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Preface 

This handout is made up of courses from the classic Mechanical Engineering program, taught to third 

year engineering students. Therefore, it is the fruit of several years of teaching. This part of the program is 

devoted to the three modes of heat transfer; conduction, convection and thermal radiation. Currently, it is aimed 

at LMD License students (for heat transfer module 1). We hope that it will be of great use in better 

understanding the principles of the three phenomena of heat transfer. The lessons are enriched by several 

examples and corrected exercises. 

The handout is limited to four chapters, in the first chapter we will present heat transfer in a general 

way. The second chapter is reserved for basic heat transfer laws. The third chapter is devoted to one-dimensional 

conduction in steady state. Also, the problem of one-dimensional conduction with loss through the side 

surfaces. Thermal conductivity and orders of magnitude for common materials. Discussion of the parameters 

on which thermal conductivity depends. Energy equation, simplifying assumptions and different forms. Spatial 

and initial boundary conditions. The four linear conditions and their practical significance. Some solutions of 

the heat equation, in Cartesian, cylindrical and spherical coordinates, with linear conditions. Conductive 

systems with heat sources. Stationary electrical analogy. The longitudinal rectangular fin problem: Fin 

equation. Solving the problem. Calculation of fin efficiency. Generalization of the fin concept. Application to 

radial fin with uniform profile. The fifth and final chapter is devoted to convective heat transfer and the 

parameters involved in convective heat transfer. In the last chapter, the different types of convective heat 

transfer are highlighted: forced, natural and mixed convection. Cite common examples. Discern between 

laminar and turbulent convective transfer in both forced and natural modes. 

We hope that this handout covering the main themes of the In-depth Heat Transfer module will be used 

as support for the course and that it will be useful for understanding the material taught. 
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Introduction to heat transfer and thermodynamics 
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General introduction: 

From time immemorial, the problems of energy transmission, and in particular heat, have been of decisive 

importance for the design and operation of equipment such as steam generators, furnaces, heat exchangers, 

evaporators, condensers, etc., but also for chemical transformation operations. 

Indeed, in some reaction systems, it is the rate of heat exchange rather than the rate of chemical reaction that 

determines the cost of the operation (in the case of highly endo- or exothermic reactions). What's more, with 

the relative increase in the cost of energy, the aim nowadays is to achieve maximum plant efficiency with 

minimum energy expenditure [1;2]. 

Heat transfer problems are numerous, and we can try to differentiate them by the goals pursued, the main ones 

being: increasing the energy transmitted or absorbed by a surface, obtaining the best efficiency from a heat 

source, reducing or increasing the flow of heat from one medium to another. 

The potential that causes the transport and transfer of thermal energy is temperature. If two material points in 

a thermally insulated medium are at the same temperature, it can be said that there is no overall heat exchange 

between these two points, which are said to be in thermal equilibrium (this is because each of the material 

points emits a net thermal energy of the same modulus, but of opposite sign). 

Heat transfer within a phase or, more generally, between two phases, takes place in three ways: 

a) By conduction.         b) By convection.       c) By radiation. 

In many thermal energy transformation problems, the three modes of heat transfer will coexist, but usually at 

least one of the three forms can be neglected, simplifying the mathematical treatment of the transfer apparatus. 

We can already say that, at ordinary temperatures, transport by radiation is negligible, but it can become 

significant and predominant as the temperature level rises. 

We should also point out that some heat transfers are accompanied by a transfer of matter between two phases. 

The heat flux transferred in the presence of a phase change depends on the nature and physico-chemical 

properties of the phases involved. 

This is the case for boiling and condensation, but also for humidification, drying, crystallization and so on. 

In what follows, we present the general laws governing the three types of heat transport. We will then take a 

simple look at a few applications where the heat transfer mode studied is predominant [1;2]t. 

 

1-1-Relationship between heat transfer and thermodynamics 

Thermodynamics enables us to predict the total amount of energy a system must exchange with the outside 

world in order to move from one equilibrium state to another. 

Thermodynamics or thermokinetics aims to describe quantitatively, in space and time, the evolution of the 

system's characteristic quantities, in particular the temperature between the initial and final states of 

equilibrium. 

Thermodynamics: studying states of equilibrium 

1st principle of thermodynamics: equivalence between heat and energy 1 cal = 4.18 joule, conservation of 

energy Ceded = Qabsorbed 

The 2nd principle of thermodynamics: heat or thermal energy can only be transferred from a hot body to a cold 

one. 

Heat transfer: study the process mechanism and transfer speed 
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- Calculate temperature distribution within bodies 

- Calculate heat flow J/s (W) heat exchanged per unit time Transfer = exchange = transmission = propagation 

Thermal = heat 

Thermal transfer = heat transfer
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 Basic heat transfer laws 
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2-Definitions: 

2-1 Temperature field: [1;2] 

Energy transfers are determined from the evolution in space and time of temperature: T = (x,y,z,T) 

The instantaneous value of temperature at any point in space is a scalar called the temperature field. We 

distinguish between two cases: 

- Temperature field independent of time: the regime is said to be permanent or stationary. 

- Evolution of the temperature field with time: the regime is said to be variable or unsteady. 

 

2-2 Heat flow: 

Heat flux is the quantity of heat transmitted to surface S per unit time. 

∅ =
𝑑𝑄

𝑑𝑡
                  [

𝐽

𝑠
] = [𝑊]                                                               (1.1) 

 

   

2-3 Flux density: 

The quantity of heat transmitted per unit time and per unit area of the isothermal surface is called the heat flux 

density: 

𝑞 =
∅

𝐴
=
1

𝐴

𝑑𝑄

𝑑𝑡
              [

𝑊

𝑚2
]                                                              (1.2) 

 

Where A is the surface area (m2) 

 

 

2-4 Energy balance 

First, we need to define a system (S) by its boundaries in space, and then draw up an inventory of the various 

heat flows that influence the state of the system: 

 

∅𝑖𝑛 + ∅𝑔 = ∅𝑠𝑡 + ∅𝑜𝑢𝑡                                                                     (1.3) 

 

 
 

 

∅𝑜𝑢𝑡: outgoing heat flow                                             

∅𝑔: heat flow generated                                                                 

∅𝑖𝑛: incoming heat flow 

∅𝑠𝑡: stored heat flow 

 

  

 

2-4-1 Energy storage [1;2] 

The storage of energy in a body corresponds to an increase in its internal energy over time (at constant 
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pressure), hence: 

 

∅𝑠𝑡 = 𝜌𝑉𝐶𝑝
𝜕𝑇

𝜕𝑡
                                                                           (1.4) 

 

With: 

∅𝑠𝑡: Stored heat flux [W] 

ρ: Density (kg m-3)  

V: Volume (m3) 

Cp: Heat density (J kg-1°C-1) T Temperature (°C) 

t: Time (s) 

 

2-4-2 Energy generation 

This occurs when another form of energy (chemical, electrical, mechanical, nuclear) is converted into thermal 

energy. It can be written as: 

 

∅𝑔 = �̇�𝑉   [𝑊]                                                                                     (1.5) 

  

With: 

 g: Flux of thermal energy generated (W) 

 �̇�: Density by volume of energy generated (W m-3) 

 

 

2-5 The different modes of heat transfer [1;2] 

There are three modes of heat transfer: Conduction, Convection, Radiation. 

 

2-5-1 Conduction: 

This is the transfer of heat within an opaque medium, without displacement of matter, under the influence of a 

temperature difference. 

Conductive heat transfer within a body takes place by two distinct mechanisms: transmission by the vibrations 

of atoms or molecules, and transmission by free electrons. 

