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Statistical physics is a probabilistic approach that allows us to study the macroscopic 

or thermodynamic properties (such as temperature, pressure, etc.) of a physical system, in 

equilibrium! This system is composed of a very large number of particles, so it has a very 

large number of degrees of freedom. Phenomenological, its macroscopic properties are 

described by the laws of thermodynamics. We can also define statistical physics as the branch 

of physics that uses probability and statistical methods, and the laws of physics that apply at 

the microscopic level (such as classical mechanics, quantum mechanics, etc.) to study systems 

consisting of very large numbers of particles. We know that matter consists of particles 

(atoms, molecules and ions) and that the state in which these particles are found (position and 

speed) is responsible for the phenomena observed on a macroscopic scale (human scale). For 

example, the notion of temperature is related to the kinetic energy or the average speed of the 

particles: the greater their speed the hotter the body made up of particles seems (example: gas 

theory perfect 
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Statistical physics refers to the study or understanding of the properties of macroscopic systems (solids, 

liquids, gases, magnets (spin system),...) with a number N=Na = 6, 02.1023 of elements. 

Similarly, the notion of density or density is related to the average distance between particles, 

and the notion of pressure is related to the amount of motion that these particles can transmit 

to any face. 

The purpose of statistical physics is the study of the behavior of the particles that make up 

physical bodies in relation to the quantities observed on a human scale. The study of the 

behaviour of particles is called microscopic. The observed quantities are said to be 

macroscopic. These are measurement results. 

Along with quantum mechanics and relativity, statistical physics is one of the pillars of 

modern physics. It is based on the laws of relativity and quantum mechanics to explain the 

collective behavior of particle assemblies in the limit where the number of particles is very 

large. It uses the laws of probability and statistics to explain the behavior of this large number 

of constituents. The latter (particles) can be atoms, molecules, ions, etc. 

Thermodynamics is based on postulates, these are the principles of thermodynamics. Also 

statistical physics is also constructed from postulates, which are the reasonable assumptions 
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chosen a priori. The basis of this choice makes it possible to reproduce, and understand, a 

large number of properties of macroscopic bodies. Since statistical physics takes into account 

the properties of microscopic constituents, then thermodynamics only deals with the 

macroscopic properties of bodies, it is a more complete science than the latter. 

The main objectives of statistical physics can be summarized in the following three points: 

 Statistical physics gives a rational understanding of thermodynamics from the 

characteristics of the microscopic constituents of a system and their interactions. 

 Statistical physics makes it possible to calculate the dependence of thermodynamic 

quantities (specific heat, ... etc.) in terms of temperature and transport properties (heat, electricity, 

... etc.). 

 Statistical physics gives a complete explanation for phase transition phenomena. 

This course is intended for students in the third year of fundamental physics. He is interested 

in classical statistical physics. 

So this course is an introduction to statistical physics. In the first chapter, we give some 

reminders of thermodynamics, probabilities and statistics, and we demonstrate some 

relationships that we will need in the following chapters. In the second chapter, we will 

develop a formalism (micro and macro state) that allows us to calculate the entropy and 

thermodynamic properties of an isolated system (constant energy), and to find the results of 

thermodynamics from its Hamiltonian. In the third and fourth chapters, we will develop how 

to determine the energy of a closed system that can exchange energy with the external 

environment and we will generalize by taking into account the spin of particles (Fermi-Dirac 

and Bose-Einstein statistics). We will also study the radiation of the black body (perfect gas of 

photons) . 
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I. Introduction 

This chapter discusses reminders on probability methods and statistics, thermodynamics, and we will 

introduce some important and necessary relationships in this course. 

I.2 Introduction to statistical methods 

I.2.1 Combinatory analysis 

 Permutations: the number of permutations of N objects is given by

 

    1 2 1  !P N N N N          (I.1) 

For example: the number of permutations of three numbered objects in the racks is: 3!=6 ≡ 

|1|2|3|,|1|3|2|,|2|1|3|,|2|3|1|,|3|1|2|,|3|2|1|. 

 Arrangements: the number of arrangements is the number of ways to choose n objects 

from N objects taking into account the order of taking, it is given by 

 

 
!

!

n

N

N
A

N n



      (I.2) 

For example: Let be 4 balls numbered from 1 to 4. The number of possible cases of taking two 

balls out of the 4, taking into account the order of taking, is: 

 

 
                       2

4 1,  2 , 1,3 , 1,4 , 2,1 , 2,3 , 2,4 , 3,1 , 3,2 , 3,4 , 4,1 , 4,2 , 4,3
4!

12
4 2 !

A   


 

 

Note that (1, 2) and (2, 1) are considered as two different cases. 

 Combinations: the number of combinations is the number of choosing n objects from N 

objects without taking into account the order of taking, it is given by: 

 

 
!

! !

n

N

N
C

N n n



      (I.3) 
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For example: we take the previous example without taking into account the order, i.e. (1, 2) and 

(2, 1) are counted as a single combination. So the number of combinations is: 

 

 
           1,  2 , 1,  3 , 1,  4 , 2,  3 , 2,  4 , 3,  4 .

!

! !

n

N

N
C

N n n
 


 

I.2.2 Concept of probability and statistics 

Statistical physics is based on probability and statistics, because we are interested in 

systems composed of very large numbers of particles. Therefore, the value of an experimentally 

observed physical quantity corresponds to its most probable value. 

 Probability in case of discrete events:

Note the possible configurations (or event) of a system by ji >, and the number of experiments 

for this system to be in one of these configurations by ni. Then the probability of finding the 

system in a |i > configuration is 

,i
i

n
P

N
     .i

i

N n    (I.4) 

Note: In the general case, the total number of experiments N can be finite or infinite. 

For example: If you toss a coin N times. We denote by n1 and n2 the number of times to obtain 

heads and tails, respectively. Then, the probabilities of getting flip-flop are given by 

1

1 ,n

n
P

N
     

2

2 .n

n
P

N
   (I.5) 

 Basic properties  

 

 Normalization: the normalization conditions in both cases  are written, 

respectively 

1
i

i
i

i

n

P
N

 


       (I.6) 

1 2 1 2 1 2 1 2( ) ( ) ( ) 1
1

, ,..., ... , ,..., , ,..., .N N N Nx x x dx dx dx dP x x x dn x x x
N






    
 

(I.7) 

 Addition: If the two events e1 and e2 are compatible, then the probability is given by 

 

 1 2 1 2 1 2( .( ) ( ) ) ( )P e e P e P e P e e      (I.8) 
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

If two the two events e1 and e2 are incompatible, then the probability is given by 

 

1 2 1 2 .( ) ( ) ( )P e e P e P e 
      

(I.9) 

If the event depends on a continuous parameter x, then the probability is given by 

  .( ) 

b

a

P a x b x dx   
    

 (I.10) 

 Mean value:  

 

If the events are discrete, then the mean value of a quantity f is defined by 

 

.m m

m

f P f        (I.11) 

If the events are continuous, then the average value of a quantity f is defined by 

    .f x f x dx




 
     

(I.12) 

  

 Variance: In the case of discrete events, the variance is defined by

   
2 2

2 2 .f f f f    

    
(I.13)

   
 

In the case of continuous events, the variance is defined by 

           
22 22 .x f x f dx f x f x 





      (I.14) 

Standard deviation: is defined by: 𝜎 =  √𝜎2

 Binomial distribution: We use the binomial distribution if we have only two possible types 

of events (A and B of probability PA and PB for example). The probability of having n times A 

and N − n times B is given by:



 ( ),  n n N n

N A BP N n C P P       (I.15) 
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where N is the number of experiments performed. It can be shown that: 

the binomial probability is normalized: 

0

.( ),  1
N

n

P N n



 

 

The mean value of n is 𝑛̅ = 𝑁𝑃𝐴 

The variance is given by  𝜎2 = 𝑁𝑃𝐴𝑃𝐵. 

The standard deviation 𝜎 = √𝑁𝑃𝐴𝑃𝐵 

the relative uncertainty on the average value is 

∆
𝑛

𝑛̅
∝

1

√𝑁
 

  

 Gaussian distribution: This distribution is applied to continuous events. The Gaussian 

probability density is given as follows:

 
2

0

22
1

 .)
2

(

x x

x e 
 






    

 (I.16) 

where x0 is the central value of the distribution and σ is the width at mid-height of ρ(x). It can be 

shown that: 

Gaussian probability is normalized ∫ ρ(x)dx = 1
+∞

−∞
 

The mean value of x is: x̅ = x0The 

variance is given by σ2  

The standard deviation is σ 

The binomial law becomes the Gaussian law when N ≫ n ≫ 1 

 Poisson's law: Rare events (very small probability event) follow the law of Fish 

 

.(
!

