concerns for values outside those ranges. Our classifier aims to provide 

additional granularity by classifying BP into narrow discrete ranges. This focuses regressor 

training within more targeted BP values, forcibly reducing error variances. This approach will 

not only yield accurate BP estimates but also precisely classify AAPs and hypertension status. 

However, achieving this still requires development of highly accurate classification models. 

Therefore, a novel external optimization approach explored in later sections aims to address 

this challenge.  

The following subsections will further discuss the proposed classifier concept, highlighting 

the input/output system considerations and the overall classification architecture. 

2.1. System inputs 

2.1.1. Clinical Considerations 

PPG sensors provide an affordable and convenient input option that makes them highly 

suitable for the proposed arterial pressure classification system. Like arterial pressure 

waveforms, PPG waveforms contain systolic and diastolic phases as well as distinguishable 

characteristic points including the systolic peak, dicrotic notch, dicrotic wave, and diastolic 

foot. Due to the close correlational and morphological similarities between PPG and arterial 

pressure waveforms [32], features extracted from PPG signals could significantly benefit this 

multi-task focused classification system. Physiologically meaningful and clinically relevant 

features may be derived from PPG waveforms through either temporal or waveform-based 

analytical approaches.  

For instance, previous research has demonstrated connections between BP and features 

that can be captured from the second derivative of the PPG signal (APG) [171,172]. 

Specifically, a study reported ratios of b/a and d/a from APG waveforms as potential indicators 

of arterial stiffness and arteriosclerosis associated with elevated intravascular pressure (see 

Figure II.1) [173]. Additionally, Addison declared the STT, the ratio between systolic upstroke 

duration and amplitude, correlates with blood pressure [174]. Other researchers have analyzed 
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temporal characteristics between different PPG characteristic points, as illustrated in Figure 

II.2, to extract features [175]. Whether focused on morphological or temporal aspects, this type 

of analytical approach is founded upon solid physiological evidence and could facilitate clinical 

translation.  

 

Figure II.1.  APG waveform features 

 

Figure II.2.  Time-domain features 

The features incorporated into the proposed classification framework will encompass 

evaluations of both waveform and temporal attributes to optimize predictive performance. 

However, the informativeness of PPG waveforms can sometimes be hindered by factors such 

as the influence of age on dicrotic notch prominence [176]. An additional challenge stems from 

potential signal quality degradation due to PPG's susceptibility to motion artifacts [38]. These 

issues will be addressed in subsequent chapter through customized detection algorithms and an 
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artifact screening method based on signal quality assessment during data collection, 

respectively. 

2.1.2. Personalized Monitoring  

Systems designed for personal use may differ from clinical models in their design priorities 

and goals. For asymptomatic individuals without overt signs or symptoms of 

CVD/hypertension, highly accurate ML systems that are somewhat less interpretable could still 

effectively serve as self-screening tools. By leveraging the ubiquitous presence of PPG sensors 

in wearable devices like smartwatches [177], individuals could conveniently monitor their 

cardiovascular health metrics anywhere and anytime. This has the potential to enhance early 

disease detection and drive improved long-term health outcomes, even in the absence of 

medical expertise that could critically evaluate the internal logic and workings of the underlying 

models. In this context, for the average user, the primary concern is identifying potential health 

risks early, rather than attempting to dissect the detailed algorithmic mechanisms. A system 

optimized purely for classification accuracy, rather than interpretability, may therefore prove 

quite valuable for this type of widespread consumer-driven health screening application. 

Given this context and purpose, utilizing dimensionality reduction techniques like 

metaheuristic optimization or signal transformation methods to extract features could prove 

feasible and worthy of exploration. Considering past research demonstrating the high-

performance benefits of such approaches [22, 23, 130], our objectives are to experimentally 

evaluate the potential of metaheuristic optimization techniques to further boost the learning and 

predictive abilities of our classification models. Additionally, to help address potential 

degradation issues with PPG signal quality, TF transforms will be applied as the feature 

extraction method rather than more complex morphological analyses.  

PPG signals exhibit non-stationary properties due to the time-varying physiological 

processes that generate them [36]. Traditional Fourier analysis faces challenges dealing with 

these signals since their frequency content changes over time [178]. In contrast, TF analysis 

techniques are well-suited for capturing the time-varying spectral information obscured by 

conventional methods. Among these, the STFT is widely used for addressing this challenge 

using fixed-size windows [179], as demonstrated in past studies applying it successfully to BP 

classification from PPG [36]. The STFT calculates local frequency content via the given 

equation: 
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𝑉𝑆
𝐷(𝑡, 𝛾) = ∫ 𝑆(𝛼)𝐷(𝛼 − 𝑡)𝑒−2𝑖𝜋𝛾(𝛼−𝑡)

+∞

−∞

𝑑𝛼 (1) 

where, S(α) is the input signal, D(t) represents the window function, t denotes the time index, γ 

corresponds to frequency, and α serves as a time-variable of integration.  

However, it introduces a trade-off between time and frequency resolution due to the fixed 

window sizes [180], limiting its ability to effectively represent rapid changes that often appear 

in non-stationary signals like PPG. Therefore, we will investigate alternative time-domain 

reassignment approaches, such as FSST [178], to help address this disconnect between time 

and frequency information. 

Transforming PPG signals using TF analysis generally results in sizable datasets, which 

could be computationally inefficient if used directly as features. Additionally, outliers may be 

incorporated. Therefore, the proposed optimization techniques aim to reduce the dimensionality 

of these transformed PPG datasets into potentially more compact yet still information-rich 

feature sets. Statistical measures like kurtosis, skewness, mean and STD will also be explored 

for feature engineering purposes. 

2.2. System Outputs 

2.2.1. Abnormal Pulse Pattern Identification 

An underexplored area that may address current limitations in CVD classification output 

involves the use of arterial pressure waveform morphologies [28]. A range of AAP patterns 

have demonstrated strong correlations with potential CVDs [27-29]. However, the lack of 

comprehensive guidelines for analyzing such abnormalities makes identification challenging, 

requiring clinical expertise [26]. The only approach to understanding these abnormalities 

involves examining pathologies commonly manifesting with such patterns. Clinical literature 

has presented various theories and criteria for AAP analysis through diverse pathological case 

studies. Accordingly, AAP models will be created following in-depth analysis of past studies 

revealing these morphologies. 

The proposed AAP modeling approach will employ a variety of preprocessing techniques 

for comprehensive waveform characterization:  

Temporal analysis, assessing the time domain, will detect abnormalities in the duration to 

pressure peaks. Specifically, shortened peak times may indicate a water hammer pattern, 

while delayed times suggest tardus, parvus et tardus, or slow-bounding morphologies. 
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Amplitude analysis, evaluating the pressure domain, will identify abnormalities in pulse 

pressure widths. Narrowed pulse pressures could represent a parvus et tardus pattern, 

whereas widened pressures may signal a bounding morphology. 

Contour examination, analyzing the shape domain, will reveal morphologic deviations. 

For example, sharp waveforms could characterize a water hammer pulse. Enlarged dicrotic 

wave components may typify a dicrotic pulse. Additionally, double pressure peaks may denote 

anacrotic or bisferiens patterns. 

Through multi-dimensional temporal, amplitude, and contour profiling, this modeling 

scheme aims to capture the full spectrum of potentially pathological AAP variations revealed 

via extensive case study evidence. Comprehensively phenotyping AAP morphologies in the 

time, pressure, and shape domains may facilitate more precise cardiovascular correlation and 

enhanced classification accuracy. Once modeling is finalized, PPG features will be easily 

labeled according to their synchronous AAP pattern. This novel AAP modeling framework 

based on extensive clinical evidence has the potential to advance CVD classification output by 

capturing hemodynamically-relevant morphologies indicative of disease correlates. 

Nevertheless, the proposed approach merits thorough investigation to realize this potential. 

2.2.2. Blood Pressure Level Classification  

To address limitations in BP measurement and poor public understanding of acceptable 

BP values [123,124], two complementary classification approaches will be explored.  

The first approach involves predicting discrete BP ranges for SBP, DBP, and MAP 

spanning narrow, predefined values. By training ML estimators to operate within confined 

ranges, the outcome error can be deliberately controlled by the classifiers. Producing outputs in 

discrete BP ranges in this way allows for constrained BP estimation. 

The second method classifies BP into standard categories of hypertension, 

prehypertension, and normotension defined by JNC7 guidelines [181] (see Table II.3). By 

producing standardized BP classifications, this aims to improve hypertensive patients’ 

comprehension of dangerously high values threatening health status.  

Table II.3. JNC 7 blood pressure classification standards [181]. 

Blood pressure level Systolic blood pressure (mmHg)  Diastolic blood pressure (mmHg) 

Normotension < 120   and < 80 

Prehypertension [ 120 to 140 [ or [ 80 to 90 [ 

Hypertension > 140  or > 90 
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2.3. System Architecture 

This research endeavors to explore the utilization of PPG signals for the development of a 

ML-based classification system capable of producing multiple, clinically-relevant arterial 

pressure-related outputs. 

The proposed system will employ PPG signals as the primary input, as depicted in Figure 

II.3. The data preprocessing stage will involve artefact screening and filtering to ensure signal 

quality. A multifaceted feature extraction process will be employed, involving temporal, 

morphological, and TF transformations of the PPG data. To optimize the informativeness of the 

inputs, dimensionality reduction techniques, including metaheuristic optimization and 

statistical measures, will be utilized to compact the FSST transform into efficient feature sets. 

Additionally, feature selection methods will be adopted to identify the most contributory 

temporal and morphological features. 

 

Figure II.3.  Block diagram of the proposed system 

The optimized PPG inputs will then be used to train multiple ML classifiers, each targeted 

at distinct classification tasks. Firstly, pre-identified AAP models, developed through extensive 

waveform profiling methods, will decode the PPG features according to synchronous arterial 

pressure morphologies. Complementary to the AAP classification, the system will also 

incorporate BP level prediction models. These models will produce outputs in the form of both 

predefined ranges for BP estimations and standardized categories defined by clinical guidelines 

for hypertensive risk classification.  
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By integrating these diverse cardiovascular assessment capabilities, the proposed system 

aims to deliver a comprehensive and clinically-relevant solution for early detection, risk 

stratification, and personalized management of CVDs. 

3. Experimental Design and Methodological Considerations  

3.1. Dataset Development and Curation  

3.1.1. Data Collection 

A suitable dataset containing synchronous PPG and intra-arterial pressure recordings will 

be required to develop and evaluate the proposed multi-output classification models. The 

following characteristics should be present: 

Subject Cohort: Recordings should be obtained from a reasonably sized (anticipated n > 

200) and demographically diverse patient cohort to facilitate generalizability of modeling 

efforts.  

Signal Acquisition: PPG signals should be captured at sampling frequencies of 100Hz or 

higher for extended durations (several minutes) to permit robust preprocessing. Simultaneous 

high-fidelity (≥100Hz) arterial pressure tracings directly measured from peripheral arteries 

will supply ground truth waveforms for precise abnormal arterial pulse modeling and blood 

pressure extraction. 

Synchronization: Contemporaneous capture of PPG and intra-arterial signals is necessary 

to characterize relationships between signal types for this research. 

Population Coverage: Representation of the full spectrum of normotensive and 

pathological BP levels/categories as well as diverse arterial pulse morphologies is important 

for comprehensive model formulation. 

Data Integrity: Recorded data must undergo rigorous quality control protocols including 

preprocessing techniques to filter noise, motion artifacts, and validate reliable acquisition 

prior to use.   

Sample Size: An adequate sample volume (e.g. thousands of recordings) is recommended 

to facilitate development of generalizable multi-output classification models. 

Publicly accessible datasets meeting these criteria will be explored to obtain suitably sized, 

diverse synchronized PPG-arterial datasets capable of advancing the objectives of this research 

initiative. One publicly available dataset that would be well-suited to meet the above criteria is 
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the MIMIC-III waveform database. MIMIC-III contains de-identified health data including 

physiological waveforms collected from over 40,000 intensive care unit patients [182].  Within 

MIMIC-III is a wealth of longitudinal high-fidelity cardiovascular recordings, including 

synchronized multi-parameter waveforms captured at 125Hz such as ABP, PPG, and ECG. The 

diversity of patients, ranging from healthy volunteers to severely ill populations, would allow 

for modeling across a wide spectrum of hemodynamic states.  

At over 200GB in size and comprising millions of waveform samples, MIMIC-III far 

surpasses the anticipated sample size needs. Its standardized format and documentation would 

facilitate efficient data preprocessing and model training. Most importantly, the inclusion of 

direct arterial line pressure as ground truth, synchronized with other waveforms on a massive 

scale, uniquely positions MIMIC-III to address the core needs of this research for paired PPG 

and intra-arterial datasets. For these reasons, the extensive collection of synchronized 

cardiovascular waveforms contained within the publicly available MIMIC-III database is 

proposed as an ideal candidate dataset to supply the necessary training and evaluation data 

required to develop and validate the proposed multi-output classification models. 

3.1.2. Features Extraction Strategies 

This research aims to explore and evaluate a comprehensive set of PPG-derived features, 

encompassing physiological, time-domain, and TF domain analyses, to enhance the predictive 

capabilities of the proposed classification system. 

PPG’s physiological information will be extracted by leveraging changes occurring at 

specific cardiac cycle landmarks. The PPG pulse will first be segmented at key temporal 

markers including onset, peak, dicrotic notch, and offset (Figure II.4). These cutoff points 

delineate the start and end of discrete cardiac phases. Onset indicates systole initiation while 

the peak signifies mid-systole. The dicrotic notch denotes the systole-diastole transition and 

offset concludes the cardiac cycle. By segmenting the PPG pulse at these physiological 

landmarks, six distinct sub-waves can be obtained, each characterizing a particular cardiac 

event. The duration between each pair of landmarks will be measured, generating six time-

domain features that provide insights into the temporal dynamics of the cardiac cycle.  
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Figure II.4.  The proposed time-domain features 

Furthermore, the morphological variations within the segmented waveforms can be 

considered as a result of statistical influences over time [26]. Considering each sub-wave as a 

normal probability distribution, statistical metrics such as kurtosis and mean will be employed 

to quantify waveform morphology on a more quantitative basis.  For instance, the kurtosis of 

the waveform can describe the extension of the tail regions compared to a normal distribution 

(Figure II.5) [183], while the mean can be used to measure the central tendency of the 

waveform's statistical components. 

 

Figure II.5.  Kurtosis morphological measurement 

PPG signals are inherently non-stationary, exhibiting time-varying properties arising from 

dynamic physiological processes [36]. Analyzing the obscured temporal modulations in the TF 

domain can yield more informative insights. To fully leverage these informative temporal 

changes, the research will employ the FSST to analyze the PPG signals. The FSST offers an 

innovative solution to the classical tradeoff between time and frequency components in STFT 

analysis. The FSST can be expressed as: 
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𝑇𝑆
𝐷(𝑡, 𝜔) = ∫ 𝑉𝑆

𝐷(𝑡, 𝛾)𝛿(𝜔 − 𝐼𝑆(𝑡, 𝛾))
+∞

−∞

𝑑𝛾 (2) 

where 𝛿(𝜔) is the Dirac distribution, and 𝐼𝑆(𝑡, 𝛾) denotes the instantaneous frequency estimation 

at time t and frequency 𝛾, calculated using the following expression: 

𝐼𝑆(𝑡, 𝛾) =
𝜕 arg 𝑉𝑆

𝐷(𝑡, 𝛾)

𝜕𝑡
= ℝ{

1

2𝑖𝜋

𝜕𝑡 𝑉𝑆
𝐷(𝑡, 𝛾)

𝑉𝑆
𝐷(𝑡, 𝛾)

}, 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑉𝑆
𝐷(𝑡, 𝛾) ≠ 0 

(3) 

By applying a non-linear postprocessing mapping to the STFT [184], the FSST facilitates 

signal interpretation through the redistribution of energy and provides robust visualization and 

manipulation capabilities [185]. This integration results in an improved representation of the 

TF components, enabling the extraction of more informative features from the PPG signals. A 

visual comparison between FSST and STFT resolution for a PPG signal is shown in Figure 

II.6.  