Heat exchange between two points on a solid, or even an immobile, opaque fluid. 

 

Fourier's law: 

The French scientist J.B.J.Fourrier proposed the fundamental relationship of heat transmission by conduction 

in 1882. The heat flux density is proportional to the temperature gradient.   

 

Q= - λA dT/dx                                                                             (1.6) 

 

Q  : Conductive heat flux (W); 

λ: Thermal conductivity of the medium (W/m °C); 

x: space variable in the direction of flow (m); 

A: Cross-sectional area of heat flow (m2); 

λ Varies with temperature for solids; 

λ Varies with pressure for gases and liquids.



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3:  

 

Heat conduction 
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3-Heat transfer by conduction [1; 2] 

3.1 General conduction equation 

In its one-dimensional form, this describes unidirectional heat transfer through a plane wall. Consider a system 

with thickness dx in the x direction and cross-sectional area S normal to the Ox direction. The energy balance 

for this system is written: 

 

 
Figure : 

 

∅𝑥 + ∅𝑔 = ∅𝑠𝑡 + ∅𝑥+𝑑𝑥   

With: 

∅𝑥 = −𝜆𝐴
𝑑𝑇

𝑑𝑥
 

∅𝑔 = �̇�𝐴𝑑𝑥 

∅𝑥+𝑑𝑥 = −𝜆𝐴
𝑑𝑇

𝑑𝑥𝑥+𝑑𝑥
 

∅𝑠𝑡 = 𝜌𝐴𝑑𝑥 𝐶𝑝
𝜕𝑇

𝜕𝑡
 

By transferring to the energy balance and dividing by dx, we obtain 

 

𝜆𝐴
𝑑𝑇

𝑑𝑥𝑥+𝑑𝑥
− 𝜆𝐴

𝑑𝑇
𝑑𝑥𝑥

𝑑𝑥
+ 𝑞𝐴 = 𝜌𝐴𝐶𝑝

𝜕𝑇

𝜕𝑡

̇
                                                     (3.1) 

 

𝑓′(𝑥) =
𝑑𝑓

𝑑𝑥
= lim

Δ𝑓

Δ𝑥
= lim

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

Δ𝑥
 

 

We have:  

𝜕

𝜕𝑥
(𝜆𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜆𝑦

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜆𝑧

𝜕𝑇

𝜕𝑧
) + �̇� = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
                                       (3.2) 
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and in the three-dimensional case, we obtain the heat equation in the most general case  

 

 

3.1.2 The simplifying hypotheses [1;2] 

 This equation can be simplified in a number of cases: 

a) If the medium is isotropic: λx= λy= λz 

b) If λ is constant 

                    

 Equation 3.2 becomes (Cartesian coordinate): 

𝜕

𝜕𝑥
(
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(
𝜕𝑇

𝜕𝑧
) +

�̇�

𝜆
=
𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
 

 

Δ𝑇 +
�̇�

𝜆
=
𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
 

Δ𝑇 +
�̇�

𝜆
=
1

𝑎

𝜕𝑇

𝜕𝑡
                                                                              (3.3) 

 

Le rapport 𝑎 =
𝜆

𝜌𝐶𝑝
  is called the thermal diffusivity (m

2
/s) 

 

 

3.1.3 Forms of the conduction equation:  

 Medium with internal source in steady state (Poisson equation):Δ𝑇 +
�̇�

𝜆
= 0; 

 Medium with internal source in steady state (Laplace equation):Δ𝑇 = 0; 

 Medium with internal source in steady state (Fourier equation):Δ𝑇 =
1

𝑎

𝜕𝑇

𝜕𝑡
. 

 

3.1.4 Analytical expressions of the conduction equation: [1;2] 

 

          For the same simplifying assumptions 

 

a) Cartesian coordinates (x,y,z) : 

 
𝜕

𝜕𝑥
(
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(
𝜕𝑇

𝜕𝑧
) +

�̇�

𝜆
=
𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
 

 

b) Cylindrical coordinates (r,θ,z) : 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +

�̇�

𝜆
=
𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
 

c) spherical coordinates: 

{

𝑥 = 𝑟 sin 𝜃 cos𝜙
𝑦 = 𝑟 sin 𝜃 sin𝜙
𝑧 = 𝑟 cos𝜙
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1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑇

𝜕𝜃
) +

1

𝑟2 sin 𝜃

𝜕2𝑦

𝜕𝜙2
+
�̇�

𝜆
=
𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
 

 

 

 

 

Système de coordonnées cylindriques 

 

Système de coordonnées sphériques 

 

 

 

3.2 Constant unidirectional steady-state conduction: [1; 2] 

3.2.1 Single wall: 

 

Consider a wall of thickness e, thermal conductivity λ, and large transverse dimensions whose end faces are at 

temperatures T1and T2 (T1> T2), and there is no energy generation or storage. 

 

 
Figure: 

 

Performing a heat balance on the system (S) consisting of the wall slice between abscissas x and x + dx gives: 

The general conduction equation: 

Δ𝑇 +
�̇�

𝜆
=
1

𝑎

𝜕𝑇

𝜕𝑡
 

This is a continuous operation: 

𝜕𝑇

𝜕𝑡
= 0,      �̇� = 0  

No heat source 
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Δ𝑇 = 0 ⟷
𝜕2𝑇

𝜕𝑥2
= 0 ⟶

𝑑𝑇

𝑑𝑥
= 𝐴     𝑎𝑛𝑑       𝑇(𝑥) = 𝐴𝑥 + 𝐵 

 

This is Laplace's equation 

With boundary conditions: 𝑇(𝑥 = 0) = 𝑇1  𝑎𝑛𝑑   𝑇(𝑥 = 𝑒) = 𝑇2,    𝑇1 = 𝐵,        𝑇(𝑥 = 𝑒) = 𝑇2 = 𝐴 𝑒 + 𝑇1  

Hence :  

𝑇(𝑥) = 𝑇1 − (
𝑥

𝑒
) (𝑇1 − 𝑇2)                                                                             (3.4) 

 

Equation (3.4) is the temperature distribution (the temperature profile). The heat flux density through the wall 

can be deduced by the relationship: 

𝑞 =
∅

𝐴
= −𝜆

𝑑𝑇

𝑑𝑥
=
𝜆

𝑒
(𝑇1 − 𝑇2) 

𝜙 = −𝜆𝐴
𝑑𝑇

𝑑𝑥
 

 

                    Heat flow 

𝜙 =
𝜆𝐴

𝑒
(𝑇1 − 𝑇2)                                                                       (3.5) 

 

 

                 Flow density 

𝑞 =
𝜆

𝑒
(𝑇1 − 𝑇2)          [

𝑊

𝑚2
]                                                                (3.6) 

 

 

Thermal resistance 

 

   

3.2.2 Analogy between heat flow and electrical flow 

 

Two systems are said to be analog when they obey the same equations and have identical boundary conditions.  

This means that the equation translating one of the systems can be transformed, to express the second system, 

by simply changing the symbols of the different variables. For example, the flow of heat through a thermal 

resistor is analogous to the flow of current in a DC electrical circuit, since both types of flow obey the same 

equations. 

 

We retain the general definition of thermal resistance: 
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The analogies established above show that the laws of association for thermal resistances are the same as those 

for electrical resistances. 

𝑅𝑡ℎ =
𝑇1 − 𝑇2
𝜙𝑡ℎ

                                                                               (3.7) 

 

Electrical analogy is used extensively in the study of phenomena involving combinations of resistors. The laws 

of series and parallel circuits are often applied. 