) 
µ

n e
P n µ

n




    

 (I.17) 

where n is the number of events of the same type. It can be shown that:  

 

poisson's law is normalized: ∑ P(n)∞
n=0 = 1

the binomial law becomes Poisson's law when PA ≪ PB  and N ≫ n ≫ 1 
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 One-Dimensional Random Walk: Consider a particle that moves, by discrete steps, on the x-

axis. It is noted that the length of each step is ∆l, and that the particle can move either to the 

left or to the right.

 It is assumed that the probability for the particle to make a step to the right is P1, and a step to 

the left is P2. Then, the probability for the particle to make n1 steps to the right and n2 steps to 

the left (N=n1+n2 steps) follows the binomial law.



1 1

1 1 2

1 1

!

!
( )

(
,  

)!

n N nN
P N n P P

n N n





     (I.18) 

si 
1 2

1
.

2
P P 

   

1

1 1

! 1
,  .

!
( )

!) 2(

N
N

P N n
n N n

 
  

       

 (I.19) 





 Average displacement values are given by 𝑛1̅̅ ̅ = 𝑛2̅̅ ̅ = 𝑁𝑃1 = 𝑁/2., the average position after N 

displacement is at the origin.

 The variance 𝜎2 = 𝑁𝑃1𝑃2 = 𝑁/4, Therefore, the relative uncertainty is 
𝜎

𝑛1̅̅̅̅
= 1/√𝑁 

 

I.2 Mechanical elements 

We will introduce the different formalisms to describe the classical dynamics in the phase 

space. 

I.2.1 Lagrangian Formalism 

Let's say N particles. 

According to Newton's law (where qi are the position variables and V the potential in which they 

are): 

 { }j
i i

V q
mq F

qi


  

     

 (I.20) 
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with i varying from to 3N 

The kinetic energy of the system is then:  

  21
  .

2
{ }j j

j

T q m q 
    (I.21)

Hence with the Newtonian equation: 

  

        

 

   i i

i

d T d
mq mq

dt q dt


 


    (I.22) 

 
 0

{ }i

i i

V qd T

dt q q


 

 
     (I.23) 

 

The Lagrangian is introduced:  

         { } { } { }, , , ,  ,{ { }  }j j j j jL q q t T q q t V q t   (I.24)  

 

Note: q j and  are considered independent because they are the variables of a Lagrangian a not the 

variables of an equation of motion that would connect them.  

Marks: 

 

i i

i ii i

d d d
q q

dt t q q


  
  

      (I.25) 

  
 
    

Newton's equation then gives 

0
i i

d L L

dt q q

  
  

  
     (I.26) 

 

This is Lagrange's equation (scalar, so different from Newton's). Properties: 

– qi et iq   are on the same plane 

– lagrange's equation is shape invariant by changing coordinates 
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I.2.2 Hamiltonian Formalism 

We define 3N quantity {pi} by 

 

 

 







 

{ }j

i

i q fixes

L
p

q





       (I.27) 

It is the generalized pulse that gives a relation qi  qi {qj},{pj}, t 

We then define the Hamiltonian (by Legendre transformation for L to eliminate the variable qi 

Gold 

 

         { } { } { } { } }, , , , , , , ,{ } {j j i j j j j i j j

i

H q p t p q q p t L q q q p t t     (I.28) 

 .
 

i i i i i i

i i i

L dL L
dH q dp p dq dq dq dt

q dq t

  
     

  
      (I.29) 

.i i i

i i

L L
q dp dq dt

q t

  
   

  
       (I.30) 

Or  

.i i

i i i

H H H
dH dp dp dt

q p t

   
   

   
      (I.31) 

 

Hence by identification: 

 

  

i

i

H
q

q





  

i i

L H

q q

 
 

 
 

L H

t t

 
 

 
 

Or .i i

i i

L d L d
p p

q dt q dt

 
  

 
Donc : 

 

i

i

i

i

H
q

p

H
p

q


 


  

 

¨     

  (I.32) 
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Properties: 

– pi and qi are on the same plane (one does not explicitly derive from the other) 

– first order equation in t 

– given 6N initial conditions, there is only one solution 

– two trajectories in the phase space cannot intersect 

I.3 Thermodynamics Reminders 

Thermodynamics is a phenomenological description of the macroscopic properties of a 

physical system in equilibrium. Its main purpose is to describe the transformations between the 

two forms of energy: heat and work. In this section, we present the most important points in this 

subject. For more details, see reference [1]. 

I.3.1 Définitions et notions de base 

The historical definition of thermodynamics is the science of heat and thermal machines, and 

according to Boltzmann is the science of large systems in equilibrium. The main purpose of this 

science is to describe the transformations between the two forms of energy, mechanical work and 

heat. In this session, we give the main notions of thermodynamics (2nd year course). United 

Kingdom 

 thermodynamic system 

A part of the universe surrounded by a closed surface (a gas enclosed in a balloon). It is a 

system composed of a very large number of particles (atoms, molecules, etc.), described by a set 

of variables (thermodynamic or macroscopic variables) that describe the properties and behavior 

of the latter. These variables are classified into extensive and intensive variables. This system 

can be: insulated if it cannot exchange heat or work or matter with the outside, open, if it can 

exchange heat, work and matter with the outside, or closed if it can exchange heat and work with 

the outside but not matter. 

 Macroscopic or thermodynamic variables: 

Using a small number of parameters, the thermodynamic properties of a system can be 

described. These parameters can be determined by taking measurements at our scale, they are 

called macroscopic variables. For example: absolute temperature T, pressure P, volume V, ... etc. 

The thermodynamic variables necessary to write, completely, the behavior  of a  system,  

composed  of  g  different  types  of  particles,  are: {𝑇, 𝑝, 𝑉, 𝑁1, … . . , 𝑁𝑔 } 

(where Ni is the   number of particles of type i). 
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 Extensive variables: 

These variables vary if two systems are combined, such as the volume V, the number of 

particles N, the total energy E, the magnetization M. etc. If two identical thermodynamic systems 

are combined, for example, all the associated extensive variables increase by double. 

 Intensive variables: 

These variables do not vary if two identical systems are combined, such as temperature T, 

pressure P,  𝜇 chemical potential, electric field, 𝐸⃗ etc. The ratio of two extensive variables is an 

intensive variable (e.g. particle number density n = N/V ). 

 Classic mechanics 

The position and motion of a particle are described by 6 variables. For example, a loose 

particle is described by: the position 𝑞  =  (𝑥; 𝑦; 𝑧)and the pulse 𝑝  =  (𝑝𝑥;  𝑝𝑦;  𝑝𝑧),where   

𝑝 ⃗⃗⃗  =  𝑚𝑑𝑞 /𝑑𝑡. If the system is composed of N free particles, then its state is fully described by 

6N variables (where 6N degrees of freedom in phase space). 

 Quantum mechanics  

The state of a particle is described by its wave function (solution of Schrödinger's equation) 

and quantum numbers, see section. 

 photograph 

A macroscopic state is the configuration associated with given values of the macroscopic 

parameters. 
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 Microscopic: 

A microscopic state is determined by the data of a complete set of parameters (quantum numbers 

for example) that make it possible to uniquely determine the configuration of the system on 

the microscopic scale. 

 System in equilibrium: 

If its macroscopic variables do not vary over time. 

 Thermodynamic process: 

A thermodynamic process is any change or succession of changes in the state of macroscopic 

variables. It is: 

(a) cyclic if its initial and final states are the same. 

(b) quasi-static if the system goes through a succession of equilibrium states. 

(c) reversible if its thermodynamic path can be reversible (dQ = T dS). 

(d) isothermal: dT = 0. 

(e) isobaric: d p = 0. 

(f) isochore: dV = 0. 

(g) adiabatic: dQ = 0...etc. 

 Ideal gas 

A gas is called an ideal gas if the mutual interactions between its molecules are negligible. 

Low pressure helium is a good approximation of a perfect gas. Its equation of state is: 

PV = NkbT      (I.33) 

where N is the number of particles in mole, p is its pressure (in Pascal pa), T is its temperature (in 

Kelvin K) and kb is Boltzmann's constant, 

kb = 1.38064852 × 10−23 J · K−1.    (I.34) 

 Van der Waals equation: 

The Van der Waals gas (non-perfect gas) equation of state is given by: 

2

2
( ) B

aN
p V bN Nk T

V

 
   

 
     (I.35) 

where a and b are parameters that depend on the nature of the molecules making up the gas. 
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 Mechanical work 

It is a macroscopic scale energy transfer that results in a change in macroscopic parameters 

other than temperature. If the macroscopic variable that varies is the volume (dW = pdV), the 

work is said to be of mechanical origin. In general, the differential element of the work is given 

by: 

.i i

i

dW F dX       (I.36) 

where Fi and Xi are the force and the generalized displacement. 