 
(a) PPG signal 

 
(b) Short-time Fourier Transform 

 
(c) Fourier Synchrosqueezed Transform 

Figure II.6.  Time-frequency representations of a PPG signal 
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3.1.3. Metaheuristic Optimizations 

The process of dimensionality reduction is employed as a preprocessing step to remove 

irrelevant and redundant information from PPG datasets, thereby decreasing the computational 

demands and training time of the ML models. The FSST generates high-dimensional TF 

components, which makes them unfeasible to utilize as features. Training an ML model on 

large features dimensions may lead to the model becoming excessively abundant, which can 

result in mediocre performance outcomes. Given this, it becomes imperative to diminish the 

number of features, a task that can be carried out via dimensionality reduction. Consequently, 

this study intends to investigate a metaheuristic-based optimization technique named cuckoo 

search. 

The cuckoo search optimization algorithm can be effectively leveraged to identify the most 

informative subset of PPG features and reduce the overall dimensionality of the feature space. 

The algorithm's random walk mechanism via Lévy flights allows it to explore a wide range of 

feature combinations [186], while the selective pressure towards the best solutions helps 

converge on the optimal feature subset. By treating each candidate solution as a vector of binary 

values representing the inclusion or exclusion of specific PPG features, the cuckoo search can 

iteratively update these vectors to minimize the dimensionality of the feature set while 

preserving the most relevant information for the targeted arterial pressure assessment tasks. 

This dimensionality reduction through cuckoo search optimization can help improve the 

training efficiency and generalization performance of the ML models built upon the PPG data. 

3.1.4. Feature Importance Analysis 

While the use of waveform and temporal analysis to extract PPG-features can produce 

clinically meaningful information, it does not necessarily imply that all the extracted features 

will perform equally well within the classifier. It is therefore imperative to assess the relative 

importance of the extracted features in order to determine the most impactful ones. As a result, 

the study will implement the MRMR algorithm [187] as the primary feature selection approach. 

MRMR method proved to be efficient in obtaining the nonrepetitive feature subset [188]. 

The MRMR algorithm identifies an optimal subset of features that are highly distinct from one 

another while still effectively representing the target variable. The algorithm operates by 

simultaneously reducing the redundancy within the feature set and increasing the relevance of 

the features to the dependent variable. Relevance and redundancy are quantified using mutual 



Chapter II: Optimizing Arterial Blood Pressure-Based Risk Profiling 

 

62 

 

information [189, 190 ], which measures the amount of information one variable provides about 

another. 

Specifically, the relevance 𝐷 of a feature 𝑥𝑖 to the target variable 𝑐 is given by the mutual 

information 𝐼(𝑥𝑖; 𝑐), defined as: 

 

𝐼(𝑥𝑖; 𝑐) = 𝑝(𝑥𝑖, 𝑐)log (
𝑝(𝑥𝑖, 𝑐)

𝑝(𝑥𝑖)𝑝(𝑐)
) 

 

(4) 

  

where 𝑝(𝑥𝑖, 𝑐) is the joint probability distribution function of 𝑥𝑖 and 𝑐 , and 𝑝(𝑥𝑖) and 𝑝(𝑐) are 

the marginal probability distribution functions of 𝑥𝑖 and 𝑐 , respectively. 

The redundancy 𝑅 of a feature 𝑥𝑖 with respect to a set of already selected features 𝑆 is 

given by the average mutual information between 𝑥𝑖 and each feature in 𝑆 [190]: 

 

𝑅(𝑥𝑖)= (
1

|𝑆|
)
𝑥𝑗𝜖 𝑆

𝐼(𝑥𝑖; 𝑥𝑗) 
 

(5) 

The MRMR score for a feature 𝑥𝑖 is defined as the difference between its relevance and 

redundancy, known as Mutual Information Difference [189]: 

 

𝑀𝑅𝑀𝑅(𝑥𝑖)= 𝐼(𝑥𝑖; 𝑐) − (
1

|𝑆|
)
𝑥𝑗𝜖 𝑆

𝐼(𝑥𝑖; 𝑥𝑗) 

 

(6) 
 

3.2. Machine Learning Modeling 

3.2.1. Clinical-oriented Machine Learning Algorithms 

Unlike many other areas, the concept of explainability is of utmost priority when deploying 

AI systems in the healthcare industry [37]. In the pursuit of XAI for healthcare applications, 

researchers investigating the communication of clinical AI decision-making and reasoning 

favor algorithms that possess more transparent and interpretable internal representations [191]. 

Opting for ML techniques that retain a level of interpretability in their internal operations allows 

XAI researchers to more effectively explore, evaluate, and clearly articulate the functioning of 

these models. 

Parametric models inherently tend to possess a less complex and more interpretable 

structure [192]. The connection between variables in parametric models is explicitly specified 

by a set of parameters. However, the simplistic nature of such models may constrain their ability 

to effectively represent the intricate and nonlinear relationships present within PPG signals. For 
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instance, in the case of NB classifier, the underlying assumption is that the features are 

conditionally independent, given the class variable [165]. Discriminant analysis classifiers also 

operate under the assumption that the features align with a predetermined probability 

distribution for each class [193]. These conditional independences may not be valid for tasks 

involving physiological signals such as PPG, as the features in these signals can display intricate 

interdependencies. 

Conversely, non-parametric models are more adaptable and can model complex relationships 

in the data without making restrictive assumptions. DTs are non-parametric models that have 

the ability to manage nonlinear dependencies between the variables. The decision-making 

process of this algorithm is highly interpretable, as it is based on a hierarchical structure of 

explicit rules [169]. However, using a single DT to learn from a sizable dataset may result in 

deeper or more complex tree structures, which could undermine the interpretability of the model 

and elevate the potential for overfitting. Ensemble approaches like bagging, which incorporate 

multiple DTs, may offer improved performance while preserving interpretability to a reasonable 

extent. Bagging entails training multiple DT models, each on a different portion of the training 

data, and merging their outputs to arrive at the ultimate predictions [194]. A key benefit of 

bagging is that it lowers the variance of the individual decision trees, which ultimately aids in 

preventing overfitting [195]. 

KNN represents another non-parametric modeling technique. It is considered a "instance-

based learning" or "lazy learning" approach, as it does not entail explicit training or creating a 

model in the same manner as many other algorithms [196]. The core idea behind KNN is to 

store all the training cases and then classify new instances by assigning them to the same classes 

as their closest neighbors in the training set. 

The fundamental concept is that cases which are located near each other typically possess 

similar feature values [167]. The KNN algorithm requires the specification of just two 

parameters: the number of neighbors (K) to consider from the training data, and the distance 

function (distance metric) used to measure the proximity between a new case (query point) and 

its K closest neighbors. A basic distance metric that could be leveraged for distance 

measurement in the KNN algorithm is the city block distance, or Manhattan distance. The 

Manhattan distance between two points 𝑋 = {𝑋1, 𝑋2, …… , 𝑋𝐷) and 𝑌 = {𝑌1, 𝑌2, …… , 𝑌𝐷)  in a 

D-dimensional space is calculated as: 



Chapter II: Optimizing Arterial Blood Pressure-Based Risk Profiling 

 

64 

 

𝐶𝑖𝑡𝑦𝐵𝑙𝑜𝑐𝑘(𝑋, 𝑌) =  |𝑋𝑖 − 𝑌𝑖|𝑖=1
𝐷  (7) 

Where the absolute difference between each corresponding coordinate is summed up to obtain 

the final distance. 

To enhance the prediction for the query point, weights can be assigned to the neighboring 

points, such that the nearest neighbor exerts a greater influence on the output class [167]. 

The weight assigned to each neighboring point in KNN can be calculated as the inverse of 

the square root of the distance between the query point and that neighboring point. 

Mathematically, the weight for a neighbor 𝑋 can be expressed as: 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝑋, 𝑌) =
1

√𝐶𝑖𝑡𝑦𝐵𝑙𝑜𝑐𝑘(𝑋, 𝑌)
 

 

(8) 

  

3.2.2. Consumer-oriented Machine Learning Algorithms 

When addressing large biomedical datasets, DL algorithms are often preferred to ML due 

to the former's ability to model high-dimensional, complex phenotypes [39]. However, deep 

learning's flexibility demands significant computational resources that introduce deployment 

barriers. DNN require extensive memory storage to house vast numbers of network weights 

resulting from convolutional and activation layer operations during training [40]. Inference also 

necessitates powerful GPU to rapidly compute these computationally intensive layers. Such 

specialized hardware constraints run counter to deploying individualized risk stratification 

models on resource-constrained wearable devices meant to enhance population health 

monitoring capacity. 

In contrast, ML training involves less computationally complex optimization of a relatively 

small number of learned variables, allowing for utilization of basic CPUs. Trained ML models 

primarily comprise lightweight hyperparameters rather than extensive internode connections, 

thereby reducing storage needs and expediting inference procedures. This renders ML a viable 

candidate for designing an affordable, clinically impactful continuous BP monitoring solution 

suitable for integration into consumer-grade mobile health technologies. 

3.2.3. Recap of Machine Learning Modeling Approaches 

KNN and BT, being non-parametric classifiers, provide more intuitive solutions for 

nonlinear problems due to their simpler architecture, in comparison to other more sophisticated 
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classifiers like kernel-based SVMs [163] or DNN [161]. Meanwhile, this nonlinear adaptability 

may enable them to achieve higher performance than parametric models, while still maintaining 

a certain level of simplicity. Accordingly, we intend to validate the effectiveness of the BT and 

KNN classifiers by comparing their performance against other classification models, including 

both parametric models such as NB, LDA, and SVM, as well as non-parametric models such 

as DT.  

3.3. Multi-Objective Optimization Strategy 

3.3.1. Performance Maximization using Bayesian Algorithm 

Bayesian optimization is a powerful algorithm used for tuning ML models, particularly 

when the evaluation of the objective function is expensive [41]. It leverages Bayes' theorem to 

model the objective function and guide the search for optimal hyperparameters. 

(1) Bayesian Optimization Framework 

Objective Function: The function 𝑓(𝑥) we aim to optimize, where 𝑥 represents the 

hyperparameters.  

Probabilistic Model: GP is used as a surrogate model to approximate the objective 

function 𝑓(𝑥). 

(2) Gaussian Process 

A GP is defined as a collection of random variables, any finite number of which have a 

joint Gaussian distribution [197]. It is fully specified by its mean function µ(𝑥) and covariance 

function 𝑘(𝑥, 𝑥′). 

▪ Mean function: 

 

µ(𝑥) = 𝐸[𝑓(𝑥)] (9) 

 

▪ Covariance function:  

 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − µ(𝑥)) (𝑓(𝑥′) − µ(𝑥′))] (10) 

  

Given a set of observations 𝐷 = {(𝑥𝑖, 𝑦𝑖)}
𝑛

𝑖 = 1
, where 𝑦𝑖 = 𝑓(𝑥𝑖) + ɛ and ɛ is the noise 

the GP is updated to reflect the posterior distribution over functions. 

(3) Bayesian Updating 
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The posterior distribution is obtained by combining the prior distribution (the GP) with the 

likelihood of the observed data. The posterior mean 𝑈𝑛 and variance 𝜎𝑛
2 at a new point 𝑥 are 

given by: 

𝑈𝑛(𝑥) = 𝑘(𝑥,𝑋)[𝐾+ 𝜎2𝐼]
−1
𝑦 

 

𝜎2(𝑥) = 𝑘(𝑥, 𝑥) − 𝑘(𝑥, 𝑋)[𝐾 + 𝜎2𝐼]−1𝑘(𝑋, 𝑥) 
 

(11) 

  

where 𝑋 = [𝑥1……… , 𝑥𝑛]
𝑇 , 𝑦 = [𝑦1……… , 𝑦𝑛]

𝑇,  𝐾 is the covariance matrix with 𝐾𝑖𝑗 =

𝑘(𝑥𝑖, 𝑥𝑗) and 𝜎2 is the noise variance. 

 (4) Acquisition Function 

The acquisition function 𝛼(𝑥. 𝐷) is used to determine the next point to evaluate. It balances 

exploration (sampling points where the model is uncertain) and exploitation (sampling points 

where the model predicts high values). 

Common acquisition functions include: 

▪ Expected improvement (EI): 

𝛼𝐸𝐼(𝑥) = 𝐸[max (0, 𝑓(𝑥) − 𝑓(𝑥
+))] 

 

(12) 

  

where 𝑓(𝑥+) is the best observed value. 

▪ Probability of Improvement (PI): 

𝛼𝑃𝐼(𝑥) = 𝜑
µ(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)
 

 

(13) 

  

where 𝜑 is the CDF of the standard normal distribution, µ(𝑥) and 𝜎(𝑥) are the mean and 

standard deviation of the GP at 𝑥, and 𝜉 is a trade-off parameter. 

▪ Upper Confidence Bound (UCB): 

 

𝛼𝑈𝐶𝐵(𝑥) = µ(𝑥) − 𝑘𝜎(𝑥) 

 

(14) 

  

where 𝑘 is a parameter balancing exploration and exploitation. 

(5) Algorithm 
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▪ Initialization: Select an initial set of hyperparameters {𝑥
𝑖
}
𝑖=1

𝑛
 and evaluate the objective 

function to obtain {𝑦
𝑖
}
𝑖=1

𝑛
. 

▪ Modeling: Fit a Gaussian Process to the observed data 𝐷 = {(𝑥𝑖, 𝑦𝑖)}
𝑛

𝑖 = 1
. 

▪ Acquisition: Use the acquisition function to select the next point 𝑥𝑛 + 1. 

▪ Evaluation: Evaluate the objective function at 𝑥𝑛 + 1 obtaining 𝑦𝑛 + 1. 

▪ Update: Augment the dataset with the new observation 𝐷 = 𝐷 U {(𝑥𝑛+1, 𝑦𝑛+1)}
𝑛

𝑖 = 1
 

▪ Iteration: Repeat steps until convergence or a predefined budget is exhausted. 

3.3.2. Minimization Through Features Redundancy Vote 

The human cardiovascular system exhibits inherent dynamic changes over the cardiac 

cycle, resulting in pulsatile waveforms. The repetitive nature of the pulse signal within a 

specific time period could be leveraged to optimize the classification task outcomes, as 

illustrated in Figure II.7. Typically, the majority of current evaluation approaches follow a 

similar basic methodology. This includes testing the created model using the same training 

predictors. However, this approach may generate performance metrics based on a single feature 

sample, which could introduce prediction errors due to potential outlier interference. 

 

Figure II.7.  Features redundancy vote approach 

To minimize these errors, we hypothesize that if the testing process is repeated using 

different feature sets from a particular subject-signal, the overall performance will be enhanced. 

To achieve this, the testing performance will incorporate the entire subject signal, by combining 

the feature sets of each segment to produce the final prediction. Specifically, the combination 
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of outputs will be based on a majority vote of the segment population. This approach aims to 

leverage the inherent pulsatile dynamics of the cardiovascular system and mitigate the potential 

impact of outliers by aggregating predictions from multiple feature sets within a subject-signal. 

The goal is to improve the robustness and reliability of the classification model's performance 

evaluation.  

4. The Overall Classifier Optimizer Workflow   

The classification model development will involve a two-pronged optimization approach. 

The first aspect will focus on optimizing the internal ML hyperparameters, while the second 

will target the external feature parameters. 

Preprocessing and segmentation of the PPG signals will be performed, followed by feature 

extraction. These features will be derived from morphological, temporal, and TF analysis of the 

PPG waveforms. 

An external optimization step will then be conducted to reduce the dimensionality of the 

feature space. This will be achieved by applying either the MRMR technique on the temporal 

and morphological features, or a Cuckoo Search algorithm on the TF-derived parameters. 

The optimized feature set will be used as input to the classifier model. The internal 

hyperparameters of the classifier will be further tuned using a Bayesian optimization algorithm 

to enhance the model's performance. 

Finally, the trained classifier model will undergo an additional external optimization step. 

The model's performance will be evaluated using the proposed FRV approach. 

This multi-layered optimization approach, encompassing both internal hyperparameter 

tuning and external feature engineering, aims to develop a robust and high-performing 

classification model for the targeted biomedical application. 
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Figure II.8.  Multi-objective optimization architecture
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1. Objectives 

This Chapter outlines our proposed methodology based on the following steps: 

To begin, we carefully select an appropriate dataset that aligns with our approach’s 

requirements, considering factors such as sample size, diversity of AAP and BP values, as well 

as data quality. Subsequently, we perform a screening on PPG signals for potential artifacts and 

applying a series of preprocessing techniques on the raw waveform data to eliminate any noise 

and baseline drifts that may interfere with the classification system.  

Next, we segment the ABP and PPG signals into pulses, using a third derivative approach 

to detect their troughs. We then employ an optimization algorithm to locate the dicrotic notches, 

which play an essential role in PPG feature extraction and AAPs modeling.  