 

 

Equivalent resistance in series 

The equivalent resistance of a set of series-connected resistors is equal to the sum of the resistances of the 

series-connected resistors: 

𝑅𝑒𝑞 =∑𝑅𝑖
𝑖

 

 

𝑅𝑒𝑞 = 𝑅𝐴 + 𝑅𝐵 

 
 

Equivalent resistance in parallel 

The equivalent resistance of a set of parallel-connected resistors is equal to the inverse of the sum of the 

resistances of the resistors in parallel: 
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𝑅𝑒𝑞 = [∑
1

𝑅𝑖
𝑖

]

−1

 

1

𝑅𝑒𝑞
=
1

𝑅𝐴
+
1

𝑅𝐵
 

 
 

 

 

3.2.3 Single wall in contact with two fluids: [1;2] 

Assumptions : 

⇒Steady state 

⇒No radiation flow 

⇒No heat generation 

Assumptions ⇒ ∅ is constant 

 

 
 

  

∅convection 1 = ∅conduction = ∅convection 2                                                                  (3.8) 

 

𝜙𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 1 = ℎ1𝐴(𝑇∞1 − 𝑇1) =
(𝑇∞1 − 𝑇1)

1
ℎ1𝐴

=
(𝑇∞1 − 𝑇1)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 1
 

𝜙𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝜆𝐴

𝑒
(𝑇1 − 𝑇2) =

(𝑇1 − 𝑇2)
𝑒
𝜆𝐴

=
(𝑇1 − 𝑇2)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑑
 

𝜙𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 2 = ℎ2𝐴(𝑇2 − 𝑇∞2) =
(𝑇2 − 𝑇∞2)

1
ℎ2𝐴

=
(𝑇2 − 𝑇∞2)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 2
 

(3.8) ⟹
(𝑇∞1 − 𝑇1)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 1
=
(𝑇1 − 𝑇2)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑑
=
(𝑇2 − 𝑇∞2)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 2
 

 

We have: 𝑋 =
𝐴

𝐵
=

𝐶

𝐷
=

𝐸

𝐹
=

𝐺

𝐻
 

 

 

We use this relationship: 

∅ = ∅convection 1 = ∅conduction = ∅convection 2 
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∅ =
(𝑇∞1 − 𝑇1)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 1
=
(𝑇1 − 𝑇2)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑑
=
(𝑇2 − 𝑇∞2)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 2
 

∅ =
(𝑇∞1 − 𝑇1) + (𝑇1 − 𝑇2) + (𝑇2 − 𝑇∞2)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 1 + 𝑅𝑡ℎ 𝑐𝑜𝑛𝑑 + 𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 2
 

∅ =
(𝑇∞1 − 𝑇∞2)

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 1 + 𝑅𝑡ℎ 𝑐𝑜𝑛𝑑 + 𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 2
=
(𝑇∞1 − 𝑇∞2)

𝑅𝑡ℎ 𝑒𝑞
                                 (3.9) 

𝑅𝑡ℎ 𝑒𝑞 = 𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 1 + 𝑅𝑡ℎ 𝑐𝑜𝑛𝑑 + 𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 2 

𝑅𝑡ℎ 𝑒𝑞 =
1

ℎ1𝐴
+
𝑒

𝜆𝐴
+

1

ℎ2𝐴
                                                            (3.10) 

 

The equivalent electrical diagram is as follows: 

 
For the temperature profile at point x of thickness (e), the heat flux is constant for each point. 

∅ =
(𝑇∞1 − 𝑇∞2)

𝑅𝑡ℎ 𝑒𝑞
=

(𝑇∞1 − 𝑇(𝑥))

𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 1 + 𝑅𝑡ℎ 𝑐𝑜𝑛𝑑(𝑥)
=
(𝑇∞1 − 𝑇(𝑥))

1
ℎ1𝐴

+
𝑥
𝜆𝐴

 

𝑇(𝑥) = 𝑇∞1 −
𝑅𝑡ℎ 𝑐𝑜𝑛𝑣 1 + 𝑅𝑡ℎ 𝑐𝑜𝑛𝑑(𝑥)

𝑅𝑡ℎ 𝑒𝑞
(𝑇∞1 − 𝑇∞2)                                              (3.11) 

Where: 𝑅𝑡ℎ 𝑐𝑜𝑛𝑑(𝑥) =
𝑥

𝜆𝐴
 

 

 

3.3 Composite wall in contact with two fluids: 

This is the case with real walls made of several layers of different materials, where we only know the 

temperatures Tf1 and Tf2 of the fluids in contact with the two faces of the wall with lateral surface S. For the 

same assumptions, the flow is constant: 

∅𝑐𝑜𝑛𝑣 1 = ∅𝑐𝑛𝑑 1 = ∅𝑐𝑛𝑑 2 = ∅𝑐𝑛𝑑 3 = ⋯………… = ∅𝑐𝑛𝑑 𝑁 = ∅𝑐𝑜𝑛𝑣 2 

 

∅ =
(𝑇𝑓1 − 𝑇𝑓2)

𝑅𝑡ℎ 𝑒𝑞
 

𝑅𝑡ℎ 𝑒𝑞 =
1

ℎ1𝐴
+
𝑒1
𝜆1𝐴

+
𝑒2
𝜆2𝐴

+
𝑒3
𝜆3𝐴

+⋯… .+
𝑒𝑁
𝜆𝑁𝐴

+
1

ℎ2𝐴
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The equivalent electrical diagram is as follows: 

 
   

For a wall with N layers: 

𝑅𝑡ℎ 𝑒𝑞 =
1

ℎ1𝐴
+
1

𝐴
∑

𝑒𝑖
𝜆𝑖

𝑁

𝑖
+

1

ℎ2𝐴
                                                                (3.12) 

 

 

3.3.1 Long hollow cylinder (tube) with isothermal lateral surface 

Consider a hollow cylinder of thermal conductivity λ, inner radius r1, outer radius r2, length L, with inner and 

outer surface temperatures T1, T2 respectively, and T1> T2. It is assumed that the longitudinal temperature 

gradient is negligible compared to the radial gradient. 

 

T = T(r) (because independent of θ and z) 

𝜕𝑇

𝜕𝜃
=
𝜕𝑇

𝜕𝑧
= 0 

 

Let's carry out the heat balance of the system formed by the part of the cylinder between radii r and (r + dr): 

 

 
The analytical expression of the conduction equation for cylindrical coordinates is equation (2.3): 

Stationary case without heat generation 

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +

�̇�

𝜆
=
𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
 

  By integrating 



 

24  

 

With boundary conditions: 

⟹
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) = 0 ⟹ 𝑟

𝜕𝑇

𝜕𝑟
= 𝐶 ⟹

𝜕𝑇

𝜕𝑟
=
𝐶

𝑟
 

                                

With boundary conditions: 

𝑟 = 𝑟1 ⟹ 𝑇 = 𝑇1 = 𝐶 ln 𝑟1 + 𝐵 

𝑟 = 𝑟2⟹ 𝑇 = 𝑇2 = 𝐶 ln 𝑟2 +𝐵 

 

𝐶 =
𝑇1 − 𝑇2

ln (
𝑟1
𝑟2
)

 

𝑇(𝑟) = 𝑇1 +
𝑇1 − 𝑇2

ln (
𝑟1
𝑟2
)
ln (

𝑟

𝑟2
)                                                                        (2.18) 

The temperature profile is logarithmic 

 

 

Heat flux density: 

𝑞 =
∅

𝐴
= −𝜆

𝑑𝑇

𝑑𝑟
= −𝜆

𝑇1 − 𝑇2

ln (
𝑟1
𝑟2
)

1

𝑟
                                                             (2.19) 

 

 

3.3.2 Long hollow cylinder in contact with two fluids: 

 

This is the practical case of a tube coated with one or more layers of different materials, where only the 

temperatures Tf1and Tf2of the fluids in contact with the inner and outer surfaces are known. 