 Heat: 

It is an energy transfer at the macroscopic scale that results in a change in temperature (and 

not the other macroscopic parameters). It is said that there is a heat exchange Q. The unit of the 

heat quantity Q is the joule, where 

1J = 107 erg = 6.242×1018ev.   (I.37) 

 

 Kinetic theories of gases: 

The purpose of the kinetic theory of gases is to explain the macroscopic behavior of a gas 

based on the characteristics (movement, ... etc) of its constituents (atoms, molecules, ...). This 

theory makes it possible to give a microscopic interpretation of the macroscopic variables (T and 

P). 

 Pressure: 

The unit of pressure (p) is the force per unit area. In the IS, its unit is Pascal (Pa), where  1 

Pa=1N/m2 = 1kg/ms2, 1 bar = 105 Pa ,1 atm = 1.01325x105 Pa 

According to the kinetic theory of gases, the pressure results from the shocks of the particles on a 

surface wall S, therefore, it is related to their quantities of movement. 

 𝐹  =  𝑝 𝑑𝑆      (I.38) 

 Temperature: 

In the kinetic theory of gases, it is directly related to the kinetic energy of particles. In the first 

chapter, we will derive the relationship between temperature and internal energy. For the perfect 

gas, for example, we can show that 

3
.

2
bU k T

     
  (I.39) 
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 State function 

A state function is a physical quantity that depends only on the initial state and the final state 

(does not depend on the transformation path). 

 

 Internal energy 

The total energy of a conservative mechanical system is given by the sum of the kinetic 

energy and the potential energy of the particles that constitute it. This energy is called internal 

energy (denoted by U) in thermodynamics, where 

𝑑𝑈 =  𝛿𝑊 + 𝛿𝑄     (I.40) 

 Thermal capacity 

The heat capacity C is the energy that must be given to a system to increase its temperature 

by one kelvin. The unit of C is joule per kelvin (J/K), 

,V

V

U
C

T





    ,V

P

H
C

T





   (I.41) 

where CV is the isochoric heat capacity, Cp is the isobaric heat capacity and H is the enthalpy. 

 Entropy 

Entropy is an extensive state function, the unit of which is joule per kelvin (J/K). According 

to statistical physics, it can be interpreted as the measure of disorder of a system at the 

microscopic scale. It is defined by: 

 

ln .bS k        (I.42) 

where Ω is the number of microscopic states accessible for a system.  

For reversible processes, the variation in entropy is related to the variation in the amount of heat 

by, 

.
Q

dS
T


        (I.43) 

 Preservative system:  

A conservative system is a system whose energy is conserved. 

 Quasi-static transformation: 

If the evolution of the system is such that it always remains in thermodynamic equilibrium. 
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 Chemical potential 

The chemical potential m describes the variation of the energy of a system with respect to its 

quantity of matter. It has the dimension of a molar energy J/mol. 

I.3.2  Principles of thermodynamics 

 Zero principle 

If two systems are in thermodynamic equilibrium with a third system, then all three systems are in 

equilibrium with each other. 

 First principle: 

This principle announces the conservation of the total energy of a system. During a 

thermodynamic process, the change in the internal energy of a system results in: 

∆U = Q + W . 

The differential form of this principle is given by 

𝑑𝑈 =  𝛿𝑄 + 𝛿𝑊     (I.44) 

 

and  

• 

 ∫ 𝑑𝑈 =  𝑈𝑓 − 𝑈𝑖𝑐
 The total energy does not depend on the path followed, it depends on 

whether the initial state is final. So, U is a state function. On the other hand, W and Q 

depend on the path followed, so they are not state functions. 

 Second principle: 

 Clausius statement: There is no process whose only result is to transfer heat from a cold 

body to a hot body. It is possible to pass the heat from a cold body to a hot body but it is 

necessary to provide work (refrigerator for example). 

 Kelvin-Planck statement: There is no transformation whose only result is to produce 

work from a single heat source at constant temperature. This means that it takes at least 

two sources at different temperatures to carry out a conversion of heat energy into 

mechanical energy (Carnot cycle for example). 

 Clausius' theorem: For quasi-static cycles (Carnot), the following relation is verified: 

0.
qsQ

T




     
 (I.45) 

where is theamount of heat exchanged quasi-statically with the system at the point in the cycle, 

where the temperature is T . 
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The entropy S is defined by the relation 

 

,
qsQ

dS
T


      et      0dS       (I.46) 

Entropy is, therefore, a state function (or an extensive variable), because it does not depend on 

the path followed (it depends only on the initial state and the final state). It makes it possible to 

reformulate the second principle as follows: The entropy of an isolated system can only increase. 

If the process is reversible ∆ñ = 0, if the process is irreversible ∆ñ > 0. 

 Entropy of a perfect gas: Consider a perfect gas consisting of N particles (N constant 

therefore dN = 0). The infinitesimal variation of U is 

 

,dU TdS PdV    ou   ,Q TdS     .W PdV               



in addition   ,bPV Nk T    
3

.
2

bNk T
U    

So 

3
.

2
b b

dT dV
dS Nk Nk

T V
 

     
 (I.47) 

we can show that 

 

5
2

0
0 0 0

0

,  , ln  ( ) b

PT
S T P Nk s T P

T P

    
     

    

    (I.48) 

 

Where s0(T0;P0) is an arbitrary constant that is determined using the third principle of 

thermodynamics . 

 3rd Principle: 

The entropy of a solid or pure liquid in thermodynamic equilibrium is zero at absolute zero 

(Nernst statement). 

I.3.3 Status Functions in Thermodynamics 

A state function is a thermodynamic quantity that does not depend on the path followed, but it 

depends only on the initial state and the final state. In this paragraph, we give some state 

functions that allow us to calculate the thermodynamic properties of macroscopic systems. 
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 Internal energy 

The internal energy is a function of the extensive parameters S, V , N1, ..., Nr (where Ni is the 

number of type i particles): 

 

U = U(S,V, N1,..., Nr).     (I.49) 

Each extensive parameter corresponds to an intensive parameter equal to the derivative of U 

with respect to this parameter: 

Temperature         
, ,..., rV N N

U
T

S

 
  

 
         

      (I.50) 

Pression.   
, ,..., rS N N

U
P

V

 
  

 
           

(I.51) 

Chemical potential.  

1 1, ,..., , , ,...,j j j r

j

j
S N N N N N

U

N


 

 
    

         

(I.52) 

So, 

1

.
r

j j

j

dU TdS PdV µ dN


  
    

 (I.53) 

     
 

For a perfect gas, Nj = cst, then dU =TdS -PdV. 

 Enthalpy H(S, P, N): 

With Constant volume  
1

r

j j

j

H U PV TS µ dN


              (I.54) 

 

, ,...

,
P N

H
T

S

 
  

 
 , ,...

,
S N

H
V

P

 
  

 
 

, ,...

j

j
S N

H

N


 
    

                

(I.55) 

 

 Free energy F(T,V, N): 

Constant temperature 

 

 

  
1

r

j j

j

F U TS PV µ dN


             (I.56) 
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,
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, ,...

j

j
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F
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

 
    

  

(I.57) 

 

 

 

 Free Enthalpy G(T, P, N): 

 
 

 

With constant temperature and pressure  

 

 

1

r

j j

j

G U PV TS µ dN


   
        

(I.58) 
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, ,...

j

j
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N


 
    

  

(I.59) 

 

 High potential Φ (T;V; m): 

 

When we are interested in Bose or Fermi gases, we often use the great potential Φ: 

 

,F µN PV            (I.60) 

d SdT PdV Ndµ    
     

 (I.61) 

, ,...
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(I.62) 
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I.4 Exercises and Issues 

Exercise #1: 

1- What is the probability for two people to have the same birthday in a class of N=30 people? 

2- What is the probability that this will happen at least once among your classmates in your years 

of schooling (we assume that it is 30 different people each year? 

Exercise #2: 

A walker moves to a right by randomly jumping left or right (equiprobably) a distance a from 

where he is . We take as the origin of the coordinates the place where it is at time t=0. The 

amount of time that elapses between each of its jumps is denotedby. 

1. What is the probability of the walker having, after N jumps made, n jumps to the right 

and N-n to the left? 

2. What will then be its position x e is the n function of N ,n and a? 

3. How long does it take him to make N jumps? 

4. What is the average number of steps to the right? 

5. Express the variance of the variable x, defined by: 𝜎𝑥
2 = (∆𝑈)2 − 〈𝑈〉2, as a function of 

N and a and then as a function of t ,1 and a 

We are now going to look at the behavior of 𝑃(𝑛, 𝑁) when n and N are very are very large in front of 1, form 

of a Gaussian law in variable 𝜉. 