To identify AAPs, we conduct a thorough analysis of their distinguishing characteristics, 

such as amplitude, shape, and duration, by referring to relevant literature. We subsequently 

extract a set of features from the preprocessed PPG pulses and assign them to their respective 

AAP class labels.  

Finally, we develop a dataset for BP levels classification. This involves extracting FSST 

features from 2-secondes PPG segments we than assign them to their respective classes 

depending on the tasks, such as hypertension or BP ranges. 

2. Data Analysis 

2.1. Data Base Description 

The dataset utilized in the current research originates from the MIMIC-III database, an 

openly available repository holding anonymized medical information from patients admitted to 

ICU [182]. MIMIC-III is widely recognized for its substantial size and widespread adoption 

within the medical research community.  

Within the MIMIC-III database, numerous data types are accessible, such as laboratory 

results, demographic information, clinical registrations, medication details, and biomedical 

signals. Particularly, the MIMIC-III waveform database encompasses over 3 million hours of 

signal recordings across 67,830 records [198]. This includes simultaneously captured ABP and 

PPG signals from thousands of ICU patients, at a sampling frequency of 125 Hz. 
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2.2. Data Acquisition Methodology  

2.2.1. Output Variable Selection 

To ensure diversity in BP values, a process was implemented during data collection 

whereby each acquisition of an ABP record was inspected for SBP and DBP values. This 

process continued until a wide feasible range of BP values was achieved. Each 1-minute ABP 

signal was collected with its corresponding 1-minute PPG signal, both containing 7500 data 

points. To ensure diversity of AAPs and good signal quality, a manual selection process was 

conducted for ABP and PPG records from the MIMIC-III database. Records were continuously 

collected meanwhile each ABP was visually inspected for possible AAP patterns, including 

bisferiens, anacrotic, dicrotic, deep, bounding, and tardus pulses (Figure III.1).  

 

Figure III.1. Abnormal pulse patterns in arterial pressure waveforms 
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Specifically, bisferiens and anacrotic pulses were identified by two systolic peaks, with 

anacrotic pulses distinguished by a lower first peak (Figure III.1 (a), (b)). Dicrotic and deep 

pulses showed abnormally low dicrotic notches (Figure III.1 (c), (d)), with dicrotic pulses 

having larger dicrotic waves (Figure III.1 (d)). Bounding pulses had abnormally high 

amplitudes (Figure III.1 (e)). Tardus pulses appeared inclined to the right due to delayed peak 

time (Figure III.1 (f)). The process continued until a reasonable number of AAP examples was 

observed.  

2.2.2. SSQI-Based PPG Acquisition 

PPG signals underwent a signal quality assessment following an SSQI-based protocol 

[199]. Some PPG records were excluded due to poor signal quality and motion artifact 

interference. Orphanidou's research [200] revealed that skewness is linked to distorted PPG 

signals and has a particular correlation with the quality of PPG signals. Similarly, Liang et al. 

[201] determined that skewness is the most suitable approach for evaluating the SQI in PPG 

signals.  

 
(a) Skewness waveform response 

 
(b) Screening process 

Figure III.2. Skewness analysis 

Skewness is a measure that reflects the level of asymmetry exhibited by a distribution in 

relation to its mean value [202], as depicted in Figure III.2 (a). When the skewness is positive, 

it signifies a distribution with an asymmetric tail biased towards the positive side of the mean. 

When the skewness is negative, it signifies a distribution with an asymmetric tail biased towards 

the negative side of the mean [203]. The PPG pulse distribution has an asymmetric tail that 

extends in the direction of larger, more positive values. Thus, positive skewness suggests good 
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SQI whereas negative skewness indicates low SQI. The PPG screening process is further 

illustrated in Figure III.2 (b). In accordance with study in [201], we use 1-second PPG segment 

to assess its quality. The signal is selected if its SQI exceeds a threshold of 0.90.   

2.2.3. Filtering 

The signals obtained from the MIMIC III database are often impacted by undesirable 

effects, such as high-frequency noise and baseline drift in PPG signals, as well as noisy 

fluctuations in ABP signals. To address these effects, we employ two filtering techniques. 

Firstly, we apply a fourth-order Butterworth filter with a bandpass of 0.5 Hz to 8 Hz to eliminate 

baseline drift and high-frequency noise in PPG signals, respectively [118]. Secondly, we used 

a moving average filter to remove noisy fluctuations from ABP signals. 

3. Biomedical signal Preprocessing  

3.1. Normalization 

The z-score normalization approach is utilized to standardize the signal and maintain a 

consistent scale. It involves adjusting the signal by first subtracting the mean (𝜇) to center it, 

and then scaling it using the standard deviation (𝛿). Presented herein are the vector forms 

representing the original signal retrieved from the dataset, as described in Eq. (1), and the 

normalized signal, as expressed in Eq. (2).  

𝑋 = {𝑥1, 𝑥2, 𝑥𝑛, …… 𝑥𝑁} (1) 

𝑋𝑛𝑜𝑟𝑚 = {
𝑥1 − 𝜇

𝛿
,
𝑥2 − 𝜇

𝛿
,
𝑥𝑛 − 𝜇

𝛿
,…… 

𝑥𝑁 − 𝜇

𝛿
} (2) 

where 𝑥 denotes a sampling point in the signal, 𝑛 is the sample index and 𝑁 is the total length.  

3.2. Pulse Wave Features Detection Algorithms  

3.2.1. Peak Detection 

To locate the peaks of the signal, a threshold (TH) is initially established to isolate the 

prominent waves from the rest of the normalized signal, as indicated in Eq. (3). This method, 

known as clipping, is commonly employed by researchers for peak detection [204]. 

𝑇𝐻 =
1

𝑁
∑|𝑋𝑛𝑜𝑟𝑚|

𝑁

𝑛=1

 (3) 

Next, we eliminate any part of the signal that falls below the threshold: 
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𝑆 = 𝑋𝑛𝑜𝑟𝑚   𝑖𝑓   𝑋𝑛𝑜𝑟𝑚 > 𝑇𝐻
𝑆 = 𝑇𝐻        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 
(4) 

where 𝑆 represent the isolated signal. 

 Finally, we compare each sample to the threshold to identify the peak values. To prevent 

the identification of consecutive peaks within the same pulse, we set a minimum distance of 40 

samples between any two identified peaks. By enforcing this condition, we can ensure that each 

peak corresponds to a distinct pulse within the signal. 

3.2.2. Trough Localization approach  

To extract pulses from the records we performed a segmentation process based on the 

signal’s third derivative. Our analysis revealed that every trough in the signal is closely 

associated with a local maximum in the signal's third derivative (Figure III.3 (a)), an 

observation that we term the Local Maximum Third Derivative (LMTD). Interestingly, these 

LMTDs remain detectable even in records where the troughs are not visible (Figure III.3 (b)), 

indicating their potential use in approximating suppressed troughs. 

 
(a) Detectable troughs from an ABP record  

 
(b) Suppressed troughs from a PPG record  

Figure III.3. LMTD locations 
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As illustrated in Figure III.3, to detect an LMTD we must first identify the last local 

minimum that precedes the signal's peak (in green). As a result, three key features must be 

extracted in order to detect the trough: the peak, the last minimum preceding it, and the LMTD. 

The subsequent steps outline the segmentation process in detail. 

To detect the LMTDs, we initially divide the third derivative of the signal into discrete 

windows (Eq. (5)). The boundaries of each discrete window are set to correspond with the peak 

values of the original signal. 

𝑋𝑛𝑜𝑟𝑚
′′′ = {𝑑1, 𝑑2, 𝑑𝑛, … 𝑑𝑙 , …… 𝑑𝐿} (5) 

where 𝑋𝑛𝑜𝑟𝑚
′′′  represent the normalized signal’s third derivative, with each sample value denoted 

as 𝑑, the window’s limit as 𝑙, and the last limit as 𝐿 .  

Subsequently, we identify the local minima that precede the limits of the windows. We 

then update these limits by shifting them backward until they align with the local minima 

values. This process results in a revised set of limits, as denoted in Eq. (6). 

𝑋𝑛𝑜𝑟𝑚
′′′ = {𝑑1, 𝑑2, 𝑑𝑛, … 𝑑𝑙𝑢, …… 𝑑𝐿𝑢} (6) 

where, the updated limit is designated as 𝑙𝑢, and the final updated limit as 𝐿𝑢.  

Finally, we identify the LMTDs as the local maxima preceding the updated limits. The 

process for detecting LMTDs is further illustrated in Figure III.4. 

 

Figure III.4 LMTD detection 

To approximate the index values of the suppressed troughs, we examined the marginal 

distance between LMTDs and detectable troughs. Analysis of the signals revealed mean 
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distances (MDs) and standard deviation distances (STDs) of 2.6±1.1 and 1.22±0.95 for ABP 

and PPG signals, respectively. As a result, the formula for approximating the suppressed 

troughs is defined as: 

𝑡𝑟𝑠𝑢𝑝 = 𝐿𝑀𝑇𝐷𝑖𝑑𝑥 +𝑀𝐷 (7) 

where 𝑡𝑟𝑠𝑢𝑝 denotes a suppressed trough, 𝐿𝑀𝑇𝐷𝑖𝑑𝑥 represent the LMTD index and 𝑀𝐷 

represent the mean distances. 

3.2.3. Dicrotic Notch Optimization 

A dicrotic notch is typically identified by locating the local minimum at the end of the 

systolic phase. However, in the case of a suppressed dicrotic notch, a slight inflection point 

replaces the local minimum, making it difficult to detect using conventional methods. 

Therefore, we present a novel approach for detecting suppressed dicrotic notches using a multi-

objective optimization technique. 

We introduce a tool that measures the angles of inflection points using two intersected 

lines, as shown in Figure III.5. Conventionally, an angle of two intersected lines is calculated 

as follows: 

𝜃 = 𝑡𝑎𝑛−1(
𝑎2 − 𝑎1
1 + 𝑎1𝑎2

) (8) 

where 𝑎1 and 𝑎2 are the slopes of the first and second line, respectively. 

 

Figure III.5. Measurement technique 

However, this method is only valid for equally calibrated signal axes. Instead, we propose 

estimating the inflection point values utilizing a customized formula. This involves considering 

the deviation’s degree of one line relative to the other, as illustrated in Figure III.5. 
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Additionally, we impose constraints on the slopes of the intersected lines, to ensure the 

exclusive measurement of the inflection points, as denoted in Eq. (9). 

𝜃𝑖𝑛𝑓 =
𝑎2−𝑎1

𝑎1
 , such that {

   𝑎1, 𝑎2 < 0
𝑎1 < 𝑎2 

 (9) 

where 𝜃𝑖𝑛𝑓 represent the degree of deviation of the second line compared to the first line, while 

𝑖𝑛𝑓 is the inflection point index. 

The search process involves obtaining a set of 𝜃𝑖𝑛𝑓 measurements within a predetermined 

search space, which is delineated as a segment of the pulse wave extending between the peak 

and the trough. The pulse wave can be represented as a sequence of values, denoted as: 

𝑃𝑊 = {𝑥𝑡𝑟 , 𝑥𝑡𝑟+1, 𝑥𝑡𝑟+𝑛, … 𝑥𝑝𝑒 , … 𝑥𝑡𝑟+𝑘} (10) 

where 𝑡𝑟 and 𝑝𝑒 respectively represent the pulse’s trough and peak indexes, while 𝑘 indicates 

the pulse’s length.  

The search space is then identified as a subset of PW, denoted as: 

𝑆𝑃 = {𝑥α1 , …… 𝑥α2} (11) 

where α1 and α2 represent the indexes that mark the boundaries of the search space and are 

given by  α1 ≈ 𝑝𝑒 + 0.15𝑘  and α2 ≈ 𝑝𝑒 + 0.55𝑘. 

The 𝜃𝑖𝑛𝑓 measurements are taken by sliding the intersected lines along all the search space 

by respecting the established constrained, as illustrated in Figure III.6. 

 

Figure III.6. Random 𝜃𝑖𝑛𝑓 measurements in the search space  

A suppressed dicrotic notch is indicative of an inflection point at the minimum 𝜃𝑖𝑛𝑓 

measurement in the search space, denoted as 𝜃𝑚𝑖𝑛. However, a single search to obtain 𝜃𝑚𝑖𝑛 



Chapter III: Operationalizing an Upgraded Classification Framework 

 

79 

 

may yield inaccurate measurements, leading to false positive results. As a result, we implement 

a search process involving multiple iterations (𝑖) to identify the optimal solution (𝑖𝑛𝑓𝑜𝑝𝑡). Within 

each iteration, measurements are taken using intersected lines of increasing lengths, resulting 

in varying slopes. In a given iteration, the slope of each line is defined as: 

𝑎𝑖,𝑗 =
𝑓(𝑐𝑒𝑛𝑑) − 𝑓(𝑐𝑖𝑛)

𝑐𝑒𝑛𝑑 − 𝑐𝑖𝑛
 (12) 

𝑤𝑖𝑡ℎ {
𝑐𝑖𝑛 = 𝑖𝑛𝑓 − 𝑖,   𝑐𝑒𝑛𝑑 = 𝑖𝑛𝑓   𝑤ℎ𝑒𝑛   𝑗 = 1
𝑐𝑖𝑛 = 𝑖𝑛𝑓, 𝑐𝑒𝑛𝑑 = 𝑖𝑛𝑓 + 𝑖    𝑤ℎ𝑒𝑛   𝑗 = 2

  

where 𝑐𝑖𝑛 and 𝑐𝑒𝑛𝑑 represent the initial and the last sample index of a line, respectively, while 

𝑓(𝑐𝑖𝑛) and  𝑓(𝑐𝑒𝑛𝑑) are their expected values. The length of the lines increases by 𝑖 = 1 during 

each iteration, until it reaches a maximum iteration of 𝐼 ≈ 0.15𝑘.  

Each of the resulting 𝜃𝑚𝑖𝑛(𝑖) correspond to a specific 𝑖𝑛𝑓 in the search space. Therefore, 

we determine 𝑖𝑛𝑓𝑜𝑝𝑡 by considering all the 𝜃𝑚𝑖𝑛(𝑖) measurements and their respective 𝑖𝑛𝑓 (𝑖) 

obtained during the search process. We present the search process results 𝜑𝑟 for a particular 

pulse 𝑟 as: 

𝜑𝑟 =

{
 
 

 
 
𝜃𝑚𝑖𝑛(1) 
𝜃𝑚𝑖𝑛(2)
𝜃𝑚𝑖𝑛(𝑖)

⋮
𝜃𝑚𝑖𝑛(𝐼)

|
|

inf (1)
inf (2)
inf (𝑖)
⋮

inf (𝐼)}
 
 

 
 

 (13) 

The 𝜃𝑚𝑖𝑛 measurements that were taken from similar indexes are counted to identify the 

most present 𝑖𝑛𝑓 in 𝜑𝑟. As a result, the most prevalent 𝑖𝑛𝑓(𝑖) in 𝜑𝑟 is identified as 𝑖𝑛𝑓𝑜𝑝𝑡. The 

search process is further explained in Figure III.7. 

To evaluate the efficacy of the optimization algorithm, we employ the standard deviation 

(𝑆𝐷) as a metric to ensure that the dicrotic notches are accurately located. Typically, the distance 

between a peak and its corresponding dicrotic notch is nearly constant across all pulses in a 

signal. Thus, the 𝑆𝐷 captures the variation between the optimal solutions 𝑖𝑛𝑓𝑜𝑝𝑡 and the peaks 

throughout the entire signal 𝑋𝑛𝑜𝑟𝑚. The 𝑆𝐷 can be defined using the following equation: 

𝑆𝐷 =
∑ (𝑖𝑛𝑓𝑜𝑝𝑡(𝑟) − 𝑝𝑒(𝑟) − 𝜎)

2𝑅
𝑟=1

𝑅
 (14) 

where 𝜎 represents the mean distance between the peak and the optimal inflection point, while 

𝑟 denotes the index of each pulse and 𝑅 represents the total number of pulses in the signal. 
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Figure III.7. Search technique 

To further minimize the 𝑆𝐷 index, the search process is regenerated by gradually 

narrowing the search space (specifically α2) through three iterations until improved results are 

obtained, as depicted in Figure III.8. If no improvement is observed, we select the search with 

the lowest 𝑆𝐷 value as the final result. Nevertheless, our analysis indicates that a marginal 

improvement of less than 1.38 is considered an instance of over-minimization. To address this, 

we have set a threshold to control the 𝑆𝐷 minimization process, requiring the 𝑆𝐷 index to 

improve by a value equal to or greater than 1.38. 