 

 
 

Figure 

 

For cylinder case; h1and h2 are the convective heat transfer coefficients between the fluids and the inner and 

outer surfaces: 

∅ = ∅conv 1 = ∅cond= ∅conv 2 

𝜙𝑐𝑜𝑛𝑣 1 = ℎ1𝐴(𝑇𝑓1 − 𝑇1) = 2𝜋𝑟1𝐿ℎ1(𝑇𝑓1 − 𝑇1) =
(𝑇𝑓1 − 𝑇1)

1
2𝜋𝑟1𝐿ℎ1

=
(𝑇𝑓1 − 𝑇1)

𝑅𝑡ℎ 𝑐𝑣 1
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𝑅𝑡ℎ 𝑐𝑣 1 =
1

2𝜋𝑟1𝐿ℎ1
 

𝜙𝑐𝑛𝑑 1 = 2𝜋𝐿𝜆
(𝑇1 − 𝑇2)

ln (
𝑟2
𝑟1
)
=
(𝑇1 − 𝑇2)

𝑅𝑡ℎ 𝑐𝑜𝑑
 

𝑅𝑡ℎ 𝑐𝑜𝑑 =
ln (

𝑟2
𝑟1
)

2𝜋𝐿𝜆
 

 

Continuous operation, no heat source  

𝜙𝑐𝑜𝑛𝑣 2 = ℎ2𝐴2(𝑇2 − 𝑇𝑓2) = 2𝜋𝑟2𝐿ℎ2(𝑇2 − 𝑇𝑓2) =
(𝑇2 − 𝑇𝑓2)

1
2𝜋𝑟2𝐿ℎ2

=
(𝑇2 − 𝑇𝑓2)

𝑅𝑡ℎ 𝑐𝑣 2
 

𝑅𝑡ℎ 𝑐𝑣 2 =
1

2𝜋𝑟2𝐿ℎ2
 

∅ =  ∅conv 1 =  ∅cond =  ∅conv 2 ⟹
(𝑇𝑓1 − 𝑇1)

1
2𝜋𝑟1𝐿ℎ1

=
(𝑇1 − 𝑇2)

ln (
𝑟2
𝑟1
)

2𝜋𝐿𝜆

=
(𝑇2 − 𝑇𝑓2)

1
2𝜋𝑟2𝐿ℎ2

 

∅ =  ∅conv 1 =  ∅cond =  ∅conv 2 ⟹
(𝑇𝑓1 − 𝑇𝑓2)

1
2𝜋𝑟1𝐿ℎ1

+
ln (

𝑟2
𝑟1
)

2𝜋𝐿𝜆 +
1

2𝜋𝑟2𝐿ℎ2

=
(𝑇𝑓1 − 𝑇𝑓2)

𝑅𝑡ℎ 𝑐𝑣 1 + 𝑅𝑡ℎ 𝑐𝑜𝑑 + 𝑅𝑡ℎ 𝑐𝑣 2
 

∅ =  
(𝑇𝑓1 −𝑇𝑓2)

𝑅𝑡ℎ 𝑒𝑞𝑢
                                                                (3.20) 

 

Equivalent circuit diagram 

 

 
 

For concentric cylinders: 

∅ =  
(𝑇𝑓1 − 𝑇𝑓2)2𝜋𝐿

1
𝑟1ℎ1

+ ∑
1
𝜆𝑖
ln
𝑟𝑖 + 1
𝑟𝑖

𝑁
𝑖=1 +

1
𝑟2ℎ2

                                                    (3.21) 

 

 

 

3.3.3 Hollow sphere with isothermal surface 

Consider a hollow sphere of thermal conductivity λ, inner radius r1, outer radius r2, the temperatures of the 

inner and outer surfaces being T1, T2 respectively and that T1> T2 It is assumed that T = T(r) (since independent 

of and ∅) ⇒ 
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The analytical expression of the conduction equation for cylindrical coordinates is equation (3.4) 

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑇

𝜕𝜃
) +

1

𝑟2 sin 𝜃
(sin 𝜃

𝜕2𝑇

𝜕𝜙2
) +

�̇�

𝜆
=
𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
 

Stationary case without heat generation 

 

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) = 0 ⟹

𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) = 0 ⟹ (𝑟2

𝜕𝑇

𝜕𝑟
) = 𝐴 

𝜕𝑇

𝜕𝑟
=
𝐴

𝑟2
⟹ 𝑇(𝑟) = −

𝐴

𝑟
+ 𝐵 

With boundary conditions: 

𝑟 = 𝑟1 ⟹ 𝑇 = 𝑇1 = −
𝐴

𝑟1
+ 𝐵 

𝑟 = 𝑟2 ⟹ 𝑇 = 𝑇2 = −
𝐴

𝑟2
+ 𝐵 

𝑇1 − 𝑇2 = 𝐴 (
1

𝑟2
−
1

𝑟1
) 

⟹ 𝐴 = (
𝑟1𝑟2

𝑟1 − 𝑟2
) (𝑇1 − 𝑇2)  𝑒𝑡  𝐵 = (

𝑟1𝑇1 − 𝑟2𝑇2
𝑟1 − 𝑟2

) 

𝑇(𝑟) = 𝑇1 +
(
1
𝑟2
−
1
𝑟
)

(
1
𝑟2
−
1
𝑟1
)
(𝑇1 − 𝑇2) 

 

Heat flux density: 

 

𝑞 =
𝜙

𝐴
− 𝜆

𝑑𝑇

𝑑𝑟
= 𝜆

(𝑇1 − 𝑇2)

(
1
𝑟2
−
1
𝑟1
)

1

𝑟2
 

 

The sphere's exchange surface: 

𝐴(𝑟) = 4𝜋𝑟2 

Thermal resistance for the spherical case:  

𝜙 = 𝑞𝜆
(𝑇1 − 𝑇2)

(
1
𝑟2
−
1
𝑟1
)

1

𝑟2
4𝜋𝑟2 = 4𝜋𝜆

(𝑇1 − 𝑇2)

(
1
𝑟2
−
1
𝑟1
)
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𝜙 = 4𝜋𝜆
(𝑇1 − 𝑇2)

(
1
𝑟2
−
1
𝑟1
)
=
(𝑇1 − 𝑇2)

𝑅𝑡ℎ
 

 

 

3.4 Conduction in variable regime (transient or unsteady) [2,3]: 

 

To carry out this study we generally consider two cases according to the thermal behavior 

- Thermally thin body: a body is said to be thermally thin if it is internal resistance 

 

𝑅𝑖 =
𝐿

𝜆𝐴
 is negligible. In this case, its temperature can be considered uniform at each instant t 

 

-Thermally thick body: a body is said to be thermally thick if it is internal resistance 

𝑅𝑖 =
𝐿

𝜆𝐴
 is not negligible. In this case, its temperature varies from one point to another at each instant t. 

𝑇 = 𝑇(𝑥, 𝑦, 𝑧, 𝑡) 

The classification criterion is the "Biot" number [2,3]. 

 

Thermal classification of bodies ("Biot" criterion) 

 

𝐵𝑖 =
ℎ𝐿

𝜆
=

𝑙
𝜆𝐴
1
ℎ𝐴

=
𝑅𝑖

𝑅𝑒
=
𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
                                     (3.21)  

 

It is a dimensionless number. 