How the typical distance reached varies with time. 

Exercise #3: 

The Maxwell-Boltzmann distribution is given by: 

 
3

2

exp
2 2b b

m mv
f v

k T k T

   
    

   
 

where m is the mass of the particle under consideration, kb is Boltzmann's constant, T is the 

temperature and 2 2 2 2

x y zv v v v    

(1) Show that f is normalized. 

(2) Calculate average values:   

2 2 2, , , , , ,x y z x y z c x yv v v v v v E et v v               

 _   
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(Ec is the kinetic energy). 

Exercise #4 

Application of the binomial law Calculate the probability of obtaining a face number between 3 

and 6 when throwing a well-balanced coin 10 times. 

 

Exercise #5: 

Consider the following binomial distribution: 

𝑃(𝑛) =
𝑁!

𝑛! (𝑁 − 𝑛)!
𝑝𝑛𝑞𝑁−𝑛 

 

 

 

 

 

N and n are two natural integers (with y ≤ y) andp and q are two complementary probabilities. 

We place in the case 1 𝑝 ≪ 1 𝑒𝑡 𝑛 ≪ 𝑁 

1) Demonstrate that: (1 − 𝑝)𝑁−𝑛 ≈ 𝑒−𝑁𝑝 

2) Show that:  
𝑁!

(𝑁−𝑛)!
≈ 𝑁𝑛         

3) Based on the results established in (1) and (2). Show that p(n) can be written: 

𝑃(𝑛) =
𝜆𝑛

𝑛!
𝑒−𝜆 or    𝜆 = 𝑁𝑝 

Verify the normalization condition and show that λ is none other than  𝑛̅ 
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Introduction: 

Statistical physics makes it possible to make the link between the macroscopic and 

microscopic worlds. At our scale, we can define a particular configuration of a macroscopic 

system (macro-state) by giving the value of all its independent thermodynamic variables. For 

example, for a perfect gas, it is enough to set three parameters chosen from the pressure, volume, 

and temperature and particle number of the gas. The fourth parameter is then obtained from the 

ideal gas equation of state. 

If we study the system at the level of its constituents, we are interested in the microscopic world. 

It is appropriate at this stage to analyze the main characteristics of the elementary constituents of 

this body as we have just mentioned them: 

They are extremely small. This means that their properties are often dominated by quantum 

phenomena. 

We travel a great deal! Their evolution can therefore not be treated individually but as a 

particular element of a set with more global properties: this is the object of statistical physics. 

Paradoxically, it is easier to introduce statistical physics from quantum mechanics than from 

classical mechanics. 

At any given moment, the particles in a system are in a certain configuration called a microstate. 

The definition of this makes it possible to completely determine the system at the microscopic 

level. It is important to note that one cannot, in practice, determine the microstate of a 

macroscopic system. Indeed, consider for example a mole of gas. We have N particles, where N 

is Avogadro's number (N = 6,02 1023). Even if we used classical mechanics to describe the 

evolution of gas molecules, we would need to know 3N positions and 3N velocities to be able to 

fully determine a configuration of this system. 

II.1 QUANTUM MICROSTATES 

A microstate is a particular microscopic configuration of a system. Rather than introducing this 

concept formally, let's illustrate it with a few simple examples that will allow us to assimilate this 

concept. 

Atome d’hydrogène. 

As part of Bohr's theory, the energy levels of the electron are quantified. The energy of each 

level is given by: 
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2

13.6
n

n
         (II.1) 

where n is the main quantum number (for n > 1 excited states). For a given energy state, there are 

several possible configurations, each defined by the following quantum numbers: 

The secondary quantum number l: 0 ≤ l ≤ n−1.. 

The magnetic quantum number m: −l ≤ m ≤ +l. 

The spin quantum number s: s = 1/2 

The projection of s on the axis (oz) sz:−1/2 ≤ sz ≤ +1/2. 

Therefore, for the hydrogen atom, a quantum microscopic state is determined by the five quantum 

numbers (n;l;m;s;sz). These make it possible to completely describe the system at the microscopic 

level. Example: 

 
0, 0, 1 2, 1 2

  1 2 .
0, 0, 1 2, 1 2

Z

Z

l m s s
si n micro états

l m s s

    
   

    
                       (II.2) 

So, if n = 1, we have two different quantum microscopic states. If n = 2, the degeneration is equal 

to eight, etc. In the state corresponding to n = 2 , we can therefore associate 8 different 

microstates. 

II.1.2 The one-dimensional harmonic oscillator 

The evolution of a weight suspended from a spring around its equilibrium position, after it has 

been slightly moved away from it, represents an example of a conventional harmonic oscillator. 

Suppose that the weight has a mass m and that it is likely to move in a single direction that we 

will note x. We will assume that the equilibrium position corresponds to x=0. This system has the 

behavior of a harmonic oscillator if its potential energy, U, is of the form: 

21

2
U Kx

    
(II.3)

 

where K is a constant. the equation of motion is written: 

2

2

d x
m Kx

dt
 

    
(II.4)

 

where t denotes time. The solution to this equation is a sinusoid whose pulsation  is given by:  

.
K

m
   The system oscillates around its equilibrium position with the pulse , i.e. with a 

frequency  .
2





 n . Conventionally, all positive energy values are permitted. 

At the microscopic level, there are also systems whose potential energy is a quadratic form of the 
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coordinates. A very simple example is given by the hydrogen molecule whose two atoms can 

oscillate along the axis of symmetry of the molecule. The correct description of such systems 

requires the use of quantum mechanics. As with the hydrogen atom, this theory says that energy 

levels, and therefore pulses, are quantified. In the case of a one-dimensional harmonic oscillator, 

the energy levels are given by the expression: 

 

1

2
n n 

 
  
      

(II.5)
 

where n is a positive integer or zero: this is the quantum number associated with a one-

dimensional oscillator. 

 

II.1.3 A free particle in a cubic box 

We will often use in this course the example of a free particle, of mass m and zero spin, 

placed in a cubic box on the L side (Figure 2). The potential energy of this system is zero inside 

the box and infinitely repulsive (U = +∞) outside so as to confine the particle inside the cube. As 

in the two previous examples, the energy of the particle (purely in kinetic form in this case) 

cannot be any energy. Only certain values are allowed by quantum mechanics. They are given by 

the expression: 

 

 
2 2

2 2 2

, , 22x y zn n n x y zn n n
mL


   

          
(II.6)

 

where nx, ny and nz are strictly positive integers. These are the quantum numbers associated with 

each of the directions of space: x, y and z. 

II.2 Bosons and Fermions 

II.2.1 Definitions 

Most objects are discernible at the macroscopic level. If this is not the case, we can, without 

changing their properties in any way, mark them to be able to distinguish them (billiard balls of 

different colors, for example). This is not the case at the microscopic level where all particles of 

the same nature are indistinguishable and it is not possible to "mark" them without strongly 

disturbing them. Thus, to distinguish two hydrogen atoms, it would be necessary to modify the 

structure of one of them but we would then no longer have the atom in its ground state. 

Experience shows that all particles in nature have a spin s (expressed in units) that is either 

integer or half integer. Depending on the value of the spin, the particles belong to two different 
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families: the bosons if s is integer, and the fermions if it is half-integer. For example, the electron 

that has a spin equal to 1 2 is a fermion while the photon, which has a spin equal to 1, is a boson. 

Fermions and bosons have the following properties: 

• The wave function of a system consisting of several fermions is antisymmetric with respect to 

particle exchange. This means that the sign of the wave function changes if you swap two 

particles in space. This property implies that two particles cannot be in the same quantum state. 

This is called the Pauli Exclusion Principle. Fermions are said to obey Fermi-Dirac statistics. A 

determinant is a mathematical object that satisfies these properties: 

if we swap two rows or two columns, the determinant changes sign. If two rows or two columns 

are identical, the determinant is zero. These antisymmetry properties mean that the total wave 

function of a fermion system can sometimes be represented by a determinant. 

• The wave function of a boson system must be symmetrical with respect to the exchange of two 

particles. Multiple bosons can be in the same quantum configuration. They are said to obey the 

Bose-Einstein statistic. 

II.2.2 Microstates and spin 

In quantum mechanics, a microstate is determined by the data of a complete set of quantum 

numbers that make it possible to uniquely specify the configuration of the system. Let's go back 

to the example of a free particle in a cubic box and assume that it has a spin s. In this case, the 

data of the quantum numbers nx, ny and nz is no longer sufficient to describe a microstate. It is 

necessary to introduce two additional quantum numbers: s and sz, where sz is the projection of the 

spin on the z-axis. We know that sz can only take values between −s and +s per unit jumps. So 

there are 2s + 1 possible values of sz. 