 

Figure III.8. A segment from an Arterial pressure signal during evaluation process 
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To evaluate the efficacy of the proposed optimizer, Figure III.8 presents a segment of a 

disrupted ABP signal. This particular signal was intentionally selected for its instability and 

association with various fluctuations, with the aim of testing whether any false positive dicrotic 

notches are detected.  

Overall, our proposed algorithm incorporates three objective functions in an iterative 

manner. Firstly, we minimized 𝜃𝑖𝑛𝑓 to obtain the minimum inflection point measurement 

(𝜃𝑚𝑖𝑛). Secondly, we maximized 𝜑𝑟 to identify the optimal inflection point index (𝑖𝑛𝑓𝑜𝑝𝑡). 

Finally, we minimized the 𝑆𝐷 index to improve the overall optimization process. 

4. Features Engineering 

4.1. Physiologically-Grounded Features  

From PPG each pulse, a set of 24 features were extracted for use in AAP classification 

system. Our analysis starts by selecting six segments from the pulse signal, including the total 

pulse (Figure III.9). Each segment is then processed to derive four distinct features.  

 
Figure III.9. Morphological feature analysis 
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The first feature relates to the temporal aspects of the selected phases and is defined as: 

𝐹𝑇 =
𝑇

𝑓𝑠
 (15) 

where 𝐹𝑇 represents the time feature, 𝑇 denotes the length of the selected phase, and 𝑓𝑠 

corresponds to the sampling frequency. 

Next, we determine the slope (a) features by establishing lines that connect the limits of 

each curve within the selected segments. The slope is calculated using the following equation: 

𝐹𝑎 =
𝑌𝑒𝑛𝑑 − 𝑌𝑖𝑛
𝑇 − 1

 (16) 

where 𝐹𝑎 represents the slope feature, while 𝑌𝑖𝑛 and 𝑌𝑒𝑛𝑑 denote the data values marking the 

beginning and end of a given segment in the PPG signal.  

Finally, we explore the SCs obtained by subtracting each curve from its corresponding line. 

These SCs are represented as a sequence of data points: 

𝐶𝑠𝑢𝑏 = {𝑣1, 𝑣2, 𝑣𝑚 , …… 𝑣𝑀} (17) 

where v is the expected data value from a given sample index m, and M is the length of the data 

points.  

We then calculate the mean and kurtosis of the SCs. The mean represents the average value 

of the SC: 

𝐹𝑀 =
1

𝑀
∑ 𝑣𝑚

𝑀

𝑚=1

 (18) 

The kurtosis measures the tailedness of the SC and is defined as: 

𝐹𝐾𝑅 =

1
𝑀 
∑ (𝑣𝑚 − 𝐹𝑀)

4𝑀
𝑚=1

(
1
𝑀 
∑ (𝑣𝑚 − 𝐹𝑀)2
𝑀
𝑚=1 )

2 (19) 

As a result, we present the input matrix 𝐹𝑖𝑛 as follows: 

𝐹𝑖𝑛 = [

𝑓1(1) 𝑓1(2) 𝑓1(𝑢)

𝑓2(1) 𝑓2(2) 𝑓2(𝑢)
… 𝑓1(𝑈)
… 𝑓2(𝑈)

⋮       ⋮         ⋮    
𝑓𝑊(1) 𝑓𝑊(2) 𝑓𝑊(𝑢)

⋮
… 𝑓𝑊(𝑈)

] (20) 

Here, 𝑢 ∈ {1, 2…, 24} and denotes a specific feature in a row matrix, 𝑈 represent the twenty 

fourth feature while 𝑊 is the length of the input dataset.  
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4.2. Time-Frequency Domain Features  

The PPG signals were divided into 2-second windows initiating at the trough of each pulse 

signal, each comprising 250 samples, as detailed in Figure III.10.  

 

Figure III.10. PPG signal segmentation 

The feature extraction process aims to reduce the input dimensions through statistical 

analysis and metaheuristic optimization. It involves two main steps: representing the PPG 

signal's time-varying spectrum using the FSST and reducing the dimensionality of the FSST 

output matrix.  

The process begins by computing the STFT of a given 2-second PPG signal. Specifically, 

the signal is divided into 20 short segments, each windowed using a 20-sample Hamming 

window. Overlapping windows with 19-sample overlap are used for smooth spectral tracking 

over time. Within each segment, the fast Fourier transform (FFT) is applied to capture the 

frequency information. This generates a TF representation, showing how spectral content 

evolves over time. Figure III.11 displays the 3D views of TF planes representing signals from 

each BP level group. 

Next, the Fourier coefficients from the STFT are reassigned to new time locations based on 

instantaneous frequency estimates, creating the FSST (Figure III.12). This squeezing process 

sharpens the PPG signal's time-varying spectrum and provides a more concentrated view in the 

TF plane compared to the smeared STFT in Figure III.11.  

The FSST produces a sizable complex-valued matrix, making it infeasible to use as features. 

Therefore, two different analysis are followed to reduce the features dimensions, including 

statistical analysis and metaheuristic optimization. 

 

 



Chapter III: Operationalizing an Upgraded Classification Framework 

 

84 

 

 

Figure III.11. Short-time Fourier Transform of PPG segments 

 

Figure III.12. Fourier Synchrosqueezed Transform of PPG segments 
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4.2.1. Statistical analysis  

To reduce dimensionality of the FSST output matrix, each frequency bin column is processed 

to derive four statistical features. This compresses the FSST matrix, meanwhile retaining 

predictive insight regarding the behavior of the reassigned time instances in each frequency bin. 

Furthermore, three different feature experiments are adopted within this approach, each 

consisting of a different reference variable to compute the input features, including the 

magnitude (absolute value), real and imaginary parts of the complex values. Let’s consider 𝑋𝑟 

a sequence of the reassigned coefficients denoted as: 

𝑋𝑟 = {𝑥1, 𝑥2, 𝑥𝑛, …… 𝑥𝑁} (21) 

where 𝑟 is the frequency index, N is the sequence length and 𝑥 is the expected complex-value 

from a given sample index n and defined as: 

𝑥𝑛 = 𝑎𝑛 + 𝑗𝑏𝑛 (22) 

where 𝑎𝑚 is the real part, 𝑏𝑚 is the imaginary part and 𝑗 denotes the imaginary unit. The 

magnitude of 𝑥𝑚 becomes: 

|𝑥𝑛| = √𝑎𝑛2 + 𝑏𝑛
2
 (23) 

 

The first feature provides an overall sense of the central tendency of the values in the 

frequency bin and is defined as the mean, or average: 

𝐹𝑀 =
1

𝑁
∑𝐶𝑛

𝑒𝑥

𝑁

𝑛=1

 (24) 

 

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝐶𝑛
𝑒𝑥 = 𝑎𝑛        𝑤ℎ𝑒𝑛  𝑒𝑥 = 1 
𝐶𝑛
𝑒𝑥 = 𝑏𝑛        𝑤ℎ𝑒𝑛  𝑒𝑥 = 2 

𝐶𝑛
𝑒𝑥 = |𝑥𝑛|      𝑤ℎ𝑒𝑛  𝑒𝑥 = 3 

 (25) 

The second feature measures how far the values spread out from the mean. It is calculated 

using the variance equation: 

𝐹𝑉 =
∑ (𝐶𝑛

𝑒𝑥 − 𝐹𝑀)
2𝑁

𝑛=1

𝑁
 (26) 
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The third feature examines the asymmetry of the distribution using skewness. Skewness 

quantifies the extent that values are unevenly distributed to one side versus the other side of the 

data's mean [202]. The skewness formula can be expressed as: 

𝐹𝑆𝐾 = √
∑ (𝐶𝑛

𝑒𝑥 − 𝐹𝑀)3
𝑁
𝑛=1

𝑁√𝐹𝑉
 (27) 

The fourth feature is derived using the kurtosis, which measures the heaviness of the tails 

of the values relative to the normal distribution [183] and is defined as: 

𝐹𝐾𝑅 =

1
𝑁 
∑ (𝐶𝑛

𝑒𝑥 − 𝐹𝑀)
4𝑁

𝑛=1

(
1
𝑁 
∑ (𝐶𝑛

𝑒𝑥 − 𝐹𝑀)2
𝑁
𝑛=1 )

2 (28) 

4.2.2. Cuckoo search optimization 

The implementation steps used to optimize FSST parameters are as follows: 

(1) Objective Function Definition: The classification accuracy is defined as the objective 

function to be maximized:  

𝑓(𝒙) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝒙) (29) 

 

where 𝒙 represents a subset of FSST features. 

(2) Initial Population Generation: An initial population of 𝑛 feature subsets are generated, 

with each subset represented as a binary vector 𝒙𝒊𝜖,{0,1}𝑘 indicating the inclusion (1) or 

exclusion (0) of features. 

(3) Levy Flight-Based Updates: For each feature subset 𝒙𝒊, a new subset 𝒙𝒊′ is generated 

using Levy flight: 

𝒙𝒊 = 𝒙𝒊
′ + 𝜶 . 𝐿𝑒𝑣𝑦(𝜆) (30) 

where Levy flights introduce perturbations in the FSST feature subset vector. 

(4) Fitness Evaluation: The new feature subsets 𝒙𝒊
′ are evaluated by training a classifier 

and computing the classification accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝒙𝒊
′) =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (31) 
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(5) Selection and Replacement: The fitness of the new subset 𝒙𝒊
′ is compared with the 

current subset 𝒙𝒊. The current subset is replaced if the new subset demonstrates better fitness: 

𝒙𝒊 =
𝒙𝒊
′     𝑖𝑓 𝑓(𝒙𝒊

′) > 𝑓(𝒙𝒊)

𝒙𝒊         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 (32) 

 

(6) Abandonment of Poor Solutions: A fraction 𝑝𝑎 of the worst-performing subsets is 

abandoned, and new subsets are generated to replace them. 

𝒙𝒊
′ = 𝒙𝒊 +  𝜸. (𝒙𝒊 − 𝒙𝒋) (33) 

where 𝜸 is a random number drawn from a uniform distribution and 𝒙𝒋 is a randomly selected 

nest. 

(7) Iterative Process: The above steps are iteratively repeated until the classification 

accuracy converges. 

5. Abnormal Arterial Pulse Pattern Modeling  

5.1. Bisferiens Model 

The bisferiens pulse, derived from the Latin words "bis" (twice) and "ferire" (to beat), is 

characterized by both a prominent tidal and percussion waves [205]. These waves can be of 

equal height or one higher than the other. For example, in cases of AR or combined AR and 

AS, the tidal wave may be taller or approximately equal to the percussion wave, with a short 

decline in mid-systole [27]. In HOCM, the bisferiens pulse shows a higher percussion wave 

compared to the tidal wave and a deeper mid-systolic decline in amplitude [28]. In this study, 

both bisferiens patterns are categorized under the same class, identified by the presence of two 

peaks during systole (Figure III.13). 

 

Figure III.13. Bisferiens model 
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5.2. Anacrotic Model 

The typical pulse in AS is referred to as anacrotic, derived from the term "anadicrotic," 

meaning twice beating on the upstroke [29]. It indicates the presence of two waves during 

systole. However, this statement creates confusion regarding whether the first wave represents 

the percussion wave of the bisferiens pulse or the anacrotic wave of the anacrotic pulse [206]. 

This confusion arises when the first wave has a lower peak compared to the second wave, as 

illustrated in Figure III.14. 

 

Figure III.14. Anacrotic model 

Fleming. [207] described the peaks in the bisferiens pulse as twin peaks. This is visually 

evident due to their brisk appearance in time [208]. In contrast, anacrotic pulses lack this 

suddenness. Instead, the upstroke seems interrupted by a notch, resulting in a small first wave, 

followed by a longer duration to reach the peak of the second wave. This explains Fleming's 

description of the second wave as being taller and broader than the first wave [207]. Thus, the 

shape and depth of the dip between the two peaks help differentiate between anacrotic and 

bisferiens pulses, as they depend on the magnitude of the two waves [209]. 

Temporal analysis: Considering the temporal aspect, our analysis demonstrates that the 

two waves appear briskly when the PPT is shorter than the OPT (Figure III.15 (a)). 

Conversely, the tidal wave appears larger when the PPT is longer than the OPT (Figure 

III.15 (b)). Hence, it is reasonable to assume that the anacrotic pulse has a longer PPT than 

the OPT. 
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(a) Brisk peaks in a bisferiens pulse 

 

(b) Broad tidal wave in anacrotic pulse  

Figure III.15. Bisferiens and anacrotic models’ comparison 

Contour analysis: We define anacrotic pulses associated with a non-prominent anacrotic 

wave based on two conditions: 

Firstly, we set a line connecting the onset and peak of the pulse, and then we subtract the 

upstroke curve from this line. This subtraction generates a SC comprising positive and negative 

samples. The positive samples represent the curve above the line, while the negative samples 

represent the curve below the line. Consequently, for an anacrotic wave to be present, the 

AUPC must be greater than the AUNC. 

Secondly, we locate the peak value of the SC, which represents the positive inflection point 

of the wave. We then set another line connecting the inflection point and the pulse peak. The 

trough in the secondary SC represents the notch of the anacrotic pulse. Figure III.16 provides 

further illustration of the detection process.  
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Figure III.16. Anacrotic pulse contour analysis 

5.3. Dicrotic Model 

In contrast to bisferiens and anacrotic pulses, a dicrotic pulse is characterized by the 

presence of two waves, with the first wave occurring during systole and the second wave during 

diastole.  

Contour analysis: Meadows et al. [65] defined a fully dicrotic pulse as having a DWA 

greater than 30% of the PP and a DNL less than 10% of the PP. They also established 

borderline criteria, which includes a DWA greater than 20% of the PP and a DNL less than 

20% of PP. However, it's important to note that a low level of the dicrotic notch does not 

necessarily indicate a large dicrotic wave. Therefore, pulses with low DNL and high DWA 

are labeled as dicrotic pulses, while pulses with only low DNLs are labeled as deep pulses. 

In this study, we employ the borderline criteria to model dicrotic and deep pulses, as 

illustrated in Figure III.17. 

 

Figure III.17. Borderline dicrotic pulse criteria 
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5.4. High Amplitude Models 

The amplitude of a pulse can be understood in terms of volume, pressure, or peak systolic 

velocities when analyzing doppler waveforms [210, 211]. The specific interpretation depends 

on the type of pulse and the nature of the study. In our study, we focus on arterial pressure 

pulses, and thus we refer to the amplitude as PP. The normal PP range is considered to be 

between 40 and 60 mmHg [212, 213]. Therefore, a HAP is defined as having a PP greater than 

60 mmHg. Our analysis includes three types of HAP models: BDP, shallow HAP, and WHP.  

The BDP is characterized by a rapid rise in pressure, resulting in a steep upstroke as 

illustrated in Figure III.18. To our knowledge, there are no defined cutoff values or guidelines 

to determine the normal range of UT. However, Wood. [29] proposed that an UT of less than 

0.16 s can be considered normal. In line with Wood's criterion, Boiteau et al. [214] reported a 

normal radial UT ranging between 0.11 s and 0.16 s. Thus, we define a BDP as having a PP 

greater than 60 mmHg and an UT less than or equal to 0.16 s. 

 

Figure III.18.  Bounding model 

We refer to the second type of HAP as shallow due to its inclined upstroke, late systolic 

peak, and occasional early hump. This pulse pattern is commonly observed in conditions 

associated with arterial stiffness [215]. Similarly, in the case of bradycardia (slow heart rate), 

the pulse displays a prolonged time in reaching the peak, leading to a broad peak, as illustrated 

in Figure III.19. In contrast to the BDP, a pulse is considered shallow when its UT exceeds 

0.16 s. 

The BDP can be observed in various physiological and pathological states [28]. 