 

l: characteristic length l=v/s 

V: body volume 

S: external exchange surface 

- Wall thickness 2 γ heat exchange on both sides 

𝑙 =
𝑉

𝐴
=
𝛾2𝛾

2𝛾
= 𝛾 

- Wall thickness 2 γ single-sided heat exchange 

𝑙 =
𝑉

𝐴
=
𝛾2𝛾

𝛾
= 2𝛾 

- Cylinder of radius R 

 

𝑙 =
𝑉

𝐴
=
𝜋𝑅2𝐻

𝜋𝑅𝐻
=
𝑅

2
 

- sphere of radius R  

𝑙 =
𝑉

𝐴
=

4
3𝜋𝑅

3

4𝜋𝑅2
=
𝑅

3
 

-Cube  

𝑙 =
𝑉

𝐴
=
𝑎3

6𝑎2
=
𝑎

6
 

𝐵𝑖 ≤ 0.1 thin body 
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𝐵𝑖 > 0.1 thin body 

 

  

3.5 Thermally thin body [2,3] 

The tramp of a hot solid in a cold liquid, we plane a solid probably heated to the initial temperature Ti in a fluid 

at temperature Tf = T∞. 

 

Heat released by the body = heat absorbed by the fluid between t and t+ dt 

The amount of heat transmitted to the fluid by convection over time dt= the decrease in internal energy in the 

solid. 

∅ =
𝑑𝑄

𝑑𝑡
= −�̇�𝐶𝑝

𝑑𝑇

𝑑𝑡
= −𝜌𝐶𝑝𝑉

𝑑𝑇

𝑑𝑡
   𝑒𝑡      ∅ = ℎ𝐴(𝑇 − 𝑇𝑓)                               (3.22) 

Cp = constant it's a solid with boundary conditions 

  

  

Variable-rate conduction 

𝑡 = 0,       𝑇 = 𝑇𝑖 

−𝜌𝐶𝑝𝑉
𝑑𝑇

𝑑𝑡
= ℎ𝐴(𝑇 − 𝑇𝑓) 

We place 

�̇� = 𝑇 − 𝑇𝑓 ⟹ 𝑑𝑇 = 𝑑�̇� 

−𝜌𝐶𝑝𝑉
𝑑�̇�

𝑑𝑡
= ℎ𝐴�̇� ⟹ −𝜌𝐶𝑝𝑉

𝑑�̇�

�̇�
= ℎ𝐴𝑑𝑡 

𝑙𝑛�̇� =
ℎ𝐴

𝜌𝐶𝑝𝑉
𝑡 + 𝐶 

𝑡 = 0,       𝑇 = 𝑇𝑖 ⟹ �̇� = 𝑇 − 𝑇𝑓 = �̇�𝑖 

𝐶 = 𝑙𝑛�̇�𝑖 

 

  

 𝑙𝑛�̇� =
−ℎ𝐴

𝜌𝐶𝑝𝑉
𝑡 + 𝑙𝑛�̇�𝑖 ⟹ 𝑙𝑛

�̇�

�̇�𝑖
= −

ℎ𝐴

𝜌𝐶𝑝𝑉
𝑡 

�̇�

�̇�𝑖
= 𝑒

−
ℎ𝐴
𝜌𝐶𝑝𝑉

𝑡
⟹

𝑇− 𝑇𝑓
𝑇𝑖 − 𝑇𝑓

= 𝑒
−
ℎ𝐴
𝜌𝐶𝑝𝑉

𝑡
 

𝜙 = ℎ𝐴(𝑇 − 𝑇𝑓) = 𝑒
−
ℎ𝐴
𝜌𝐶𝑝𝑉

𝑡
                                                         (3.23) 

Fourier number : 

𝐹0 =
𝜆𝑡

𝜌𝐶𝑝𝑙2
 

𝑎 =
𝜆𝑡

𝜌𝐶𝑝
⟹ 𝐹0 =

𝑎𝑡

𝑙2
 

 

  

a: thermal diffusivity of the material 

𝑇 − 𝑇𝑓
𝑇𝑖 − 𝑇𝑓

= 𝑒
−
ℎ𝐴
𝜌𝐶𝑝𝑉

𝑡
= 𝑒

−
ℎ𝑡𝑙
𝜌𝐶𝑝𝑙2 = 𝑒

−
ℎ𝑙
𝜆

𝜆
𝜌𝐶𝑝𝑙2

𝑡
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𝑇 − 𝑇𝑓
𝑇𝑖 − 𝑇𝑓

= 𝑒(−𝐵𝑖𝐹𝑖) 

 

4.3 Thermally thick body B i<0.1 [2,3] 

Assuming that the heat transfer problem allows heat flow to be neglected in the y and z directions and 

furthermore that λ is constant. 

The heat equation becomes: 

𝜕2𝑇

𝜕𝑥2
=
1

𝑎

𝜕𝑇

𝜕𝑡
                                                                              (3.24) 

 

Let's look for a solution product of the 

𝑇(𝑥, 𝑡) = 𝑋(𝑥)𝐺(𝑡) 

The previous equation becomes 

1

𝑥

𝑑2𝑋

𝑑𝑥2
=
1

𝑎

1

𝐺

𝑑𝐺

𝑑𝑡
= −𝜔2 

So 

𝑑2𝑋

𝑑𝑥2
+ 𝜔2𝑋 = 0   𝑒𝑡 

𝑑𝐺

𝑑𝑡
+ 𝑎𝜔2𝐺 = 0 

 

With ω as the constant separating the variables. 

 

The solution for X is 

𝑋 = 𝐶1 cos(𝜔𝑥) + 𝐶2 sin(𝜔𝑡) 

 

and for G 

𝐺 = 𝑒𝑥𝑝(−𝑎𝜔2𝑡) 

 
Therefore, the geal solution is: 

 

𝑇(𝑥, 𝑡) = [𝐶1 cos(𝜔𝑥) + 𝐶2 sin(𝜔𝑡)]𝐶3𝑒𝑥𝑝(−𝑎𝜔
2𝑡)                                            (3.25)
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Chapter 4. 

 

 

Convective heat transfer 
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4 Convective heat transfer 

4.1 A reminder of dimensional analysis 

4.1.1 Fundamental dimensions 

 

Physical quantities can be expressed in terms of a limited number of fundamental dimensions. Examples: 

Velocity: L . T⁻¹; dynamic viscosity: M . L⁻¹ . T⁻¹; force: M . L . T⁻². 

In these examples, the number of fundamental dimensions is 3: Mass (M), Length (L), and Time (T). 

These three fundamental dimensions are not always sufficient. For heat transfer problems, it is necessary to 

add a 4th dimension: Temperature. And, when the exchange of energy between mechanical quantities and 

thermal quantities is not measurable, the quantity of heat (Q) will be added as a 5th dimension. 

Note: Q, which is homogeneous to work and expressed in terms of the fundamental dimensions M, L, and T 

as Q = M . L . T⁻², is not a true fundamental dimension. 

The method of dimensional analysis, based on the principle of dimensional homogeneity of the terms in an 

equation, is known as the Vasha-Buckingham theorem or the theorem of grouping [3,4]. 

 

4.1.2 Principle of the method 

 

If 1 can mathematically represent a physical law by expressing a physical variable G1 as a function of a number 

of other independent physical variables G2, ..... 

., Gn, i.e. if G1 = f (G2, G3,..., Gn) or f (G1, G2,. , Gn) = 0, the problem can be simplified as follows simplified 

as follows: 

 

- For each variable Gi, we write the dimension equation as a function of the fundamental dimensions. We then 

have n equations, which require p fundamental dimensions to characterize all the physical quantities. 