• For a zero spin particle, a microstate is defined by the data of five quantum numbers: nx, ny, nz, 

s = 0 and sz = 0. Since s and sz have the same value for all microstates, they play no role in 

counting them. The microstates are then completely determined by the simple data of nx, ny and 

nz. 

• When the spin of the particle is non-zero, it is essential to specify the values of s and sz. For 

example, if s = 1 and if it is not a photon, sz can take 3 values: −1,0 and +1. For nx, ny and nz 

fixed, three microstates can be defined (nx, ny, nz, s, sz): 

nx, ny, nz, 1, −1; nx, ny, nz, 1, 0; nx, ny, nz, 1, +1 
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In the case of independent particles, it is often convenient to consider separately the degrees of freedom 

related to the spin of the particles, from those related to ordinary space. The reason is simple: you can 

solve the problem in a first step without dealing with the spin and get the one-particle configurations. 

These configurations actually correspond to the microstates associated with a zero spin particle. In a 

second step, some of these configurations are populated with particles, taking into account the statistics 

they obey (Fermi-Dirac or Bose-Einstein). 

II.3 Independent N-particle systems 

We will now apply the above notions to a few simple examples. Consider a system where 

one-particle energy levels are evenly spaced and not degenerated when spin is disregarded. Let 

us take as the origin of the energies the lowest level and as a unit the difference between two 

consecutive levels. We will, in several cases, study the state of a system consisting of three 

independent particles whose total energy is equal to three units. 

II.3.1 Distinguishable particles 

Although unrealistic, this situation is interesting to illustrate how microstates are counted. 

Suppose one particle is blue (B), the other red (R) and the last yellow 

(d) Forget about the nature of particles for now and look at how many different ways three 

particles can lead to 3 units of energy. There are three possible configurations (Figure II.1): 

1- One particle on level 3 and two on level zero. 

2- One particle on each of the first three levels. 

3- Three particles on the first level. 

Now let's consider the nature of the particles and evaluate the number of microstates 

associated with each configuration. We will note a micro-state by (nB, nR, nJ) where nB, nR and nJ 

identify the levels occupied by particles B, R and J, respectively. For the first configuration, 

(Figure II.1a), we have three possible microstates: (3.0.0), (0.3.0) and (0.0.3). For the second, we 

have the 6 possibilities indicated in figure II.1b and for the third configuration we have only one 

possibility (figure II.1c). In total, for this three-particle system, the degeneration of the energy 

level is equal to 10 and we have 10 different three-particle microstates. 
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Figure II.1 Assessments of the number of discernible microstates 

II.3.2 Identical particles 

Now suppose that the particles are indistinguishable. We will consider separately the case of 

bosons and fermions. 

 Bosons 

Suppose all three particles are zero spin bosons. Since there is no restriction for occupancy of 

one-particle levels (Bose-Einstein statistics), each of the configurations described in section 

II.3.1 corresponds to only one microstate. Therefore, we only have a total of three microstates 

(Figure II.2a). 

 Fermion 

Finally, suppose that the three particles are spin 1 2 fermions (electrons for example). The Pauli 

exclusion principle prevents two fermions from having the same quantum numbers. This will 

reduce the number of possible microstates compared to the Bose-Einstein statistic. Thus, the 

configuration where we have three particles in state 1 is impossible.  

In effect, if for the first electron is therefore not possible to put a third electron on the same energy 

level. The first configuration leads to 2 microstates while the second gives 8 microstates because, 

for each electron, we have the choice between 2 values of sz, which gives a degeneration of 

2×2×2 =8 (figure II.2b).  
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Figure II.2 Assessments of the number of indistinguishable microstates 

 

 

II.4 Phase Space 

II.4.1 Phase Space Definition 

To determine, in a unique way, the evolution of a conventional system consisting of N particles, it 

is sufficient to know the position qi t  and the speed vi t  (or more generally, the pulse pi t ) of each 

particle at the instant t. The position and pulse vectors of the three-dimensional particle i are given 

by 
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   (II,7) 

The set qi, pi can be interpreted as a point in a 6N dimensional space called phase space. A 

trajectory in this space is defined by the curve 

qi t, pi t  which describes the temporal evolution of the system. The quantities qi t and pi t  are 

determined using Hamilton-Jacobi equations: 
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i

i
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H
p
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        

(II.8) 
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FIGURE II.3 – Two-dimensional phase space (left), and one-dimensional harmonic 

oscillator phase space (right). 

where H is the Hamiltonian of the system (corresponds to the total energy of the system On 

isolated systems, H does not explicitly depend on time, so we write behalf of 

    ,  i iE H q t p t       . (II.9) 

The phase space can be subdivided into volume elements d 3N qd 3N p. Each element of this space 

is called a Phase Space Cell. If N = 1 (phase space of a single 

particle), the size of a cell is d 3qd 3 p dxdydz  dp dp dp dp  . Fig. (II.3) (left) 

represents a two-dimensional phase space and a cell in that space (particle moves on the x-axis 

for example). 

The phase space can be subdivided into volume elements d3N qd 3N p. Each element of this space 

is called the phase space cell. If N = 1 (phase space of a single particle), the size of a cell is d3qd3 

p = (dxdydz) (d pxd pyd pz). (left) represents a two-dimensional phase space and a cell in this 

space (particle moves on the x-axis for example). 

II.4.2 Harmonic Oscillator Phase Space 

Consider a conventional one-dimensional harmonic oscillator. The Hamiltonian of this system 

is given by: 

 

2
2

2
( ),  

2

stex
x

p k
H x p x E C

m
        (II.10) 
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where m is the mass of the particle and k is the stiffness constant of the oscillator. 

The total energy of the system is conserved because the Hamiltonian H does not explicitly 

depend on time. According to the eq. (II.9), the phase space is an ellipse whose size depends on 

energy. The two semi-axes of this ellipse are given by: 

2 ,a mE    
2

.
E

b
k

     (II.11) 

The area σ of this ellipse is given by:  

2 .
m

ab E r
k

        (II.12) 

The energy of a system is always defined with an  uncertainty If the energy of the system is between E and E  

E, the trajectories in the phase space will all be between the two ellipses 1 and 2, see Fig. (II.3) (right). 

II.4.3 Volume and area of phase space 

In the general case, we define the total volume of the phase space at 6N dimensions and the 

surface areabetween E and E  E, of an isolated Hamiltonian system H, by 

 

  3 3

,( ),( )i i i i

N N

H q p E H q p E

E d qd p d 
 

       (II.13) 

 
,( )E H q p

E d 


       (II.14) 

where ≈ and ≈are the volume and surface elements, respectively. 

If the energy of the system is between E and E  E, then the volume of the phase space in this 

case is given by: 

 

( ) )

3 3

, ( ,

N N

E H q p E E E H q p E E

d qd p d 
     

        (II.15) 

If ∆E → 0 (very small), then we can write 
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According to Cavalieri's theorem (If the plane figures, determined by the intersections of two 

solids with any plane parallel to a given fixed plane, have the same area, then the two solids 

have the same volume), then the volume between two surfaces, separated by ∆E, of area σ(E) is 

given by   

.( )E E          (II.17) 

So, 

.
(

( ) 
)E

E
E








     (II.18) 

II.5 Postulates of statistical physics 

Statistical physics is built on assumptions. These are reasonable assumptions chosen a priori. 

The justification of the merits of this choice is made a posteriori by verifying that this theory 

makes it possible to reproduce, and to understand, a large number of properties of macroscopic 

bodies. Thermodynamics is also based on postulates: these are the principles of thermodynamics. 

Since statistical physics takes into account the properties of microscopic constituents, while 

thermodynamics only deals with the macroscopic properties of bodies, it is a more complete 

science than the latter. 

 Postulate 1: Equiprobability of microscopic states 

All microscopic states accessible to an isolated macroscopic system in equilibrium are 

equiprobable. 

So the probability that this system is in a given microscopic state is 

 

( )
( )

1
 p E

E



    (II.19) 

where Ω is the total number of microscopic states. 
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 Postulate 2: Ergodic principle 

The average of any parameter calculated in a statistical manner is equal to the average of 

that parameter taken over a set of identical systems. 