Particularly, a unique bounding quality often occurs in moderate to severe AR states known as 

a WHP, which is mostly marked in peripheral arteries [216]. As revealed long ago, the main 
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characteristics that distinguish WHP from other HAPs are its sudden upstroke, narrow and wide 

percussion wave, and preferably flattened tidal and dicrotic waves [217]. In response to these 

signs, we propose three interpretation criteria to identify a WHP: 

 

Figure III.19.  A high amplitude model with slow upstroke time 

Contour analysis: In accordance with the aforementioned signs, most researchers define a 

WHP by a steep upstroke, sharp or narrow percussion wave, wide pulse pressure, collapsing, 

and a sharp downstroke [68,209,216,218]. Therefore, sharpness is an important feature in 

defining the WHP. Estimating the degree of sharpness in the pulse has been suggested in the 

literature [219]. However, assessing the sharpness of the WHP requires considering the 

entire systolic wave, which includes a sharp systolic upstroke and downstroke. To achieve 

this, we establish two lines: the first line extends from the onset to the peak (upstroke), while 

the second line extends from the peak to the dicrotic notch (downstroke). The proximity of the 

wave to these lines indicates its sharpness. Thus, a pulse is considered sharp if the AUNC is 

greater than the AUPC for both the systolic upstroke and downstroke, as illustrated in Figure 

III.20. Similarly, we define a flat diastolic portion if its corresponding AUNC is greater than 

or equal to its AUPC. 

Amplitude analysis: McGee. [218] stated in his book that a PP equal to or greater than 80 

mmHg and a DBP equal to or less than 50 mmHg increase the probability of moderate to 

severe AR. These benchmarks were established based on studies investigating the correlation 

between the severity of AR and PP [220] as well as DBP [221]. Although the WHP is 

primarily a systolic phenomenon that is not directly defined by low DBP [68], setting this 

condition enhances the likelihood of its manifestation. This has been confirmed by elevating 
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the arm of patients diagnosed with AR, resulting in a decrease in their DBP and a more 

pronounced water hammer quality [216-218, 222]. 

 

Figure III.20. Sharpness analysis in a water hammer model 

Temporal analysis: Boiteau et al. [214] emphasized that the UT in normal individuals is 

shortened and does not significantly differ from that observed in AR cases. However, upon 

further examination of the UT and ST measurements in their study, we observed that some AR 

subjects had UT values below the normal range reported in their study (0.11 s to 0.16 s). 

Interestingly, all AR subjects with UT values below 0.11 s had UTs that were less than one third 

of the ST (UT/ST < 34%), while the majority of the remaining subjects had UTs that were less 

than half of the ST [214]. Based on this observation, it is reasonable to assume that a short UT, 

particularly one that is less than one third of the ST, may be indicative of the suddenness in the 

upstroke of the WHP. Furthermore, the ST is another important feature in identifying a WHP, 

as it is typically prolonged in AR conditions, ranging between 0.28 s and 0.4 s [214]. 

5.5. Tardus Model 

Pulsus tardus, a pulse classification denoting a delayed peak, is the term used to describe 

a slow-rising pulse, and this condition may be further specified as pulsus parvus et tardus when 

it is accompanied by a diminished amplitude (Figure III.21). Pulsus tardus is a finding 

associated with AS disease, and its inclined upstroke o may be either smooth or interrupted by 

a notch, as previously described in the anacrotic pulse pattern [61] 
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Figure III.21. Tardus model characteristic features 

Temporal analysis: We define pulsus tardus as having an UT greater than 0.156 s, based 

on a study conducted by Yoshioka et al. [223], in which the authors concluded that an UT 

exceeding 0.156 s indicates severe AS. In certain cases, pulsus tardus can be mistaken for a 

shallow HAP, as it can be associated with a high PP in the radial artery due to arterial 

stiffness [223].  Therefore, we define the pulsus tardus model as having an UT longer than 

the remaining ST, with an UT/ST ratio greater than 50%, as illustrated in Figure III.21.  

This definition is supported by the observation that the systolic peak in pulsus tardus often 

occurs near the second sound of the heart, which represents the closure of the aortic valve at 

the end of the systolic phase [28].  

Amplitude analysis: The term "parvus" is used to describe a pulse with low volume [224] 

or a narrow PP [225]. It can also refer to low peak systolic velocities [211]. In the context of 

pulse pressure, researchers investigated PP measurements in AS states to determine whether 

pulsus parvus is indicative of severe AS [223]. Thus, a narrow pulse pressure is one of the 

defining features of pulsus parvus. Accordingly, we define a narrow PP as being less than 40 

mmHg [212, 213]. Therefore, pulsus parvus et tardus shares the same characteristics as 

pulsus tardus, except for the presence of a narrow PP. 

6. Experimental Dataset Configurations 

6.1. Class Label Assignment  

6.1.1. Abnormal Arterial Pulse Pattern Class Configuration 

Table III.1 and Table III.2 overview of the parameters utilized to model AAPs. Table 

III.1 displays the contour configurations, whereas Table III.2 displays the amplitude and time 

settings. 
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Table III.1. Pulse contour parameters used in AAP modeling process  

Model DNL (%) DWA 

(%) 

USC DSC P wave T wave D wave 

Normal ≥ 20 > 20 NS NS Prominent Non-

prominent 

Prominent 

Bisferiens NS NS NS NS Prominent Prominent NS 

Anacrotic NS NS AUPC > 

AUNC 

NS Either Prominent NS 

Dicrotic < 20 > 20 NS NS Prominent None Prominent 

Deep < 20 ≤ 20 NS NS Prominent None NS 

Water 

hammer 

NS NS AUPC < 

AUNC 

AUPC < 

AUNC 

Prominent Non-

prominent 

Non-

prominent 

Notes: 1. NS: Not specified. 2. P: Percussion. 3. T: Tidal. 4. D: Dicrotic. 5. USC: Upstroke subtracted curve. 6. DSC: 

Downstroke subtracted curve. 

Table III.2. Time and amplitude parameters used in AAP modeling process  

Model UT (s) ST (s) UT/ST (%) PP (mmHg) DBP (mmHg) 

Normal ≤ 0.16 ≥ 0.28 < 50 ≤ 60 NS 

Bounding ≤ 0.16 ≥ 0.28 ≤ 50 > 60 NS 

Shallow ↑ > 0.16 NS ≤ 50 > 60 NS 

Water hammer ≤ 0.11 ≥ 0.28 < 34 ≥ 80 ≤ 50 

Shallow > 0.16 NS ≤ 50 ≤ 60 NS 

Tardus > 0.156 ≥ 0.28 > 50 ≥ 40 NS 

Parvus et tardus > 0.156 ≥ 0.28 > 50 < 40 NS 

Anacrotic PPT > OPT NS NS NS NS 

Note: ↑: High amplitude. 

All resulting models were classified individually, except for the anacrotic models. Due to 

their limited appearance, the anacrotic pulses were sorted under the tardus category. Similarly, 

anacrotic pulses characterizing low amplitude were sorted under the parvus et tardus category. 

Additionally, a model that we refer to as "shallow pulse" was included to decrease the size of 

cases falling under the unidentified category. As Table III.2 depicts, the shallow and shallow 

↑ models share the same characteristics with the exception for the high amplitude. 

6.1.2. Blood Pressure Class Level  

The FSST-based features were sorted into three categories, each corresponding to a 

particular BP class label: HT, PHT, and NT, following the JNC7 guidelines [181]. It is crucial 

to acknowledge that a single BP reading is inadequate for establishing a hypertension diagnosis. 

Clinical literature emphasizes the need for multiple BP readings over time, as BP is known to 

fluctuate [226-227]. Therefore, the average SBP and DBP values ((SBP̅̅ ̅̅ ̅), (DBP̅̅ ̅̅ ̅̅ )) were 

calculated within each 1-minute ABP record. The BP class labels were then defined by 

comparing the computed SBP̅̅ ̅̅ ̅ and DBP̅̅ ̅̅ ̅̅  values against the clinical guidelines provided in the 

JNC7 report. 
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6.1.3. Blood Pressure Class Range 

The PPG features were assigned different range-labels corresponding to SBP, DBP, and 

MAP values. The SBP interval spanning from 90 mmHg to 170 mmHg was divided into 5 

mmHg ranges. Similarly, the DBP interval from 40 mmHg to 100 mmHg was divided into 5 

mmHg ranges. Additionally, the MAP values ranging from 40 mmHg to 120 mmHg were 

divided into 5 mmHg ranges. The FSST-based features were sorted into categorical ranges, 

with each range corresponding to a particular class of the given BP interval. Specifically, the 

SBP values were calculated as the average of the systolic peaks from the ABP signal, while the 

DBP values represented the average of the trough values. The MAP values were computed by 

integrating the area under the curve of the given ABP signal.  

6.2. Experiments 

The present research investigates two distinct classification approaches. The first approach 

focuses on identifying AAP through the utilization of physiological PPG features. This 

approach was selected due to the potential for clinical implementation, given the inherent 

advantages in the interpretability of both the inputs and outputs, which were developed based 

on an evidence-based foundation. 

The second experiment involves employing dimensionally-compressed FSST features to 

classify BP into categorical levels. This alternative approach is inherently geared towards the 

general population, particularly asymptomatic individuals who may benefit from earlier 

hypertension screening. Owing to the efficient and less complex preprocessing required, this 

approach holds the potential for implementation into affordable wearable or mobile PPG 

devices.  

6.3. Data Preparation 

To complete the data preparation, we assign class labels to each row of the input features 

based on its corresponding class label, as well as the specific classification task (AAP or BP 

levels). Next, we divide the input data into 80% training set and 20% test set. This division 

enables the classifiers to be trained on a majority of the data and evaluating their performance 

on unseen data during testing. 

To address potential biases resulting from class imbalance, a data balancing process is 

applied to the training set. This involves oversampling the classes with low datasets by 

duplicating their instances until they reach a similar size to the class with the highest number 

of samples. This prevent the training model from favoring classes with larger datasets. 
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7. Evaluation Metrics  

Different metrics are used to evaluate the classifiers’ performances, including sensitivity 

(SE), specificity (SP), precision (PR), accuracy (AC) and F1 score (F1), and are defined as 

follows:  

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(34) 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 
(35) 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
(36) 

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 
(37) 

𝐹1 =
2(𝑆𝐸 × 𝑃𝑅)

(𝑆𝐸 + 𝑃𝑅)
 

 

(38) 

In these equations, TP represents true positives, which are instances correctly identified as 

positive. TN represents true negatives, which are instances correctly identified as negative. FP 

represents false positives, which are instances incorrectly classified as positive. FN represents 

false negatives, which are instances incorrectly classified as negative.  
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Chapter IV 

Classification Approach Assessment and its 

Implications for Applied Health Management 

Reporting Key Insights and Findings from the Models and 

Discussing Opportunities for Improved Healthcare 
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1. Dataset Evaluation 

1.1. Pulse Wave Features Detection 

A core component of this research involved the extraction of PPG features through the 

segmentation of pulse waveform data. This segmentation process was facilitated by the 

implementation of customized algorithms designed to detect the dicrotic notch and pulse trough 

structures. Reliably identifying these temporal landmarks within the PPG morphology is 

crucial, as they delineate distinct physiological phases within the cardiac cycle. Additionally, 

retrospective analysis revealed a significant portion of signal records contained indistinct or 

absent dicrotic notch and trough features. 

Furthermore, precisely locating troughs and dicrotic notches within the PPG waveform is 

equally indispensable for capturing critical hemodynamic parameters such as UT, ST, PP, DBP, 

AUNC, AUPC, DNL, DWA, OPT and PPT, all of which proved to be imperative inputs to the 

proposed AAP modeling frameworks. Figure IV.1 displays sample outputs of the customized 

trough and dicrotic notch detection algorithms applied to ABP and PPG traces. 

 
(a) Suppressed troughs in a PPG signal  

 
(b) Suppressed dicrotic noches in a PPG signal 

 
(c) Suppressed troughs and dicrotic noches in a PPG signal 
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(d) A disturbing PPG signal with suppressed troughs and dicrotic notches 

 
(e) Suppressed dicrotic notches in an ABP signal 

 
(f) Suppressed dicrotic notches in an ABP signal 

 
(g) Suppressed troughs in an ABP signal 

Figure IV.1. Dicrotic notch and trough detection results 

While Figure IV.1 demonstrates that the proposed algorithms efficiently detect obscured 

troughs and dicrotic notches, visual validation alone is insufficient to fully assess their 

performance. This is because human physiology is dynamic, causing heartbeat features to vary 

within and across cardiac cycles in non-stationary ways [36]. 

Therefore, we proposed the SD metric to capture the temporal variation of dicrotic notches 

across the entire signal during the evaluation process.  The underlying idea behind the SD metric 

was to ensure temporal consistency in the prevalence of dicrotic notches within a signal record. 

By enforcing this condition, the dicrotic notches occur in their natural positions even when the 

signal exhibits distinct morphological pulse patterns, as shown in Figure IV.1 (d). 

The SD metric can also be leveraged to evaluate the detected troughs by considering the 

variation in the length of pulses across the signal. To provide quantitative evaluation into the 
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detection performance, Table IV.1 displays the average SD values for both detectors, extracted 

by analyzing over 200 signal-records during the detection process. 

Table IV.1. SD metric evaluation results 

Dicrotic notch  Trough  

PPG ABP PPG ABP 
1.22 0.94 1.75 1.56 

Notably, the parameters used in the detection process addresses signals with Fs = 125 Hz, 

as in the MIMIC III database [182, 198]. Thus, it is imperative to perform further analysis when 

utilizing our approach for signals demonstrating higher sampling frequencies. 

1.2. Class Labels 

Thousands of AAP patterns were obtained from the modeling process across 9 AAP 

classes. The two remaining classes correspond to the normal and unidentified pulse patterns.   

Figure IV.2 displays the sample sizes distribution among 11 classes, with each sample 

representing a group of models derived from a specific record. 

 
Figure IV.2. AAP classes distribution 

The modeling process involved a total of 1120 ABP signal recordings. Analysis of the 

obtained records revealed a prevalence of similar pulse models within a given ABP signal, as 

depicted in Figure IV.3.  
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Figure IV.3. AAP model results taken from different ABP examples 

Additionally, the collection process yielded ABP signals with SBP ranging 69-216 mmHg 

and DBP ranging 34-115 mmHg.  Figure IV.4 compares the diversity in BP values between 

the present dataset versus those used in prior works [36, 167], by considering the histogram’s 

bin-widths as an evaluation metric.  
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Figure IV.4. Blood pressure distribution comparison. 

After categorizing the BP values following the jnc7 guidelines, the final dataset 

encompassed 6,068 hypertensive subjects, 9,010 prehypertensive subjects, and 16,024 

normotensive subjects. The datasets were partitioned into separate training and test sets to allow 

for proper evaluation on new data. The training sets encompassed 5,568 HT subjects, 8,510 

PHT subjects, and 15,524 NT subjects, Whereas the test sets comprised 500 subjects from each 

category. After balancing the training data, 15,524 subjects were obtained for each class. 

1.3. Features Extraction 

To capture meaningful physiological variations, features were extracted by identifying 

changes that occur at specific cardiac cycle landmarks. By segmenting the PPG pulse at these 

cardiac events six different sub-waves were obtained, each describing a particular cardiac event. 

Ultimately, four metrics - kurtosis, mean, slope and time - defined feature morphologies. 

Measurements were carried out from each segment, yielding 24 features per pulse (6 segments 

x 4 metrics). The features were then assigned to 11 AAP class labels created via a modeling 

process applied on pre-segmented ABP pulses. In total, the final dataset comprised 24 x 47,000 

feature samples. 

The FSST produced a 250 x 11 complex-valued matrix, with rows representing reassigned 

time instances and columns representing frequency bins. The 250 rows correspond to the 
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original 250 signal samples, indicating continuous time after reassignment. The 11 columns 

represent the unique frequency components needed to characterize the real input signal's 

spectrum. Specifically, due to conjugate symmetry of the FT of real signals, the full spectrum 

can be compactly represented using only 11 non-redundant frequency bins, rather than the full 

FFT length. Dimensionality reduction were performed following two optimizations approaches, 

including statistical and cuckoo search optimizations. 

Statistical optimization involved processing each frequency bin column to extract four 

distinct features, rather than utilizing all 250 complex time values. This compacted the FSST 

dimensions into 4 x 11. As a result, 44 feature set will be employed for BP classification. 

Metaheuristic optimization involved applying a cuckoo search to reduce the feature space 

dimensions. This decreased the FSST dimensions to 40 samples during 30 iterations. The 

objective function used for this purpose is the KNN algorithm, with k=1. 