 

- We take p of these n equations and consider them as basic equations.  Although the choice of equations is 

arbitrary, each fundamental dimension must appear at least once in all p equations. 

 

- The remaining (n-p) equations then take the form of (n-p) dimensionless ratios called groupings, which are 

"reduced quantities". The result is reduced to equation: 

𝑔(𝜋1, 𝜋2, …𝜋𝑛−𝑝) = 0 

 

A grouping is the ratio of a dimensional equation of a physical quantity not belonging to the set of basic 

equations to the product of the basic equations, each of which is raised to a certain power [3,4] : 

 

𝜋𝑖 =
[𝐺𝑖]

[𝐺1]𝑎𝑖[𝐺2]𝑏𝑖… [𝐺𝑝]
𝑒𝑖

 

 

For each fundamental dimension M, L, T, , Q in the denominator, the exponents are summed and identified 

with the exponent of the same dimension in the equation for the dimension of the physical quantity in the 

numerator. The result is a linear system of p equations, whose resolution enables us to determine the p 

exponents of the basic equations in the denominator. 

 

The ratio can then be written as a function of the physical quantities attached to the initial dimensional 

equations. 
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4.1.3 Application example 

Let's consider a fluid in forced circulation in a cylindrical pipe, for which we want to determine the convection 

coefficient h for the fluid-wall heat transfer corresponding to forced convection [3, 4]: 

 

 

Figure 4.1: Diagram of the configuration studied 

 

Determination of physical quantities: 

 

All the parameters on which the heat flux density (linked to h Q) depends must be determined: 

- Fluid characteristics: 

- λ coefficient of thermal conductivity 

- cp mass heat 

- ρ density 

- μ dynamic viscosity 

- Flow characteristics 

- u mean fluid velocity 

- Exchange surface geometry 

- D pipe diameter 

- Wall-fluid temperature difference 

Hence:𝑓(𝜆, 𝐶𝑝, 𝜌, 𝜇, 𝑢, 𝐷, Δ𝑇, 𝜙) = 0 

Dimensional equation for each quantity: 

 

Next, we need to write the equation in the fundamental dimensions M, L, T, θ, Q of each of the quantities, 

which is written here: 

λ : Q. T-1.L-1. -1 

cp : Q.M-1. -1 

ρ : M.L-3 

μ : M.T-1.L-1 u : L.T-1 

D : L 

Φ : Q.T-1.L-2 

 

Determining π-groupings: 

 

We now need to choose 5 basic equations (All fundamental dimensions have been used) so that all 5 

fundamental dimensions appear at least once in the set of equations. 

 

Take, for example: λ, ρ, u, D, ΔT, leaving Φ, cp and μ. 

 

We then write the 3 dimensionless ratios corresponding to these variables in the form: 

𝜋1 =
𝜑

𝑇𝑎1  𝜆𝑏1 𝜌𝑐1   𝐷𝑑1   𝑢𝑒1
;   𝜋2 =

𝐶𝑝

𝑇𝑎2  𝜆𝑏2  𝜌𝑐2   𝐷𝑑2   𝑢𝑒2
;  𝜋3 =

𝐶𝑝

𝑇𝑎3   𝜆𝑏3 𝜌𝑐3   𝐷𝑑3   𝑢𝑒3
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For each ratio, we replace the physical quantities by their dimensional equations, which gives for example for 

π1: 

[𝜋1] =
𝑄𝑇−1𝐿−2

𝜃𝑎1(𝑄𝑇−1𝐿−1𝜃−1)𝑏1(𝑀𝐿−3)𝑐1𝐿𝑑1(𝐿𝑇−1)𝑒1
 

 

For each fundamental dimension, we identify the power exponents between numerator and denominator 

relative to the same dimension, which leads to the system [3,4]: 

(𝑄):                      1 = 𝑏1 

(𝑇):                 − 1 = −𝑏1−𝑐1 

(𝐿):                 − 2 = −𝑏1−3𝑐1+𝑑1 + 𝑒1 

(𝜃):                      0 = 𝑎1 − 𝑏1 

(𝑀):                     0 = 𝑐1 

 

The ratio π1 is therefore 

𝜋1 =
𝜙𝐷

Δ𝑇𝜆
 

This, with Φ = h Δθ, can still be written as: 

𝜋1 =
ℎ𝐷

𝜆
 

 

In the same way : 

𝜋2 =
𝜌 𝑢 𝐷 𝐶𝑝

𝜆
         𝑎𝑛𝑑     𝜋3 =

 𝜇

𝜌 𝑢 𝐷
   

 Le théorème de Vaschy-Buckingam nous permet d'affirmer que la relation : 

𝑓(𝜆, 𝐶𝑝, 𝜌, 𝜇, 𝑢, 𝐷, Δ𝑇, 𝜙) = 0 

Between 8 variables can be expressed using the three dimensionless numbers 1, 2 and 3 as: 

 

𝑓(𝜋1, 𝜋2, 𝜋3) = 0 𝑤ℎ𝑒𝑟𝑒 𝜋1 = 𝑓(𝜋1, 𝜋2) 

Physical significance of these groupings: 

𝜋1 =
ℎ𝐷

𝜆
 

The Nusselt number, it can also be written as 

𝑁𝑢 =

𝐷
𝜆
1
ℎ

 

This is the ratio of conduction thermal resistance to convection thermal resistance. The higher the ratio, the 

more convection than conduction. It characterizes the type of heat transfer. It is the inverse of the Reynolds 

number, which characterizes the flow regime in the pipe. 

𝜋3 =
𝜇

𝜌𝐷𝑢
=
1

𝑅𝑒
,    𝜋2 =

𝜌𝐷𝑢 𝐶𝑝

𝜆
 

 

It is the Peclet number; it is also 1'small to write: 
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𝑃𝑒 =
𝜌𝐷𝑢

𝜇

𝐶𝑝  𝜇

𝜆
 

 

In addition, reveal a new dimensional number: 

𝑃𝑟 =
𝐶𝑝  𝜇

𝜆
 

Called the Prandtl number. This number can be calculated for a given fluid independently of experimental 

conditions (it depends only on temperature) and characterizes the influence of the fluid's nature on convective 

heat transfer. 

We therefore prefer to look for a relationship in the form [3, 4]: 

 

Nu = f (Re, Pr)                                                                     (4.1) 

 

4.1.4 Advantages of using reduced sizes 

They essentially concern the representation, comparison and research of experimental results: 

• The representation of the experimental results is simplified, we can have a curve linking 2 variables or an 

abacus linking 3 reduced variables instead of a relationship linking (3 + p) parameters. 

• Comparison of experimental results is also very quick and easy, regardless of the researcher, even if the unit 

system used is different since the reduced quantities are dimensionless. 

• The search for experimental results is made easier and orderly: if it is enough to draw a curve between two 

reduced variables, it is because it is enough to carry out a single series of experiments. 

 

Notice : 

However, it must be understood that the method of dimensional analysis which provides the reduced quantities 

does not give the form of the relationship which links them; the search for this relationship is the subject of the 

analysis of the experimental results.  

 
 

Heat transfers that take place simultaneously with mass transfers are known as convective heat transfers. This 

mode of heat exchange exists in fluid media, where it is generally predominant. 

 

Natural and forced convection 

 

A distinction is made between natural and forced convection, depending on the nature of the mechanism that 
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causes the fluid to move: 

- Free or natural convection: the fluid is set in motion solely by differences in density resulting from 

temperature differences at the boundaries and a field of external forces (gravity). 

- Forced convection: fluid movement is induced by a cause independent of temperature differences (pump, fan, 

etc.). 