If W is the number of microscopic states accessible to the system for an energy between E and E  

E,. According to the first postulate, the time spent in each microstate is the samet  t/ Ω . Then the 

probability is given by 

 

/ Ω 1t t
p

t t


  


     (II.20) 

If we consider a set of N identical systems (copies of our system), where N is very large. The 

number of copies in state i is denoted by n i. So the probability of finding the system 

 

1in
p

N
 


       (II.21) 

So in both visions the probability is the same 

II.6 Statistical entropy 

We have already noticed that Ω(E), the number of microstates accessible to a system whose 

energy is equal to E, is an important quantity in statistical physics. We will now clarify this 

quantitatively by relating Ω(E) to a quantity that is familiar to us in thermodynamics: entropy. It 

should be noted that Ω(E) is an extremely large number for macroscopic systems whose 

temperature is not close to absolute zero. 
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II.6.1 Boltzmann formula 

Consider an isolated system consisting of two subsystems A and B. The number of 

microscopic states of each subsystem is noted by Ω1(E1) and Ω2(E2), respectively. The two 

systems can exchange heat (energies can vary), particles or their volumes can vary. It is assumed 

that these two systems are statistically independent, so the total number of microscopic states is 

given by 

Ω(E)= Ω1(E1)x Ω2(E2) (II.22) 

From a macroscopic point of view and according to the second principle of thermodynamics, 

the entropy of an isolated system composed of two sub-systems is the sum of the entropies of the 

latter two, 

S(E,) = S1(E1)+ S2(E2) et dS = dS1 + dS2.  . (II.23) 

On the other hand, at thermodynamic equilibrium the entropy of an isolated system is maximum, 

i.e. 

 

max

1 2 0

S S

dS dS dS 




 
     (II.24) 

  

If we compare the two macroscopic and microscopic points of view, we deduce that the 

entropy must be proportional to the logarithm of the number of microscopic states, then 

S(E,V,N) = kb lnΩ(E,V,N) . II.25). 

where kb is a proportionality constant of the same dimension as the entropy, which is called 

the Boltzmann constant. This equation is very important in statistical physics (Boltzmann's 

formula) because it makes it possible to calculate the thermodynamic properties (temperature, 

pressure, ... etc.) of a system from its Hamiltonian using the following relations: 

,
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  (II.26) 
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II.6.2 Calculation of the statistical entropy of a perfect gas 

the entropy of a perfect gas is written in the form 

 
3 2

3

3 4
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2 3
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     
   (II.27) 

II.6.3 Gibbs paradox Consider a container isolated from the external environment 

divided into two parts, of volumes V1 and V2, separated by a wall. The first part contains N1 

particles of a monoatomic perfect gas, the second contains N2 of a different nature. We assume 

that both gases are at the same temperature. Now let's remove the wall. The accessible volume 

becomes V=V1+V2. The change in entropy is worth: 

2
1 2 1
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  


   
(II.28)

 

Even in this case, the entropy difference is positive which cannot be correct because the process in 

this case is reversible(you can always return to the initial state if you put the partition back). 

According to the second principle of thermodynamics, the entropy difference for reversible 

processes is zero ∆S = 0. This contradiction is called Gibbs' Paradox. 

In classical vision (classical mechanics), particles are discernible. If we number the particles of the 

gas A from 1 to N1 (i.e. 1,2,...,N1), and the particles of the gas B from N1+1 to N 1 + N 2 (i.e. N 1 

+1,N 1 +2,...,N 1 + N 2), and we remove the separation wall, there will be an irreversible process 

because the particles will mix and we cannot return to the initial state if we take into consideration 

the numbering of the particles.     In reality, the particles of an ideal gas are indistinguishable (non-

countable) as in quantum mechanics. So the number of microscopic states in this case is given by 

the number of microscopic states of the classical case (calculated before) divided by N! (Gibbs 

factor). 

!
.

N




      
(II.29)

 

and the entropy of the perfect gas, calculated in the previous section, becomes 
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(II.30)
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The argument of the logarithm of this formula contains only intensive quantities, hence, the entropy 

S is an extensive quantity. 

∆S = 0.     (II.31) 

If we calculate the entropy difference (using the new formula) for the two identical gases and their 

mixtures, we can show that which implies that the new entropy formula is in agreement with the 

second principle of thermodynamics. 

II.7 Representative sets: 

Before calculating properties of a system in statistical physics, we need to use all the 

knowledge we have about the system under study, and then find a set that allows us to make 

statistical predictions about quantities that we cannot accurately predict. 

We identify the contrast between two different physical situations and the corresponding sets, 

the micro-canonical set and the canonical set. 

 

II.7.1 Micro-canonical assembly: 

In the micro-canonical set, we consider a single system isolated from the outside world and 

we assume its known total energy at a given accuracy. Other mechanical quantities are also 

specified such as volume and number of particles. That is to say, the micro-canonical assembly is 

an isolated system (a statistical assembly) of total energy fixed at near, and which does not 

exchange matter (particles) with the external environment. Then this set represents the 

equilibrium states of such a (isolated) total energy system set to near, therefore to an in-phase 

density between the energy states and. Thus, the probability that the system is in a given 

microscopic state (r) of energy and volume is given by: 

   
1

,,

0

rE VP E V



 




;

;

rE E E E

ailleurs

  

 

 ,rE V is the total number of microscopic states accessible in the energy range 

rE E E E  

 

II.7.2 The canonical set: 

In the canonical set, we consider a closed system that can exchange energy but not matter with 

the external environment. For this, we will consider a system (S) in thermal equilibrium with a 
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Thermostat 

(t) 

 
System 

(S) 

tank that behaves as a thermostat (t) for the system (S) (Figure II.4). The temperature (T) of the 

thermostat is constant despite the possible exchange of temperature with the system. 

 

Figure II4.: thermostat (t) in contact with a tank System (S) 

Then the canonical assembly makes it possible to study closed systems that exchange only energy 

with a thermostat because of thermal contact (the evolution of energy or pressure over time), but 

not matter (constant number of particles) and constant volume. As the set (S+t) is isolated and in 

statistical balance, it can be described by the set micro-canonical. Let E0 be its total energy 

(defined as E close, this quantity is neglected because it does not affect the results relating to the 

macroscopic system). 

When the energy of a particular micro-state  r j  of system (S) equal to  Er , and thermostat (t) 

equal to Et, within the thermodynamic limit, the total energy of the micro-canonical assembly equal 

to the sum of the energy of the system (S) and the energy of the thermostat (t): (E0=Er+Et). 
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II.8 Exercises & Issues 

Exercise #1: 

Let there be three equidistant (𝜀0 = 0, 𝜀1 = 𝜀, 𝜀2 = 2𝜀)and non-degenerate, on which two 

discernible particles (A and B) are distributed. It is assumed that the total energy is 𝑈 = 2𝜀 

1- represent on a diagram the possible macroscopic deferents, as well as the corresponding 

complexions. What is the likely state. 

2- same question if level 1 has a degeneration equal to 2. Explaining degeneration is also 

called level static weight. We will check the number of complexions of each macroscopic 

state and well equal to that given by the general formula of maxwell-Boltzmann 

Why can't we calculate the most probable distribution by the general formula maxwell- 

Boltzmann 

Exercise #2: 

Establish, in the case of bosons and assuming that the number of particles is large but 

indeterminate (in the case of photons or phonons) , the position at thermal equilibrium of each 

level ofdegeneration. We will put0in the following form: 

𝑁𝑖
0 =

𝑔𝑖

𝑒𝛽𝜀𝑖 − 1
 

Or appears a single 𝛽 

Exercise #3: 

Consider a particle with two degrees of freedom. The volume element in the phase space can be 

written as:  

Show that this volume element remains invariant when changing from Cartesian coordinates to 

polar coordinates: 

𝑑𝑥𝑑𝑦𝑑𝑃𝑥𝑑𝑃𝑦 = 𝑑𝑟𝑑𝜃𝑑𝑃𝑟𝑑𝑃𝜃 

 

where 𝑃𝑟 = 𝑚𝑟̇ 𝑃𝑟 = 𝐼𝜃̇ is the moment of inertia of the particle. 

1- Let us now assume that this particle of mass m and attached by a wire of length l to a 

fixed point. 
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a. What are the dynamic variables representing the system in the phase space? 

b. Find the equation of the phase trajectory. From this deduce the equation of the 

trajectory. , the branch course 

c. Give the temporal equation of motion. 

d. Show that Liouville's theorem is true. 
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Introduction 

The velocity distribution of particles constituting a conventional ideal gas at temperature T is 

an amount that is important to study in detail because it is used within the framework of the 

kinetic theory of gases. In the first two sections, we saw that the probability that a particle has a 

pulse between p and p + dp, and is located in a volume dr between r and r + dr, is equal to: 
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III.1 Classic ideal gas 

 

We consider a conventional monoatomic perfect gas, in a container of volume V, consisting of 

N indistinguishable particles, maintained at temperature T. The total energy of this gas is given 

by 
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     (III.2) 

In this case, the energy is continuous, it depends on the continuous variables pxi, pyi and pzi (vary between 

]−∞,+∞[). Then, to calculate Z(c) we use the canonical partition function Z(c). 