2. Machine Learning Modeling  

2.1. Classifiers Evaluation for AAP Prediction 

We evaluated several ML models in MATLAB R2020a, including NB, LDA, SVM, KNN, 

DT, and BT. These classifiers were optimized following the Bayesian approach integrated in 

the software's classification learner toolbox. Models were developed using a subset of 27,000 

samples from the full dataset, labeled with 11 classes. 80% of the data was used for training 

and the remaining 20% for testing. As illustrated in Table IV.2, KNN and BT significantly 

outperformed other models in terms of training time, accuracy, prediction speed, and test 

accuracy. This proves their effectiveness in addressing multiclass challenges and nonlinear 

relationships within the dataset. 

Table IV.2. Models comparison performance in AAP classification 
 

KNN BT DT LDA SVM NB 

Training accuracy (%) 98.2 

 

97.7 69.7 59.6 

 

61.5 54.3 

 

Training time (sec) 79 11 9 8 1722 8 

Prediction speed (obs/sec) 2000 69000 210000 130000 6800 87000 

Test accuracy 92.5 90.2 67.5 61.5 35.6 57 

Notes: 1. obs: observation. 2. sec: second 

The results in Table IV.2 show that LDA and NB provided fast training times of 8 seconds 

and high prediction speeds up to 210,000 observations per second. However, their accuracy on 

both the training and test sets was relatively low. This likely occurred because the underlying 
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assumptions of these parametric models did not match the actual data distribution. This 

confirms that parametric models struggle with nonlinear relationships in data. SVM training 

took much longer at 1722 seconds to achieve only 61.5% and 35.6% accuracy on training and 

test sets respectively. In addition to its computational expense, SVM seems to have overfitted 

the data. Decision trees also learned patterns quickly in 9 seconds but had relatively low 

accuracies. Overall, the results indicate the models were not effective at handling the multi-

class problems. With more classes, there is less average training data per class, making class 

boundaries harder to learn precisely.  

To further analyze KNN and BT, their hyperparameters were tuned. K values for KNN 

ranged from 1 to 10, and learners varied for BT from 10 to 200. Figure IV.5 shows how training 

and test accuracy changed with these different hyperparameters. 

 
(a) Learner variation versus accuracies  

 
(b) K-value variation versus accuracies 

Figure IV.5. KNN and BT parameter optimization 
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Figure IV.5 (a) shows that as the number of neighbors (K) increased for KNN, both the 

training and test accuracy progressively decreased. This indicates optimal performance was 

achieved with a single neighbor, emphasizing simpler KNN models can produce more accurate 

results. In contrast, Figure IV.5 (b) demonstrates that BT required 200 learners to reach the 

highest levels of accuracy. This emphasizes that more complex models are better suited for 

multiclass problems. Overall, the tuning process validated the suitability of both KNN and BT 

for addressing these nonlinear, multiclass classification challenges. KNN performed best with 

a simple single-neighbor implementation, while BT benefited from a more complex structure 

involving 200 learners. 

3. Classification Performance Evaluation 

3.1. Abnormal Arterial Pattern Classification 

In the first stage of the present study, we sought to develop a PPG-based classification 

system for predicting different AAPs morphologies, clinically proven being disease indicators. 

Towards this goal, the MATLAB Classification Learner application was utilized to train and 

validate KNN and BT classifiers using a dataset comprised of 24 features across 47,000 

samples. In accordance to MRMR importance scores (Figure IV.6), the six best parameters 

were fed into the classifiers for performance evaluation. Consistent with the hyperparameter 

optimization process, the KNN model was parameterized with K=1 while the BT model 

employed 200 learners. The results confirm that both ML algorithms, when implemented 

according to the respective tuned configurations, achieved sound predictive capabilities as 

evidenced in Table IV.3. This validates the utility of the proposed physiology-based approach 

for CVD management.  

 

Figure IV.6. Feature importance analysis 
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Table IV.3. AAP classification results 

Input parameters Training accuracy (%) Test accuracy (%) 

BT KNN BT KNN 
All parameters 97.6 97.5 91 90.9 

6-MRMR parameters 93.5 93.6  90.5 90.5 

As shown in Table IV.3, the BT model achieved an overall training accuracy of 97.6% on 

the data, slightly outperforming the KNN model which attained a training accuracy of 97.5%. 

On independent testing data, the BT model maintained a testing accuracy of 91%, while KNN 

achieved 90.9% accuracy. Though the differences in performance are minor, it is apparent from 

these results that the BT classifier performed marginally better than KNN at both training and 

testing stages. Nonetheless, both ML models proved to be effective predictors of AAP patterns, 

with testing accuracies over 90%, validating the predictive capability of the proposed PPG-

based classification framework implemented through these algorithms. 

However, a more reliable evaluation of predictive performance relies primarily on analysis 

of testing results. Furthermore, to gain deeper insight, it is crucial to assess each class 

individually rather than solely reporting aggregate accuracy. This is particularly important when 

working with multiple classes, as achieving high overall accuracy can obscure poor prediction 

of specific classes. Metrics such as specificity and accuracy that incorporate true negative 

classes into their calculation are thus prone to inflating performance. Instead, sensitivity, 

precision and F1 score provide more suitable measures for assessing each class separately, as 

they focus only on true positives. As shown in Table IV.4, reporting these alternative metrics 

on a per-class basis offers valuable perspective, particularly when some classes may have 

relatively few samples. Such an analysis more rigorously substantiates the reliability and 

limitations of the classification system for predicting multiclass outputs. 

Specifically, the BT model achieved a sensitivity of 95.1%, precision of 96.2% and F1 

score of 95.6% for the 'deep' class, while the KNN model attained a sensitivity of 95.7%, 

precision of 95.4% and F1 score of 95.6% for the same class. Conversely, the 'shallow↑' class 

exhibited the lowest values for the BT model with a sensitivity of 83.7%, precision of 85.4% 

and F1 score of 84.5%. Similarly, the 'parvus et tardus' class displayed the weakest prediction 

for the KNN model, attaining a sensitivity, precision and F1 score of 84.8%. This in-depth 

evaluation on an individual class basis reveals some classes are predicted more reliably than 
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others, with 'deep' predicted best and 'shallow↑' or 'parvus et tardus' predicted most poorly 

depending on the classifier. 

Table IV.4. AAP test performance results 

Classes 
Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1-Score (%) 

BT KNN BT KNN BT KNN BT KNN BT KNN 

Bisferiens 
93 92.3 99 99.3 89.8 92.3 98.5 98.6 91.4 92.3 

Dicrotic 
94.9 94 98.6 98.4 94.5 93.9 97.8 97.5 94.7 93.9 

Tardus 
91.7 91.3 98.9 99.2 86.6 90 98.3 98.6 89.1 90.6 

Parvus et 

tardus 
83 84.8 99.8 99.6 92.8 84.8 99.4 99.2 87.7 84.8 

Water 

hammer 
87.8 89.1 98.2 98.1 88.3 87.7 96.8 96.8 88.1 88.4 

Bounding 
86.8 86 98.1 98.3 88.8 90 96.4 96.5 87.8 88 

Deep 
95.1 95.7 99.3 99.2 96.2 95.4 98.7 98.6 95.6 95.6 

Shallow ↑ 
83.7 84.2 99.6 99.6 85.4 85.9 99.1 99.1 84.5 85.1 

Shallow 
92 94.4 99.5 99.4 89.2 88.8 99.1 99.2 90.5 91.5 

Normal 
86.1 85.1 99.5 99.4 89.2 86.6 98.9 98.7 87.6 85.9 

Unidentified 
90.9 90.5 98.6 98.5 90.1 89.4 97.6 97.5 90.5 90 

Additionally, as seen in Table IV.4, certain classes such as 'dicrotic', 'bisferiens', 'shallow', 

and 'tardus' demonstrated sensitivity, precision and F1 score values close to those achieved for 

the 'deep' class by both the BT and KNN models. This suggests these classes were also predicted 

reliably. Conversely, classes including 'water hammer', 'bounding', and 'normal' showed 

performance metrics nearer to those of the 'shallow↑' and 'parvus et tardus' classes, implying 

weaker prediction. However, overall the findings demonstrate both models consistently 

exhibited comparable prediction capability across different classes, with some classes predicted 

more effectively than others. This consistent class-level performance, despite variation, 

indicates the proposed PPG-based approach shows promise as an effective detector of various 

types of arterial pressure abnormalities through both the BT and KNN classifiers. 

3.2. Blood Pressure Level Classification 

The second stage in this study presented a system designed to classify BP levels based on 

PPG signals. The system was evaluated experimentally using three separate models trained on 
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datasets comprising distinct features extracted via FSST. BT classifiers were employed to 

develop each experimental model. As shown in Table IV.5, training each model required 

approximately 4 minutes, a reasonable duration given the sizable datasets involved. Model 

performance was assessed based on overall accuracy, confusion matrices, and F1 score through 

focused classification tasks as outlined below. 

Table IV.5. BP classification results  

Input parameters Results Model 1 Model 2 Model 3 

 

 

Statistical 

parameters 

Training accuracy 

(%) 

100  100  100 

Prediction speed 

(obs/s) 

6600 4700 4600 

Training time (s) 248 237 226 

Test accuracy (%) 96.9 95.7 96.1  

 

 

Cuckoo 

parameters 

Training accuracy 

(%) 

100  100  100 

Prediction speed 

(obs/s) 

8000 6200 5800 

Training time (s) 200 194 188 

Test accuracy (%) 97 96 95.3  

As shown in Table IV.5, the proposed methodology demonstrated effective performance 

across the three experimental models. Each model achieved 100% training accuracy, indicating 

the BT classifiers learned the training data perfectly. Upon testing, experiments 1, 2 and 3 

attained accuracies ranging between 95.3% and 97% across different input parameters. It is 

apparent from these results that experiment 1 performed marginally better than the others at the 

testing stage, though all three models proved capable of accurately predicting BP levels, with 

testing accuracies over 95%. This validates the feasibility of the statistical and cuckoo-based 

optimizations for deriving distinguishable features from FSST data to classify BP values using 

tunable BT models. 

The training and testing confusion matrices presented in Figures 6 and 7 offer meaningful 

perspective on model performance. Within the matrices, the diagonal blue cells represent true 

positives/true negatives, indicating instances where the predicted and actual classes matched. 

Meanwhile, the off-diagonal red cells reflect false positives/false negatives, where the predicted 

and actual classes differed. The columns denote the predicted classes along the output axis, and 

the rows indicate the true classes along the target axis. Additionally, the grey shaded cells 

convey important evaluation metrics - the positive predictive values are shown column-wise, 

while the true positive rates are depicted row-wise.  
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Figure IV.7. Training confusion matrices of the three experiments using cuckoo search and statistical 

analysis. 

 

Figure IV.8. Test confusion matrices of the three experimental models using statistical analysis. 

 

Figure IV.9. Test confusion matrices of the three experimental models using cuckoo search. 

The above confusion matrices represent the results achieved using statistical and cuckoo 

search parameters across the three experiments. While the training confusion matrices 

confirmed 100% accuracy distinguishing between actual cases within each class and 100% 

correct classification of all predicted cases, a more reliable evaluation relies primarily on 

analysis of test performance.  

Specifically, as shown in the testing confusion matrix for Experiment 1 in Figure IV.7, it 

correctly classified 97.4% of actual HT cases, 94.8% of actual PHT cases, and 98.6% of actual 

NT cases. Furthermore, of all HT, PHT and NT predictions made by Experiment 1, 98.4%, 
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97.7% and 94.8% were correctly classified, respectively. Similarly, Experiment 2 correctly 

classified 95.2% of actual HT cases, 94% of actual PHT cases, and 97.8% of actual NT cases, 

while indicating that of all HT, PHT and NT predictions, 97.7%, 96.1% and 93.3% were 

correctly classified, respectively. Furthermore, Experiment 3 correctly classified 97% of actual 

HT cases, 93% of actual PHT cases, and 98.2% of actual NT cases, while indicating that of all 

HT, PHT and NT predictions, 98.2%, 97.1% and 93.2% were correctly classified, respectively. 

Similarly, in Figure IV.8, the testing confusion matrix for Experiment 1 correctly 

classified 98% of actual HT cases, 96.2% of actual PHT cases, and 96.8% of actual NT cases. 

Additionally, of all HT, PHT and NT predictions made by Experiment 1, 97.4%, 97.8% and 

95.8% were correctly classified, respectively. Further, Experiment 2 correctly classified 96.6% 

of actual HT cases, 94.4% of actual PHT cases, and 97% of actual NT cases, while indicating 

that of all HT, PHT and NT predictions, 96.2%, 96.3% and 95.5% were correctly classified, 

respectively. Finally, Experiment 3 correctly classified 97.4% of actual HT cases, 92.2% of 

actual PHT cases, and 96.4% of actual NT cases, while indicating that of all HT, PHT and NT 

predictions, 95.5%, 95.5% and 95.1% were correctly classified, respectively. 

To further evaluate classification performance, the proposed models underwent three 

classification trials in line with previous related work [31-34]: non-HT (NT + PHT) vs HT, NT 

vs HT, and NT vs PHT. Table IV. 6-11 provide detailed performance metrics for Models 1-3 

across each trial using both statistical and cuckoo search parameters. This including F1 score, 

precision, specificity and sensitivity.  

When employing statistical parameters, model 3 attained the best F1 score reaching 99% 

for the NT vs HT task, while Models 1-2 scored 97.5-98%. Meanwhile, Model 1 outperformed 

for non-HT vs HT with an F1 score attaining 99%, and NT vs PHT at 99.1%, whereas Models 

2-3 scored 98.9-96.6% and 98.8-98.8% respectively.  

Table IV.6. The models’ performances of experiment 1 using statistical parameters. 

Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) F1 score (%) 

PHT 474 980 11 26 98.9 97.7 94.8 96.2 

HT  487  967  8  13 99.2 98.4  97.4 97.9 

NT 493 961 27 7 97.3 94.8 98.6 96.7 

NT vs PHT 493 474 1 8  99.8 99.8 98.4 99.1 

NT vs HT 493 487 19  6  96.3 96.3 98.8 97.5 

(NT + PHT) vs HT 992 487 13 8 97.4 98.7 99.2 99 
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Table IV.7. The models’ performances of experiment 2 using statistical parameters. 

Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) F1 score (%) 

PHT 470 965 19 30 98.1 96.1 94 95 

HT  476  959  11  24 98.9 97.7  95.2 96.4 

NT 489 946 35 11 96.4 93.3 97.8 95.5 

NT vs PHT 489 470 20 10  96 99.8 98 98.9 

NT vs HT 489 476 15  1  97 96.3 99.8 98 

(NT + PHT) vs HT 989 476 24 11 97.1 98.6 98.9 98.8 

Table IV.8. The models’ performances of experiment 3 using statistical parameters. 

Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) F1 score (%) 

PHT 465 976 14 35 98.6 97.1 93 95 

HT  485  956  9  15 99.1 98.2  97 97.6 

NT 491 950 36 9 96.4 93.2 98.2 95.6 

NT vs PHT 491 465 28 7  94.3 94.6 98.6 96.6 

NT vs HT 491 485 8  2  98.4 98.4 99.6 99 

(NT + PHT) vs HT 991 485 15 9 97 98.5 99.1 98.8 

When employing cuckoo search parameters, model 1 attained the best F1 score reaching 

99.2% for the NT vs HT task, while Models 2-3 scored 97.7-99%. Additionally, Model 1 

outperformed for non-HT vs HT with an F1 score attaining 98.9%, and NT vs PHT at 97.8%, 

whereas Models 2-3 scored 98.2-97.1% and 97.3-96.4% respectively. Overall, the models 

demonstrated comparable performance across all trials, validating their impressive abilities for 

detecting different BP levels. 

Table IV.9. The models’ performances of experiment 1 using cuckoo search parameters. 

Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) F1 score (%) 

PHT 484 971 21 16 97.9 95.8 96.8 96.3 

HT  490  965  13  10 98.7 97.4  98 97.7 

NT 481 974 11 19 98.9 97.7 96.2 96.9 

NT vs PHT 481 484 15 7  97 97 98.6 97.8 

NT vs HT 481 490 4  4  99.2 99.2 99.2 99.2 

(NT + PHT) vs HT 987 490 10 13 98 99 98.7 98.9 

Table IV.10. The models’ performances of experiment 2 using cuckoo search parameters. 

Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) F1 score (%) 

PHT 485 955 23 15 97.7 95.5 97 96.2 

HT  483  957  19  17 98.1 96.2  96.6 96.4 

NT 472 968 18 28 98.2 93.3 94.4 93.5 

NT vs PHT 472 485 16 8  96.8 96.3 98.3 97.3 

NT vs HT 472 483 12  10  97.6 97.5 97.9 97.7 

(NT + PHT) vs HT 957 483 17 19 96.6 98.3 98.1 98.2 
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Table IV.11. The models’ performances of experiment 3 using cuckoo search parameters. 

Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) F1 score (%) 

PHT 482 948 25 18 97.4 95.1 96.4 95.8 

HT  487  943 23 13 97.6 95.5  97.4 96.4 

NT 461 969 22 39 97.8 95.5 92.2 93.8 

NT vs PHT 461 482 21 13  95.8 95.6 97.3 96.4 

NT vs HT 461 487 18 9  96.4 96.2 98.1 99 

(NT + PHT) vs HT 943 487 13 23 97.4 98.6 97.6 97.1 

3.3. Blood Pressure Ranges Classification 

BP range classification was conducted by training FSST-derived features using a BT 

classifier. SBP and MAP classification involved 16 categorical classes each, while DBP 

encompassed 12 classes. The BT classifier achieved 100% training accuracy according to 

results reported in Tables IV.12-14, effectively distinguishing between multiple BP range 

classes during model fitting. However, test set accuracies were relatively lower. Specifically, 

statistical BT parameters yielded classification accuracies of 92.4-93% for SBP ranges, 90-

92.2% for DBP ranges, and 90.4-92.3% for MAP ranges. Metaheuristic BT parameters 

optimized via cuckoo search algorithms achieved test accuracies of 91.8-93.1% for SBP, 90.6-

90.9% for DBP, and 92.1-93.6% for MAP range classification.  

Table IV.12. SBP ranges classification results 

Input parameters Results Model 1 Model 2 Model 3 

 

Statistical 

parameters 

Training accuracy 

(%) 

100  100  100 

Test accuracy (%) 93 92.8 92.4  

 

Cuckoo 

parameters 

Training accuracy 

(%) 

100  100  100 

Test accuracy (%) 92.7 91.8 93.1  

 

Table IV.13. DBP ranges classification results 

Input parameters Results Model 1 Model 2 Model 3 

 

Statistical 

parameters 

Training accuracy 

(%) 

100  100  100 

Test accuracy (%) 91 90 92.2  

 

Cuckoo 

parameters 

Training accuracy 

(%) 

100  100  100 

Test accuracy (%) 90.9 90.7 90.6  
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Table IV.14. MAP ranges classification results 

Input parameters Metric Model 1 Model 2 Model 3 

 

Statistical 

parameters 

Training accuracy 

(%) 

100  100  100 

Test accuracy (%) 91.5 92.3 90.4  

 

Cuckoo 

parameters 

Training accuracy 

(%) 

100  100  100 

Test accuracy (%) 92.5 93.6 92.1  

The results demonstrated that FSST transformation coupled with BT ensembles provided 

an effective supervised learning framework for distinguishing between multiple discrete BP 

levels based on classification of BP range categories. Perfect training accuracy was achieved 

by all models, whereas test set performance was relatively lower. This suggests the models may 

have overfit the training data, as evidenced by decreased generalization to novel test examples 

not seen during fitting.  

The potential for overfitting has important implications for constraining the utility of BP 

range classification in downstream BP estimation tasks. Misclassification errors would provide 

regression models with incorrect BP value ranges as inputs, resulting in irrelevant BP 

predictions that do not accurately reflect the patients' true hemodynamic states. Hence, further 

parameter optimization is warranted to enhance test set classification accuracy and minimize 

overfitting. Reducing the gap between training and testing metrics is crucial for developing 

classification frameworks with robust predictive capabilities on independent data. 

3.4. Feature redundancy optimization results 

While the developed models demonstrated potential utility for arterial pressure prediction 

tasks, overfitting challenges necessitated further methodological refinement to enhance 

generalizability. Accordingly, FRV approach was carried out to improve the test accuracies of 

the models, as reported in Table IV.15. FRV was applied to the models exhibiting the lowest 

initial performance. This included the AAP model constructed with 6-MRMR features; the BP 

level model utilizing FSST experimental configuration 3 with cuckoo search parameters; and 

the MAP range classifier leveraging FSST experiment 1 optimized via cuckoo search. 

Table IV.15. FRV classification results 

Redundant parameters AAPs BP ranges BP levels 

1 90.5 % 90.9 % 95.3 % 

15 92.8 % 91.7 % 96.8 % 

20 95.9 % 93.4 % 97.3 % 

25 96.0 % 95.1 % 97.9 % 
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As shown in Table IV.15, FRV successfully enhanced test accuracies across these 

classifiers by increasing parameter redundancy. For the AAP, BP level, and MAP models, 

classification performance improved from 90.5% to 96.0%, 95.3% to 97.9%, and 90.9% to 

95.1%, respectively. This validation of FRV's ability to mitigate overfitting and enhance 

generalization validates its potential as a performance-boosting approach. 

4. Comparative Analysis with Prior Work 

4.1. Blood Pressure Level Classification 

This section assesses the system's classification performance in comparison to previous 

research. Table IV.16 contrasts F1 scores from the current work against other studies [36, 104, 

105, 167] for classification tasks involving normal and pre-hypertensive subjects versus 

hypertensive subjects, normal versus pre-hypertensive subjects, and normal versus hypertensive 

subjects. Based on the comparison findings, the proposed models in this work show greater 

robustness and efficiency. A key reason is that the models have learned from a much more 

significant and diverse dataset incorporating a broader range of BP values, an element not taken 

into account in earlier studies. 

Table IV.16. BP results comparison against previous studies 

Approach Classification task Features Research 

subjects 

Classifier F1 score 

 
PAT features 

[105] (PPG and 

ECG signals) 

 
NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

 (NT + PHT) (87 TS) vs HT (34 
TS) 

 

 
PAT and 10 

PPG features 

 
121 subjects  

 
KNN 

 
84.34 % 

94.84 % 

88.49% 

PPG features 
[105] (only 

PPG signals) 

NT (46 TS) vs HT (34 TS) 
NT (46 TS) vs PHT (41 TS) 

 (NT + PHT) (87 TS) vs HT (34 

TS) 
 

10 PPG 
features 

121 subjects  KNN 78.62 % 
86.94 % 

78.44 % 

Raw PPG 

Signal [104] 

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 
 (NT + PHT) (87 TS) vs HT (34 

TS) 

 

RGB images 

using CWT 
(scalogram) 

2904 subjects 

(images)  

CNN 80.52 % 

92.55 % 
82.95 % 

Raw PPG 

Signal [167] 

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

 (NT + PHT) (87 TS) vs HT (34 
TS) 

 

2100 PPG 

features 

points 

900 subjects KNN 100 % 

100 % 

90. 80 % 

Raw PPG 
Signal [36]  

NT (38 TS) vs HT (38 TS) 
NT (38 TS) vs PHT (38 TS) 

 (NT + PHT) (76 TS) vs HT (38 
TS) 

 

TF-features 
using STFT 

900 subjects  
 

BLSTM 97.29 % 
97.39 % 

93.93 % 

This study  NT (500 TS) vs HT (500 TS) 
NT (500 TS) vs PHT (500 TS) 

 (NT + PHT) (1000 TS) vs HT (500 

TS) 
 

44 FSST 
features using 

statistical 

analysis 

48,072 subjects BT EXP1 

97.5 % 

99.1 % 

99 % 

EXP2 

98 % 

98.9 % 

98.8 % 

EXP3 

99 % 

96.6 % 

98.8 % 



Chapter IV: Classification Approach Assessment and its Implications for Applied Health 

Management 

 

116 

 

This study  NT (500 TS) vs HT (500 TS) 

NT (500 TS) vs PHT (500 TS) 
 (NT + PHT) (1000 TS) vs HT (500 

TS) 

 

40 FSST 

features using 
metaheuristic   

48,072 subjects BT EXP1 

98 % 
99.4 % 

99.2 % 

EXP2 

98.3 % 
99 % 

98.9 % 

EXP3 

97.3 % 
95.7 % 

97.5 % 

Furthermore, even though the dataset was large in size, it took around 4 minutes only to 

train each of the experimental models in our study, significantly faster than prior methods. For 

instance, the BLSTM model from Tjahjadi et al. [36] needed over 30 minutes to train using a 

smaller 786 data samples. Liang et al.'s CNN model [104] was even slower, exceeding 350 

minutes using 2323 samples. This validates the superior learning speed of the BT classifier 

compared to previous approaches. 

In terms of feature extraction, earlier studies had some limitations that our work aimed to 

address. For instance, a study by Liang et al. [105] evaluated KNN models using PPG data with 

and without PAT features. While the results were promising, utilizing PAT requires an extra 

sensor beyond just PPG. Additionally, extracting morphological shape features necessitates 

high quality PPG signals [104], as they can be impacted by motion artifacts [38]. In our work, 

we were able to achieve high performance using few TF features directly calculated from the 

PPG signal, without needing special morphological preprocessing to locate specific features.  

In comparison to prior work, this study aimed to address some limitations in feature 

extraction. For instance, one paper evaluated KNN models utilizing PPG data both with and 

without PAT features [105]. While the results were promising, incorporating PAT necessitated 

an extra sensor beyond PPG. Separately, deriving morphological characteristics necessitated 

high-quality PPG recordings [104], since they can be impacted by movement interference [38]. 

Alternatively, the proposed system in this research achieved high performance relying solely 

on 44 statistical features or 40 metaheuristic features directly computed from the transformed 

PPG signals, without needing specialized preprocessing to locate features. This obviated the 

requirement for supplemental sensors or dependence on high quality PPG signals. 

In addition, although the studies in [36, 167] achieved the highest F1 scores up to that 

point, their datasets lacked variety in BP ranges (as shown in Figure IV.4) and the models were 

assessed on small test sets. In contrast, our models kept consistent F1 scores for all tasks while 

addressing limitations of previous works, such as complex preprocessing needs, lengthy 

training times, and limited amount of data. 
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4.2. Cardiovascular Disease Management 

Table IV.17 summarizes various methods employed in developing CVD diagnostic 

systems, outlining their respective outputs, associated medical conditions, classification 

algorithms, input data features, and accuracy levels. The present system's key strength lies in 

its capability to handle multiple tasks simultaneously, as demonstrated by the range of related 

pathologies it can address. Nonetheless, transparency is an indispensable factor in healthcare 

systems, necessitating a balanced approach between performance and simplicity at both the 

component and individual case levels. Despite previous studies attaining high accuracy rates, 

their chosen features and models involved trade-offs in terms of complexity. 

Table IV.17. AAP results comparison against previous studies 

Authors Classification output Input features  Related pathologies Classifier Accuracy 

Putra et al. 

[19] 
Healthy vs. CHD 

Frequency band features 

and statistical features 

• Coronary Heart 

Disease 
KNN 90.9% 

Hackstein et 

al. [18]  

Control Group vs. 

Aneurysms 

Parameter estimation of 

ARMAX models and 

frequency response 

features 

• Aneurysms KNN 60% 

Hosseini et al. 

[20] 

High Risk CAD vs. Low 

Risk CAD 

 

Statistical, time-interval 

and time-domain features  

• Coronary Artery 

Disease 
KNN 81.5% 

De Moraes et 

al. [21] 

Cardiopathies vs. 

Healthy 

Time domain and 

statistical features 

•  Idiopathic Dilated 

Cardiomyopathy 

• Chagas 

Cardiomyopathy 

• Ischemic 

Cardiomyopathy 

KNN 

MLP 

K-means 

SOM 

88.57-

100% 

90-100% 

91.85-

100% 

87.5-

100% 

Divya et al. 

[24] 

Cardiac-risk level 1 vs. 

Cardiac- risk level 2 vs. 

Respiratory disorder vs. 

Normal 

Statistical features, DWT 

coefficients, 

dimensionally reduced 

features via SVD   

• Risk assessment  
GMM 

SDC 

96.64 

97.88% 

Prabhakar et 

al. [23] 
CVD-risk vs. Normal 

Dimensionally reduced 

features via metaheuristic 

optimization algorithms 

• Risk assessment  

LR 

SVM 

NB 

ANN 

99.48% 

98.96% 

98.96% 

98.96% 

Palanisamy 

and Rajaguru 

[22] 

CVD-risk vs. Normal 

Dimensionally reduced 

features via heuristic- 

and transformation-based 

techniques 

• Risk assessment  HS 98.31% 

Tjahjadi et al. 

[36] 

Hypertension vs. Pre-

hypertension vs. 

Normotension 

Time-Frequency analysis  • Hypertension BLSTM 93% 

Tjahjadi and 

Ramli. [167] 

Hypertension vs. Pre-

hypertension vs. 

Normotension 

2100 PPG samples • Hypertension KNN 93% 

This study  
9 AAPs vs. Normal vs. 

Unidentified 

Time-domain & 

morphological features 

• Hypertrophic 

obstructive 

cardiomyopathy   

• Aortic stenosis  

• Aortic regurgitation  

• Mixt valvular 

diseases 

KNN 

BT 

90.9% 

91% 
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• Pulmonary 

embolism  

• Constrictive 

pericarditis 

• Pericardial 

tamponade  

• Cardiomyopathies 

• Arteriovenous 

fistula 

• Sepsis 

• Anemia 

• Thyrotoxicosis    

• Severe bradycardia 

For instance, the heuristic and transformational feature extraction approaches employed in 

[18, 19, 22-24, 36] yielded abstract representations that could prove challenging to rationalize 

within a clinical context. Algorithms such as swarm intelligence [23] and transformations 

[22,24] frequently entail intricate mathematical operations or optimization techniques. 

Furthermore, classifiers like SVM, ANN, GMM, and BLSTM may undermine modular 

simplicity, due to their complex internal structure. Although LR and NB models created in [23] 

offer interpretability through their parametric nature, dimensionally reduced features introduce 

instance-level trade-offs. 

The present work used physiological input parameters obtained from time duration, slope 

and SCs, all together defining pulse wave characteristics. This resulted in 24 predictors, a 

reasonable feature subset when considering the number of classes involved. In terms of modular 

design, the KNN model was developed using simpler hyperparameters, requiring a single 

neighbor for multi-target classification. However, depending solely on the closest data point 

may lead to erratic predictions if the neighbor is an outlier. In contrast, employing 200 DT 

learners for the BT model undermines its simplicity despite encompassing interpretable 

individual models. A performance focused tuning process may thus compromise simplicity. 

5. Opportunities and Challenges for Healthcare Integration 

5.1. Clinical Perspectives and Considerations 

The proposed AAP classification framework shows promise as a cost-effective adjunctive 

tool in clinical settings by facilitating the discrimination between specific pulse abnormalities 

and their potential underlying etiologies. For example, the identification of AAP waveforms 

such as pulsus tardus, pulsus parvus et tardus, bisferiens pulse, and water hammer pulse could 

aid in the detection of various valvular defects (VHDs) [61, 68, 223]. Likewise, the appearance 

of a dicrotic pulse may indicate conditions associated with low CO [65, 228]. Meanwhile, a 
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deep pulse profile could be indicative of sepsis or reduced peripheral resistance [59, 66]. 

Furthermore, pathologies typically connected with a bounding pulse or shallow HAP include 

anemia, thyrotoxicosis, severe bradycardia, arteriovenous fistula, or AR [28].  

While AAPs have historically been connected to specific cardiovascular conditions [27, 

29, 65, 206, 207, 217], there remain no standardized hemodynamic criteria for categorizing 

their waveform patterns. Clinicians tend to utilize AAP terminology only when an association 

with particular CVDs exists. For instance, terms such as anacrotic, pulsus tardus, and pulsus 

parvus et tardus are often employed in the analysis of AS waveforms [29, 223]. Similarly, 

descriptors like bisferiens, water hammer, and bounding are commonly applied when 

examining AR tracings [68, 216]. Furthermore, despite the radial artery being considered the 

gold standard site for acquiring ABP signals, literature addressing the normal hemodynamic 

characteristics defining the radial pulse morphology is scarce. Currently, the evaluation 

methods involve either visual examination of pulse waveforms or palpation of an artery [28].  

Given these limitations, we aimed to develop a modeling approach for identifying AAP 

patterns based on three analytic approaches. Contour analysis incorporated criteria, theories, 

and descriptions from previous studies examining AAP morphologies to determine suitable 

contour parameters. Amplitude and temporal analyses synthesized metrics and criteria from 

studies of pathologies exhibiting specific morphologies to derive time and amplitude 

parameters. Together, these three analytic components sought to objectively characterize AAP 

patterns through consideration of morphological descriptions, hemodynamic indicators, and 

pathological evidence, with the goal of generating parameterized AAP models. 