The study of heat transfer by convection enables us to determine the heat exchanges taking place between a 

fluid and a wall. 

 

Flow regime 

Given the link between mass transfer and heat transfer, it is necessary to take into account the flow regime. As 

an example, let's consider the flow of a fluid in a pipe: 

 

- In laminar flow, the fluid flows in practically indep 

 
 Figure 4.2: Laminar flow diagram 

 

Heat exchange between two adjacent fluid threads therefore takes place : 

- By conduction only if we consider a direction normal to the fluid threads. 

- By convection and conduction (negligible) if the direction is not normal to the fluid threads. 

 

- Turbulent flow is not unidirectional: 

 

 
Figure 4.3: Diagram of a turbulent flow 

 

Heat exchange in the turbulent zone takes place by convection and conduction in all directions. Molecular 

conduction is generally negligible compared with convection and "turbulent diffusion" (mixing of the fluid 

due to turbulent agitation) outside the laminar sublayer. 

 

4.1.1 Heat flow expression 

 

Reynolds analogy 

 

Just as gas viscosity is explained at the molecular level by the transmission of molecular momentum during 

intermolecular shocks, heat transfer is explained by the transmission of kinetic energy during these same 

shocks. 

This intimate connection between the phenomena of viscosity and heat transfer leads to the Reynolds analogy: 
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in a fluid flow with heat transfer, the velocity profile and the temperature profile are linked by a relationship 

of similarity schematized in figure 4.4. This similarity will be demonstrated later in the case of flow over a 

heated flat plate[3,4]. 

 

 
Figure 4.4: Representation of the Reynolds analogy for turbulent flow in a tube 

 

 

Dynamic and thermal boundary layers 

 

Whatever the flow regime, there remains a dynamic boundary layer in which the flow is laminar, and whose 

thickness is reduced as the Reynolds number increases. The thickness of this boundary layer 

This boundary layer varies according to a number of parameters: fluid type, temperature, wall roughness, etc. 

The Reynolds analogy shows that the thermal gradient is particularly steep in the vicinity of the wall, in a 

thermal boundary layer that develops analogously to the dynamic boundary layer. Whatever the fluid flow 

regime, thermal resistance is assumed to be entirely located in this thermal boundary layer, which acts as an 

insulator. 

This corresponds to the Prandtl model shown in figure 4.5 as an example of turbulent fluid flow in a pipe. 

 

 
Figure 4.4: Prandtl model for turbulent flow in a pipe 

 

 

Flow expression 

Whatever the type of convection (free or forced) and whatever the fluid flow regime (laminar or turbulent), 

heat flow is given by Newton's law: 

 

Φ=h S Δθ (5.4) 

 

The major problem to be solved before calculating the heat flow is to determine the convective heat transfer 

coefficient h, which depends on a large number of parameters: characteristics of the fluid, flow, temperature, 

shape of the exchange surface, etc. 

 

Table 4.1 shows the order of magnitude of the convective heat transfer coefficient for different 

configurations [4,5]. 

 

Table 4.1: Order of magnitude of the convective heat transfer coefficient 
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Configuration h (Wm-2 °C-1) 

Natural convection 

In a gas 

In a liquid 

 

 

Forced convection 

With a gas 

With a liquid 

 

 

Boiling water 

In a container 

Flow through a tube 

 

Condensation of water at 1  

atm 

On a vertical surface 

Outside horizontal tubes 

 

2-10 

100-1000 

 

 

 

10-200 

100-5000 

 

 

 

2500-35000 

5000-100000 

 

 

 

1000-11000 

10000-25000 

 

 

4.1.1 Calculating heat flow in forced convection [4,5] Exact calculation 

In certain simple cases, a theoretical calculation can lead to an analytical expression for the heat flux exchanged 

by convection between a fluid and a wall. As an example, we'll deal here with the classic case of steady-state 

laminar flow of a fluid with constant physical properties at temperature T∞ over a flat wall of length L 

maintained at temperature Tp (see figure 4.6). 

We can see that the fluid velocity evolves from a zero value at the wall to a value close to u∞ in a zone of 

thickness (x) called the dynamic boundary layer. Similarly, the fluid temperature evolves from a value of Tp 

at the wall to a value close to T∞ in a Zone of thickness (x) called the thermal boundary layer. 

 

 

 
Figure 4.6: Schematic diagram of dynamic boundary layer development on a flat plate 

  

 

The conservation of mass equation is written in integral form: 

∫
𝜕𝜌

𝜕𝑡
𝑑𝑣 +∫ 𝜌�⃗� . �⃗� 𝑑𝑆

Σ

= 0
Λ

 

 

 

 

Where n is the external normal to ∑. 
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In steady state. Let's apply this relationship to the volume [abcd] shown in figure 4.6 : 

∫ 𝜌�⃗� . �⃗� 𝑑𝑆
Σ

= −𝜌(∫ 𝑢 𝑑𝑦
𝛿

0

)
𝑥⏟          

𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑏𝑦 𝑎𝑏

+ 𝜌(∫ 𝑢 𝑑𝑦
𝛿

0

)
𝑥+𝑑𝑥⏟          

𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑏𝑦 𝑐𝑑

+ ∫ 𝜌�⃗� ∞. �⃗� 𝑑𝐴
bc⏟        

𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑏𝑦 𝑏𝑐

= 0 

 

 

We reduce to : 

 

∫ 𝜌�⃗� ∞. �⃗� 𝑑𝑆
bc

= −𝜌
𝑑

𝑑𝑥
(∫ 𝑢 𝑑𝑦

𝛿

0

)𝑑𝑥 

 

The equation for conservation of momentum in the steady state (Euler's Theorem) is written: 

∫ 𝜌�⃗� (�⃗� . �⃗� )𝑑𝐴
Σ

= ∫ 𝜌𝑓 𝑑𝑣
Λ

+∫ 𝜌𝑓 𝑑𝑣
Σ

= ∫ �⃗� 𝑑𝐴       ;        𝑓 = 0
Σ

 

 

 

Where T are the external forces (per unit area) exerted by contact on the faces of the surface delimiting the volume. 

Let’s apply this relationship to the volume [abcd]: 

∫ 𝜌�⃗� (�⃗� . �⃗� )𝑑𝐴
Σ

= −𝜌(∫ �⃗� 𝑢 𝑑𝑦
𝛿

0

)
𝑥

+ 𝜌(∫ �⃗� 𝑢 𝑑𝑦
𝛿

0

)
𝑥+𝑑𝑥

+∫ 𝜌�⃗� ∞(�⃗� ∞. �⃗� )𝑑𝐴
bc

 

 

Projection on (Ox): 

∫ 𝜌𝑢(�⃗� . �⃗� )𝑑𝐴
Σ

= −𝜌(∫ 𝑢2 𝑑𝑦
𝛿

0

)
𝑥

+ 𝜌 (∫ 𝑢2 𝑑𝑦
𝛿

0

)
𝑥+𝑑𝑥

+∫ 𝜌𝑢∞(�⃗� ∞. �⃗� )𝑑𝐴
bc

 

∫ 𝜌𝑢(�⃗� . �⃗� )𝑑𝐴
Σ

= −𝜌(∫ 𝑢2 𝑑𝑦
𝛿

0

)
𝑥

+ 𝜌(∫ 𝑢2 𝑑𝑦
𝛿

0

)
𝑥+𝑑𝑥

+ 𝜌𝑢∞∫ (�⃗� ∞. �⃗� )𝑑𝐴
bc

 

 

 

Let's analyze the forces at work along Ox: 

- On [ad] there is parietal friction 

- On [bc], since the velocity profile is uniform, there is no friction 

- There are no pressure forces, since pressure is uniform in the flow, we can therefore write: 