 The partition function Z(c) 

The canonical partition function is written 
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with  i i iyV dx d dz    and  
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The integral on d 3q  dx dy dz is obvious because the integral does not depend on these variables, 

so   it is just equal to the volume of the container. To integrate on, we use the following Gaussian 
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where α is a non-zero positive real. So, we show that the canonical partition function of this gas 

is given by the quantity λ is the thermal wavelength (de Broglie) of this gas. 

 

 
3

3
, , ,[ ]

!

c

N

V
Z T V N

N 


    
2 b

h

m k T



  (III.5) 

 

 

 free energy deficit 

The free energy of this gas is written 
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where we used Stirling's formula ln ! lnN N N N   for N very large. 

 

 Entropy (S) 

The entropy of this system is this is the formula we found in the previous chapter after the Gibbs 

correction. 
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 Pressure (P) 

The electrostatic pressure is given by: 
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which leads to the famous equation of state of the perfect gas pV = NkbT.  

 Chemical potential 

The chemical potential is therefore 
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 Internal energy U 

We can calculate the internal energy by two methods, either by the relation or by evaluating the 

average energy. 

3
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or either by evaluating the average energy. 
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this is the formula found in thermodynamics. 

III.1 Maxwell-Boltzmann perfect gas 

III.1.1 Maxwell-Boltzmann statistics 

 

The probability of finding a system of the canonical set in a microscopic state where we did not 

take into account the Gibbs factor. 
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According to the first postulate of statistical physics (equiprobability of microscopic 

states), this probability is constant on the energy surface H(qi, pi) = E in the phase space. Then, 
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the probability of finding the system in a microscopic state of energy between E and E +dE is 
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Where 
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where Σ(E) is the volume of phase space divided by h3N, and g(E) is the state density on the 

energy surface. The latter two are connected by the following relationship 
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where Ω(E) is the number of microscopic states accessible to the system. Therefore, the canonical partition 

function and probability are expressed as a function of the state density g(E) as follows 
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In quantum mechanics, the state density g(E) is replaced by the degree of degeneration gE. The 

probability given by the eq.(III.16) is the probability of the Maxwell-Boltzmann statistic. It gives 

us all the information about a physical system if the spin of these constituents is not taken into 

account. 

III.1.2 Maxwell distribution of speeds  

These distributions are valid for a conventional mono- or polyatomic gas. 
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We are interested in the distribution of speeds regardless of positions 
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For a molecule, we have: 
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Gold    1dP v  from where 
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m
C

kT
  We deduce the Maxwell distribution of the velocities 

 

 

We are now interested in average sizes.  

 

 

 

Average number of particles with velocities between v   and v dv

    vN NdP vd       (III.24) 

This is true because there is no correlation between particle velocities (there is no interaction 

between velocities) 

 distribution of velocities 

 dN v   is isotropic (depends only on 
2

v  ). 
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We obtain a Gaussian centered on: the velocity distribution is well isotropic. 

 

 Average quadratic speed 
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Note 
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We have the equipartition of energy 
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Distribution of  v

 The probability that v v is : 

,
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(III.31) 
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 Most probable value v  of v 
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 Average value v  of v 
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The Maxwell distribution of velocities occurs in: 

- Kinetic theory of gases. 

- Collisions (then describe the Boltzmann equation approach to equilibrium) 

- Transport properties such as coefficients involved in phenomenological equations such as heat 

diffusion (conductivity coefficient), and hydrodynamics with viscosity. 

 

III.2 Statistique de Fermi Dirac 

We consider a quantum perfect gas composed of N fermions of spin 1/2, in a cubic box of 

volume V, maintained at temperature T using a thermostat. A microscopic state of this system is 

determined by the following quantum numbers (nx,ny,nz,s,sz). According to Pauli's exclusion 

principle, two identical fermions (i.e., have the same quantum numbers) cannot occupy the same 

microscopic state. So each microscopic state can be occupied by a single particle at most. The 

system composed of this state can be considered as a system of the grand-canonical assembly 

(the rest forms the reservoir of particles). Then, the grand-canonical partition function of this 

subsystem is given by 



The average number of fermions occupying a microscopic state is this distribution of number of 

fermions is called the Fermi-Dirac distribution. The average number of fermions should check the 

relationship 
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The average number of fermions occupying a microscopic state is 
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This fermion number distribution is called the Fermi-Dirac distribution. 

The average number of fermions must verify the relationship 

{ }
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i

n N         (III.38) 

 

When ( )1 1) ( )1({ } { }  , , ;...x y zi n n n designates all possible microscopic states. 

 

III.3 Bose-Einstein Statistics 

Consider, now, a quantum perfect gas composed of N bosons (ie. d particles of integer or zero 

spin), in a recopier of volume V, maintained at temperature T using a thermostat. As in the 

previous paragraph, a microscopic state of this system is determined by the quantum numbers 

(nx,ny,nz,s,sz). Because particles are bosons, a state 

microscopic or a subsystem can be occupied by all particles (no limit on particle number). The 

subsystem can be considered as a system of the grand-canonical assembly (the other subsystems 

constitute the particle reservoir). It is assumed that the energy of each particle is ei, then, the 

energy of N particles is 
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So the grand-canonical partition function of this system is 
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where we used the sum of a geometric series to find the expression in the second line of this 

equation. 

The average number of particles that occupy a microscopic state is therefore 
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   (III.41) 

This particle number distribution is called the Bose-Einstein statistic. 

III.4 Exercises & Issues 

Exercise #1: 

We propose to establish the expression of β in maxwell-Boltzmann statics. Let 1 be the energy 

levels. Their degeneration factors andthenumber of particles at equilibrium. 

a. write the static expression of the internal energy U. 

b. the state of the system is varied infinitesimally. Write the variation of the internal energy. 

c. the energy levels usually dependon the volume but not on the temperature interpret the two 

terms that intervene in the expressionof 

By comparing the thermodynamic relationship ññ = ñññto the corresponding relationships 

obtained by differentiating the relationship 𝑆 = 𝐾Log(W). Establish the expression of φas a 

function of the thermodynamic temperature in the case where W corresponds to the maxwell-

Boltzmann static. 

Exercise #2: 

Or a linear harmonic oscillator consisting of a mass m attached to a spring of stiffness constant k, 

able to move on a horizontal axis (Ox). 

a. What are the dynamic variables representing the system in the phase space? 

b. Give the expression of its total energy E according to its dynamic variables. 

c. Suppose that the oscillator is mechanically isolated, From question b, deduce the 

nature of its movement in the phase space? 

d. Demonstrate that the movement of the oscillator is governed by the differential equation: 

𝑥̈ + 𝜔2𝑥 = 0 (with • to be determined).And deduce therefrom the frequency of the  

 

oscillator as a function of k and m. 

1. We consider a set of N simple conventional harmonic oscillators without interaction, of the 

same mass m and stiffness constant k, in contact with a heat reservoir of fixed temperature T. 
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a. What is the nature of the statistical set in question? 

b. Demonstrate that the partition function is written in the form: 

𝑍 = (
𝑘𝐵𝑇

ℎ𝜈
)
𝑁

 

 

And 𝑘𝐵, ℎ  are  Boltzmann's and Planck's constants, respectively. 

 

 

(∫ 𝑒−𝛼𝑦2
𝑑𝑦 = √

𝜋

𝛼

+∞

−∞

) 

c. Determine the average energy E 

d. Determine energy fluctuations 

e. Determine free energy 
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i=1 

k 

 

IV.1 Introduction 

In quantum mechanics, all information about the state of a system is encoded in the 

wave function, the latter is a solution of the Schrödinger equation. The wave function of a 

system composed of N particles (bosons or fermions) is given by 

 

1 1
1···

1

,···,  .( ) ( )
N

N

N ik k k

i

r r r 



    (IV.1) 

    

 

where ψ
ki
(ri⃗⃗ )for i = 1.2,·· · is the one-particle wave function→.and ki are, respectively, the 

position vectors of each particle and  the set of numbers quantum denoting a state at a given 

particle. The wave function ψ   (r→i) can be symmetric or antisymmetric by permutation of 

numbers 1···N. Symmetric wavefunctions describe the states of whole spin particles, so-called 

bosons. On the other hand, antisymmetric wavefunctions describe the behavior of half-integer spin 

particles, which are called fermions. In Dirac's notation, the state vector of the total system is 

written 

1 2 1 2 .| |, ,··· ·| |, · ·  N Nk k k k k k          (IV.2) 

 

where |ki > is a one-particle state vector. 