Associating arterial pressure waveform morphologies with cardiovascular conditions 

based on established hemodynamic mechanisms could bolster clinician confidence in 

assessments compared to approaches lacking underlying causal relationships. Integrating such 

a system into wearable biosensing devices [84] may enable several potential benefits: 

(1) Clinical decision support: Direct physician involvement could be triggered if 

cardiovascular condition is suspected, allowing non-invasive verification of abnormalities 

and review of pathologies commonly linked to a patient's morphological profile. 

(2) Post-operative monitoring: Remote surveillance of postoperative patients dismissed 

from the clinic via an integrated patient portal in the EHR system may aid recovery oversight 

and early intervention for emerging issues. 
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(3) Nursing alerts: Automated notifications of any detected aberrations in a patient's pulse 

wave patterns (AAPs) could support nursing staff. 

(4) Timely communication: Concerning patterns may prompt alerts to patients and 

clinicians to enable prompt response if warranted. 

However, a successful clinical adoption relies on addressing some challenges: 

(1) Motion artifact sensitivity: PPG susceptibility to motion artifacts [38] poses a 

challenge. Automatic identification and removal of corrupted signals using techniques like 

signal quality indexing (SSQI) can help mitigate motion interference [229], but excessive 

rejection may limit system usability. Strategies like customizable reminders to notify 

users/clinicians prompting reduced movement during screening or strategic sensor placement 

at less prone sites, such as the chest, could also be explored as it is less impacted by movement. 

Strategies like customizable reminders to notify users/clinicians prompting reduced movement 

during screening or strategic sensor placement at less prone sites, e.g. chest, could also be 

explored as it is less impacted by movement. 

(2) Model updates: Continuous clinically annotated arterial pressure data collection is 

necessary to refine the model overtime. However, guidelines and dedicated collection programs 

are currently lacking. Raising awareness among biomedical engineers to facilitate 

collaborations with clinics may support data collection initiatives. Beyond clinics, 

smartwatch/fitness tracker integration may enhance global health awareness.  

(3) Clinical transparency: Gaining physician and patient trust necessitates model 

explainability [37]. Interactive interfaces visualizing predicted patient pulse patterns linked to 

accompanying hemodynamic animations could illustrate prediction logic. Further, adjusting 

inputs in "what if" scenario simulations where feature values are manipulated to observe 

risk/disease probability changes may elucidate model grounding in medical evidence via 

transparent visualization and simulation approaches. Together, such explainability features 

foster understanding and confidence in predictions through transparency. 

5.2. Consumer-Oriented Deployment 

PPG allows for a non-invasive and convenient means of measuring pulsatile blood volume 

changes via its periodic waveform, which provides insights into cardiovascular health status 

[118]. However, extracting meaningful features from PPG signals proves challenging due to 

their non-stationary nature, as the statistical properties fluctuate dynamically over time. To 
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address this, FSST was employed to decompose the signals into the time-frequency domain, 

generating high-resolution TFRs that revealed transient cardiovascular variabilities related to 

BP regulation. These TFRs were then subjected to statistical and metaheuristic optimization 

techniques to engineer features capturing pressure-dependent changes not delineated by basic 

approaches. This optimized set of time-frequency domain signal characteristics constituted the 

input parameterization for the BP classification model. It furnished a robust representation of 

the non-stationary signal dynamics within the PPG data that considers its time-varying 

properties. In essence, this signal processing and feature engineering methodology aimed to 

develop an input characterization capable of handling the non-stationary nature of PPG signals 

for BP prediction applications. 

For the classification task, an ensemble methodology was implemented utilizing 200 BT-

learners to improve accuracy and robustness over solitary models by minimizing variance 

[195]. Bagging provides an efficient means of leveraging extensive training datasets as the 

constituent models can be fitted in parallel on data subsets. Specifically, the model was trained 

on a sizable dataset encompassing diverse BP ranges [198]. This variety aimed to foster 

generalizability to real-world settings and reduce biases relative to models trained on a narrow 

BP distribution. The low computational complexity enabled training completion within only 

minutes per experiment on a dataset of this scale. Moreover, testing on a balanced dataset 

enables better evaluation of performance across the full spectrum of population subgroups. The 

ensemble approach aimed to develop a model capable of handling variability in both training 

data composition and target variable distributions for BP classification in practical applications. 

The proposed approach holds promise as an affordable aid in clinical settings, as the 

experimental models achieved F1 scores ranging from 96.6% to 99.1% for classifications of 

non-HT vs. HT, NT vs. HT, and NT vs. PHT. Such trials play an important role in routine 

prehypertension and hypertension detection, which in turn contribute to early diagnosis and 

management of hypertension [104]. Additionally, these results validate the employment of the 

proposed system in real-world scenarios where various sources of perturbation could interfere, 

owing to the synchrosqueezing transform's stability in handling signals contaminated with 

artifacts [184]. This level of robustness is reasonable given that the PPG signals were captured 

from patients in intensive care unit wards [55], environments prone to introducing noise into 

physiological recordings. 
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This approach utilizing BT offers several advantages for BP monitoring via wearable 

devices compared DNN-based systems: 

(1) Convenient implementation: As the approach only requires raw PPG inputs, it 

provides a convenient way for implementation in wearable devices. The BT models can be 

deployed locally on the wearable device without the need for cloud computing resources. 

(2) Low computational and storage demands: BT methods are well-suited for wearables 

due to their lower computational complexity and storage requirements compared to DNNs. This 

allows housing the full model on-device, avoiding the latency, costs, and privacy issues 

associated with cloud-based solutions. In contrast, deep networks require vast storage that is 

better suited to cloud-based deployment. 

(3) Efficient prediction: BT models can make predictions efficiently using typical 

processors without the need for specialized GPUs, which helps to lower the overall costs of the 

wearable device. Deep networks, on the other hand, require powerful GPU processing, which 

is often infeasible for affordable wearables. 

(4) Adaptability to continuous learning: BT models are adaptable to incremental, 

continuous learning through regularly updating the on-device ensemble as additional training 

data becomes available. This is in contrast to deep networks, where retraining to update the 

weights is much more computationally expensive, making regular updates on wearables 

impractical. 

This approach could make BP monitoring more affordable and accessible by allowing it to 

be done directly through popular wearable devices, rather than relying on expensive medical 

equipment. The lightweight system is simple enough to use that people could monitor their BP 

anywhere, even in areas with limited resources. This helps address a common problem - many 

individuals don't actually know what BP levels are considered normal or concerning. Currently, 

people usually only find out during occasional doctor visits.  

If more widely applied, this method may enhance early detection and management of high 

BP. It could also lead to better outcomes by preventing damage to organs over time from 

uncontrolled hypertension. With more widespread monitoring, higher risk cases could be 

identified sooner. Then, lifestyle changes or treatment could be started earlier to better control 

the condition. All of this may help reduce healthcare costs associated with complications later 

on.  
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By facilitating convenient BP self-tracking using wearable technologies, this approach 

aims to improve global health by making monitoring more accessible. It seeks to fill gaps and 

overcome barriers related to screening and management of hypertension. The goal is to 

eventually help more individuals maintain normal BP and avoid issues through increased 

awareness and monitoring opportunities.  
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Conclusions 

Summarizing Contributions, Limitations, and Future 

Directions 



Conclusions 

125 

 

This thesis introduced a non-invasive arterial pressure classification framework optimized 

for the purpose of predicting AAPs, classifying hypertension status, and distinguishing between 

discrete BP intervals, all solely from PPG signal data. The AAP classifiers were modelled with 

the aim of addressing existing gaps in the literature pertaining to cardiovascular disease 

classification for effective clinical translation, as their evidence-based classifications provide 

clinically-relevant insights that can directly inform diagnostic formulation. In contrast to prior 

investigations, the proposed AAP methodology presents an approach that is more amenable to 

integration within clinical practice settings due its ability to classify multiple conditions while 

maintaining direct links between predictions and potential cardiovascular implications. This 

addresses limitation of previous research focused only on broad risk profiling or narrow disease 

taxonomies. The hypertension classifiers adopt a divergent research orientation aligned with 

the intended objective of facilitating widespread public access to monitoring via integration 

within wearable PPG devices. Given hypertension's asymptomatic nature and high prevalence 

rates, this goal aims to enable expanded global monitoring opportunities to enhance prevention 

through raised individual awareness. The BP interval classifiers are designed to predict discrete 

ranges for systolic, diastolic and mean arterial pressures, delineated at 5mmHg thresholds, with 

the intention of enabling ML model training within well-defined physiological boundaries 

while deliberately controlling for prediction error. Reporting outputs as constrained BP 

categorizations in this manner permits constrained BP estimation. 

The dataset utilized in this thesis was sourced from the MIMIC-III database, as it contains 

over 3 million hours of simultaneously recorded ABP and PPG signals from thousands of ICU 

patients. Thousands of subject recordings were extracted from this extensive clinical dataset. 

AAPs were initially identified from ABP records by referencing known pathophysiological 

exemplars understood to manifest such anomalies, resulting in 9 models. BP levels were 

deduced from ABP signals according to clinical guidelines established by the JNC7, 

conceptualizing 3 categorical groups including HT, PHT, and NT. Systolic (SBP), diastolic 

(DBP) and mean arterial pressure (MAP) intervals were discretized into 5mmHg ranges, 

yielding 16 categorical classes for SBP and MAP while DBP encompassed 12 classes. A key 

methodological aspect of this work involved optimizing classifier parameters to better analyze 

the aforementioned arterial pressure waveforms and characteristics. However, differentiating 

intended system end-users, whether clinical decision support tools or individual self-screening 

applications, was indispensable for parameterizing models concordant with targeted 

deployment contexts. Hence, classifiers were carefully selected and tailored through targeted 
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optimization of parameters according to the usability requirements of each environment. This 

specialized modeling design addressed barriers that have hindered prior efforts from 

successfully translating into real-world clinical or consumer-focused applications. 

From a clinical perspective, BT and KNN classifiers were selected for AAP classification 

to accommodate PPG nonlinear characteristics while maintaining a simply algorithmic 

structure, as less complex models tend to be more readily explainable and interpretable 

compared to sophisticated models like DNNs. By design, BT and KNN inherently favor 

interpretability due to decision trees' logical architecture and KNN's statistical basis. Several 

ML algorithms were evaluated to validate BT and KNN's utility, demonstrating superior AAP 

classification performance. The classifiers were optimized using both internal and external 

techniques. Internal optimization focused on hyperparameter fine-tuning via Bayesian 

optimization to identify optimal configurations. In contrast, external optimization aimed to 

enhance input parameters by extracting 44 physiological metrics from PPG signals, reducing 

these to the top 6 most salient features according to MRMR analysis. The models successfully 

discriminated AAP classes with over 90% accuracy. However, internal tuning resulted in BT 

employing 200 learners, compromising its simplicity advantage, while KNN's reliance on a 

single neighbor risks random outlier prediction due to sensitivity to abnormal data points. 

For consumer-oriented applications, considerations for designing an affordable blood 

pressure monitoring system were paramount. DNNs' requirement for powerful GPUs to rapidly 

compute their computationally intensive layers introduces deployment barriers, especially 

when handling large datasets. This rendered ML classifiers a preferable candidate for 

engineering a cost-effective solution due to their lightweight hyperparameters. In particular, the 

BT classifier was evaluated for BP prediction tasks, categorizing measurements into ranges as 

well as levels including HT, PHT, and NT. Mirroring optimizations employed for clinical 

systems, the BT model was refined internally following Bayesian optimization procedures. 

Meanwhile, input parameters were derived from PPG signals' synchrosqueezing transform 

utilizing statistical analysis and cuckoo search optimization

Results demonstrated impressive performance with over 95% accuracy classifying 

hypertension status and over 90% accuracy classifying BP ranges. The lighter resource 

requirements of ML classifiers relative to DNNs addressed feasibility challenges for designing 

an affordable, scalable consumer BP monitoring system. Performance validation established 

proof-of-concept for leveraging these algorithms in real-world wearable applications. 
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While the developed models demonstrated potential utility for arterial pressure prediction, 

overfitting challenges necessitated refinement. Accordingly, FRV was applied to enhance 

model testing accuracies. FRV successfully improved test set accuracy across classifiers by 

augmenting feature space redundancy. Although FRV proved an efficient approach, its 

capabilities were limited due to low redundancy levels. To more fully leverage FRV's potential, 

it is hypothesized that higher redundancy levels above 50% would yield additional benefits. 

While initial experiments validated FRV efficacy, addressing overfitting necessitates further 

exploration of enhancing redundancy. Pushing redundancy beyond previous thresholds may 

strengthen model generalization, an ongoing priority as predictive performance and robustness 

are balanced through continued algorithm development and validation. 

A core strength of this study was leveraging novel trough and dicrotic notch detection 

tools, essential for extracting PPG features and modeling AAPs. However, to strengthen the 

reliability of findings, further analysis is needed to define more coherent parameters optimized 

for higher sampling frequency signals. Additionally, PPG signals' sensitivity to motion artifacts 

may negatively impact algorithm accuracy. The dicrotic notch detector may also struggle with 

pulse waves exhibiting multiple systolic peaks. While increasing evaluation process iterations 

could address this issue, over-minimization may also result. To build upon initial work, future 

efforts should explore parameter refinement suited to varying sampling rates. Addressing 

motion artifact impacts through hardware/software solutions could enhance reliability. 

In BP classification systems, the methodology demonstrates potential as an accessible, 

affordable self-screening tool to enable early hypertension detection through consumer 

wearables. By facilitating convenient BP monitoring ubiquitously, this approach may help 

optimize health outcomes worldwide through personalized notifications and hypertension 

management afforded by timely data. Further research should focus on evaluating real-world 

predictive performance across diverse populations and age demographics to strengthen 

generalizability insights. With refinements to enhance robustness, this technique could 

empower both patients and providers by furnishing convenient means for early hypertension 

detection and mitigation of otherwise asymptomatic cardiovascular risks. Validating predictive 

capabilities on out-of-sample cohorts, and assessing model recalibration over time, will be 

important next steps to clarify translational viability. If predictive accuracy can be sustained 

longitudinally across demography, wearable-enabled BP classification may represent a 

promising avenue for scalable prevention through low-cost continuous screening and tracking 

aligned with on-the-go lifestyles. 
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The AAP classification system also shows promise as a practical, cost-effective diagnostic 

tool. Its ability to detect and link abnormalities to specific CVDs enables more informed care 

planning relative to generic risk profiling. This offers potential value in early detection and 

prevention through integration into wearables. Possible applications include clinical decision 

support via disease verification, remote postoperative monitoring via electronic health records, 

nursing alerts for anomalies, and timely notifications. However, successful clinical adoption 

depends on addressing challenges such as motion artifact susceptibility through signal quality 

indexing techniques like SSQI. Continuous collection of clinically annotated data is also 

important for model refinement, though guidelines currently lack dedicated programs. Raising 

awareness among biomedical engineers could facilitate data partnerships with clinical sites.  

Ensuring predictive explanations through interactive tools linking patterns to disease 

animations and allowing adjustments to visualize predicted changes helps establish trust by 

conveying prediction logic. Addressing technical and adoption barriers will be crucial to 

realizing this system's potential across various healthcare uses. Ongoing efforts refining 

techniques, collaborating on data acquisition protocols, and strengthening model transparency 

will determine translational viability. 

This study contributes promising advancements to the field of arterial blood pressure 

prediction. However, further research is needed to validate the results using larger and more 

diverse datasets, as well as potentially extending the approach to integrate other physiological 

signals and health conditions. Future work could include the collection of multi-site PPG 

datasets recorded at different body locations to uncover novel morphological features. 

Synchronizing higher sampling rate PPG with additional signals, such as ECG, may enhance 

the cardiovascular representation. Classifying pulse morphologies from central or proximal 

arterial sites may reveal patterns that are indistinct in distal recordings. The approach also shows 

potential for detecting various health conditions through advanced pressure wave analyses. For 

example, renal artery stenosis could be assessed by comparing upstream and downstream wave 

differences, while vascular dementia may be detected through analyzing the long-term 

consequences of chronic hypertension. Focusing on acquiring more reliable pulse 

characterization metrics could assist in the modeling of AAP patterns. Advancing the 

integration of diverse datasets, signals, and health contexts will deepen the understanding and 

broaden the applications of arterial pulse prediction in clinical management. Conducting larger 

validation studies across diverse populations remains important to substantiate the initial 

findings and spur the translation of this research into practical applications.
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