∫ �⃗� 𝑑𝐴
Σ

= −𝜏𝑝𝑑𝑥 = 𝜌
𝑑

𝑑𝑥
(∫ 𝑢2𝑑𝑦

𝛿

0

)𝑑𝑥 − 𝜌𝑢∞
𝑑

𝑑𝑥
(∫ 𝑢𝑑𝑦

𝛿

0

)𝑑𝑥;       ∫ 𝜌�⃗� (�⃗� . �⃗� )𝑑𝐴
Σ

= ∫ �⃗� 𝑑𝐴
Σ

   

 

 

We deduce : 

𝜏𝑝

𝜌𝑢∞2
=
𝑑

𝑑𝑥
[𝛿 ∫

𝑢

𝑢∞
(1 −

𝑢

𝑢∞
) 𝑑 (

𝑦

𝛿
)

1

0

]                                      (𝑎) 

 

 

We look a priori for the speed in the simple forme of a parabolic profile: 

𝑢

𝑢∞
= 𝑎 + 𝑏 (

𝑦

𝛿
) + 𝑐 (

𝑦

𝛿
)
2
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The speed is zero at the wall:𝑢(𝑦 = 0) = 0  

 

The continuity of speed and friction at the boundary of the following conditions: 

𝑢(𝑦 = 𝛿) = 𝑢∞ 

𝑢
𝑑𝑢

𝑑𝑦
(𝑦 = 𝛿) = 0 

 

We deduce that:  
𝑢

𝑢∞
=
𝑦

𝛿
(2 −

𝑦

𝛿
)                     (𝑏) 

And 𝜏𝑝 = 𝜇 (
𝜕𝑢

𝜕𝑦
)
𝑦=0

= 2𝜇
𝑢∞

𝛿
 

 

Relations (a) and (b) lead to: 
2𝜇

𝑉∞𝛿
=

2

15

𝑑𝛿

𝑑𝑥
  

𝛿2 = 30
𝜇 𝑥

𝜌𝑢∞
;  (
𝛿

𝑥
)
2

= 30
𝜇 

𝜌𝑢∞ 𝑥
=
30

𝑅𝑒𝑥
 

Then by integration  

𝜏𝑝 = 2𝜇
𝑢∞
𝛿
= 2𝜇𝑢∞√

𝜌𝑢∞
30𝜇  𝑥

 

 

This gives the expressions for the coefficient of friction: 

𝐶𝑓𝑥 =
𝜏𝑝

1
2𝜌𝑢∞

2
=

2𝜇𝑢∞√
𝜌𝑢∞
30𝜇  𝑥

1
2 𝜌𝑢∞

2
 

The result is: 𝐶𝑓𝑥 =
0.73

𝑅𝑒𝑥
0.5 

 

A more precise analysis (local equations and no assumptions on the shape of the velocity profile) would lead 

to a constant of 0.664 instead of 0.73. 

 

At constant pressure, the enthalpy variation of a system is equal to the heat supplied to it. Applying this 

principle to a volume ( ) of surface ( ) and neglecting viscous dissipation (the internal heat source 

corresponding to the degradation of mechanical energy into heat), we obtain: 

 

Where H is the enthalpy of the fluid and q is the heat flux density vector.  

∫
𝜕

𝜕𝑡
(𝜌𝐻)𝑑𝑉

Λ

+∫ (𝜌𝐻�⃗� + 𝑞 ). �⃗�  𝑑𝐴
Σ
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Figure 4.7: Diagram of the thermal boundary layer on a flat plate 

 

Let’s apply this steady-state relationship to the volume (a’b’c’d’) shown in figure 5.6for a fluid such that 

𝐻 = 𝐶𝑝(𝑇 − 𝑇0), (The conductive heat flux density is zero on the surface (b'c'), since outside the thermal 

imitation layer the temperature is uniform and equals Tx. 

on the other hand, the longitudinal heat flow (alongOx) is neglected in front of the transverse heat flow 

(alongOy).the temperature varies much more rapidly in theOy direction than in theOx direction (boundary 

layer hypothesis): 

∫ 𝜌�⃗� �⃗� 𝑑𝐴
b′c′

= 𝜌∫ 𝑢 𝑑𝐴
𝑏′𝑐′

= −𝜌
𝑑

𝑑𝑥
(∫ 𝑢 𝑑𝑦

Δ

0

) 

 

Where: 

 
𝑑

𝑑𝑥
(𝜌𝐶𝑝∫ 𝑢 𝑇 𝑑𝑦

Δ

0

)𝑑𝑥 − 𝜌𝐶𝑝𝑇∞
𝑑

𝑑𝑥
(∫ 𝑢 𝑑𝑦

Δ

0

)𝑑𝑥 − 𝑞𝑝𝑑𝑥 = 0 

𝑞
𝑝

𝜌𝐶𝑝  𝑢∞(𝑇𝑝 − 𝑇∞)
= +

𝑑

𝑑𝑥
[∆∫

𝑢

𝑢∞
(1 −

𝑇 − 𝑇𝑝
𝑇∞ − 𝑇𝑝

)𝑑 (
𝑦

∆
)

1

0

]                      (𝑐) 

𝑇 − 𝑇𝑝
𝑇∞ − 𝑇𝑝

= 𝑎 + 𝑏 (
𝑦

∆
) + 𝑐 (

𝑦

∆
)
2

 

 

A priori, we look for the temperature in the form:  

𝑇 − 𝑇𝑝
𝑇∞ − 𝑇𝑝

(𝑦 = 0) = 0 

𝑇 − 𝑇𝑝
𝑇∞ − 𝑇𝑝

(𝑦 = ∆) = 1 

𝜆
𝑑𝑇

𝑑𝑦
(𝑦 = Δ) = 0 

 

We deduce that: 

𝑇 − 𝑇𝑝
𝑇∞ − 𝑇𝑝

=
𝑦

∆
(2 −

𝑦

∆
)                    (𝑑) 

𝑞𝑝 = −𝜆 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

= 2𝜆
𝑇𝑝 − 𝑇∞
Δ
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Relations (c) and (d) allow us to write:  

𝑞
𝑝

𝐶𝑝 𝑢∞(𝑇𝑝 − 𝑇∞)
= +

𝑑

𝑑𝑥
[∆∫

𝑦

𝛿

1

0

(2 −
𝑦

𝛿
)(1 −

𝑦

∆
(−2

𝑦

∆𝑝
))𝑑 (

𝑦

∆
)] 

Where ∆< 𝛿 and 𝑟 =
Δ

δ
≤ 1, 

The new relation is: 

∆
𝑑∆

𝑑𝑥
=

12𝜆

𝜌 𝐶𝑝 𝑢∞ 𝑟 (1 −
𝑟
5)

 

After the integration: 

(
Δ

𝑥
)
2

=
24

𝑅𝑒𝑥  𝑃𝑟

1

𝑟 (1 −
𝑟
5)

 

(
δ

𝑥
)
2

=
30

𝑅𝑒𝑥
 

𝑟2 =
4

5Pr (1 −
𝑟
5
) 𝑟
                    (𝑒) 

 

 

In the case Pr = 1, the solution to equation (e) is r = 1, the dynamic and thermal boundary layers have 

the same thickness, and there is complete analogy between heat and momentum transfer. This is the case for 

gases for which Pr ≈ 1. 

The case r <1 corresponds to the case Pr > 1, which is the case of water, for example (Pr ≈ 7).  An 

approximate solution of in more complex cases, where an analytical solution cannot be established, we use 

correlations deduced from experiments. 
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