The wave function is an eigenstate of the Hamiltonian operator Ĥ. For a system composed of 

free particles, perfect gas for example, it must check 

 

Ĥ|k1,··· , kN > = 𝐸|k1,··· , kN > .   
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ĥ|k1 > = ε
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where Ĥ( r 1,··· , r N, p⃗ 1,··· , p⃗ N) = ∑ ĥ ( r i, p⃗ i)
N
i=1 ., because the system consists of particles without 

Interaction 

The state vector can be characterized by the occupancy numbers ni instead of the set of quantum numbers 

{ki}. i.e.d 
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1 1 .| |,···,  ,···,  N Nn n k k 
       (IV.5) 

where ni is the number of particles that can occupy the state |ki >.  We can express this as: 



Ĥ|n1,··· , nN > = 𝐸|n1,··· , nN > ,    
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n̂k|n1,··· , nN > = nk|n1,··· , nN > ,          nk = {
0,1,        fermions  
0,1,2,…bosons     

     (IV.8) 

where Ĥ is the Hamiltonian operator, E is the total energy of the system, N̂ is the number of 

particles operator, N is the number of particles in the system, nk is the number of particles in the 

state |k>. According to Pauli's exclusion principle, two fermions cannot occupy the same state if 

they have the same quantum numbers, which explains why 

 NK On the other hand, bosons can occupy the same state regardless of whether they have the 

same quantum numbers or not (nk = 0.1.2 ···). 

Now applying the occupancy number language to derive canonical and grand-canonical 

partition functions for classical Maxwell-Boltzmann statistics and for Fermi Dirac and Bose 

Einstein quantum statistics. The occupancy number does not provide information about which 

particles should occupy a certain state at a particle |k>. Therefore, the set {n1,n2,·· ·} must 

have a weight to take into account the nature (spin and indistinguishability) of the particles. In 

the general case, and for any statistic, the canonical and grand-canonical partition functions 

can be written in the following compact forms: 

 

 

1( )[ ] { }, ,  
k k

k

k

l n
c

k

n

Z T V N g n e
 





 


     (IV.9) 

 

 
1( , )[ ] { } ., ,  

k k

k

k

l n
c

k

n

gZ T V g n e
  







 


    (IV.10) 
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The statistical weight of a set {n1,n2,···}, for each statistic, is given by, 

 

 

So, the canonical and grand-canonical probabilities are written 

 



 

 

 

 

       

(IV.12). 
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Let us now calculate, explicitly, the grand-canonical partition functions in all three cases. The 

Bose-Einstein grand-canonical partition function is 
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where fugacity z = eβµ. To find the last formula, we used the sum of a geometric sequence. With 

regard to the case of Fermi-Dirac, we have 
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In the same way, we calculate the Maxwell-Boltzmann grand-canonical partition function, 
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Once the grand-canonical partition functions are known,  the thermodynamic properties can 

be calculated using the grand-canonical potential 
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The grand canonical potentials of the three statistics are given by: 
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We can write the logarithm of the grand-canonical partition function, in these three cases, in 

the following compact form: 
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with 

a = {
+1      FD
0        MB
−1     BE

       (IV.23) 

for the Maxwell-Boltzmann statistic, we take the limit of a tends towards zero (and not a=0!).It is 

shown that the number of particles and the internal energy are given by 
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where fugacity z is assumed to be constant, see discussion in next section. 

IV.2 Bose Perfect Gas 

In this section, the thermodynamic properties of an ideal gas of non-relativistic bosons are 

calculated. The particles of this gas are indistinguishable and do not interact with each other. 

The energy of each particle is 
2

2 2
ik ik m  ħ  (where m is the mass of each). let‘s calculate now, 

the logarithm of the grand-canonical partition function (which allows us to calculate the other 

physical quantities). We all have 

 

 ( )., ,  ln , ) n( 1) ( ,  l .kg c

k

q T V z Z T V z ze


   
    (IV.28) 

where V is the volume of the container, and z=eβµ is the fugacity. 

To impose constraints on the chemical potential µ is the fugacity z, we use the formula 

of the average number of particles in a state |k > of energy εk derived in the previous section. 

We know that the latter is positive and cannot exceed the total number of particles in the 

system, so 

0 ≤ < nk > ≤  𝑁,       
1

.
1

0
1k

N
z e

 
 

   (IV.29) 

So, 

 
 1  1kk

µ
z e e

           (IV.30) 

which implies that εk ≥ µ for all states |k >. i.e.d that the chemical potential of a boson gas must be 

smaller than the lowest energy ε = 0, then 

µ ≤ 0,   ⇒   0 ≤ z ≤ 1.   (IV.31) 
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so the chemical potential of a boson gas is zero or negative and the fugacity z is always less 

than or equal to 1. For a sufficiently large volume, the sum over all single-particle states can 

be written, approximately, as an integral, 
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then  
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Then q(T,V,z) becomes 
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where we separated the contribution of the energy state   lnε=0 - 1 - z , and we integrated by 

part to get the last integral. In the same way, it is shown that the number of particles is 
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where z/(1−z) is the number of particles in the energy states ε = 0. To perform the integration 

on ε, we introduce the following integral representation   
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So, 
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and 



Chapitre IV Bose and Fermi ideal gases 

54 

 

 

 

0.N N N 
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where qε and q0 (Nε and N0) is the logarithm of the grand-canonical partition function (number of 

bosons) of the excited states (ε > 0) and zero energy states (ε = 0), respectively. 

 

If the temperature is sufficiently high (V/λ3 < 1)and the fugacity z is not very close to 

2 3 

1, it can be shown that N0 is negligible in front of Nε, and that 0 ≤ g2(z) ≤ ζ ( ) = 2.612, 

2 

So 

3
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where ζ is Riemann's zéta function    

The Bose temperature TB is the temperature at which the number of bosons in excited states is 

equal to the total number of particles. So, 
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

This becomes: 
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The number of bosons in the state ε = 0 is  
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From this relationship, we see that if the temperature T decreases, the number of bosons in the 

state ε = 0 increases. This phenomenon is called Bose-Einstein condensation (bosons 

accumulate in the low-energy state when T decreases). 

Now let's calculate the internal energy, 
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and depending on the Bose temperature, we write 
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The constant volume heat capacity is 
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Entropy 
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Pressure is 
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So the pressure depends only on the temperature of the system (and not the volume V).We can 

show that we find the thermodynamic properties of a classic perfect gas (Boltzmann gas) if the 

temperature is very high and the density is low. 

IV.3 Black body radiation 

In this section, we study the electromagnetic radiation emitted by a body heated to 

temperature T (black body), this radiation or these photons constitute a gas of bosons (the 

photons are spin 1 particles) in a cavity maintained at temperature T. It is assumed that this 

gas is perfect, because the photons do not interact with each other (the photons are electrically 

neutral and of zero mass). The photon has two transverse polarizations, so the spin 

degeneration factor is equal to two (gs = 2). The speed of photons is equal to that of light c, so the 

energy of each particle is written, 

 

h pc    ħ       (IV.48) 

 

where ω, ν and p are the pulsation, frequency and pulse of the photon. 
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Photons can be emitted or absorbed by the walls of the cavity, so the number of photons is 

variable which requires the use of the grand-canonical assembly to study this system (T and V 

do not vary). At equilibrium, the free energy of the system is constant, so 
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     (IV.49) 

 

 

so the chemical potential of this gas is zero. The average number of photons in a state of energy

  ħ     
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The average number of photons in states where the energy is between ε and ε + dε (where 

between ω and ω + dω) is therefore, 
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So the average number of photons in the cavity is 
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to perform the integration on ω, we use the following integral representation 
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where 0x   and  
1
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 is the Riemann function: 

 

 

ζ(3/2) = 2.612, ζ(5/2) = 1.341, ζ(3) = 1.202, ζ(5) = 1.037.   (IV.56) 

  

 

We then find: 
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We define the photon density (n(ω) = N/V) and the energy density 
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The variation of the internal energy as a function of the pulse (or wavelength) is 
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This formula describes the spectral distribution of blackbody radiation energy. It is derived for the first time 

by Planck, and it agrees with the experimental results. 

Now let's look at the low-east-high-frequency limits, respectively, of this distribution 
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The first formula is the Rayleigh-Jeans formula, it corresponds to the classical limit where the 

photons are considered as harmonic oscillators of ω-pulse. The second is the wein formula, in 

this case the quantum behavior is very important. 

To obtain the total energy in the general case, we integrate the eq. (IV.60) on the pulse that 

varies between zero and infinity. We find  
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So, the energy is proportional to T 4 which corresponds to Stéphan's law. Radiated energy per unit 

volume is 
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Because the chemical potential is zero µ = 0, the free energy corresponds to the high-potential 

Φ, so we have 
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Whereby 
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We find the internal energy given by the eq. IV.63). 
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The equation of state of the photon gas is 
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U
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IV.4 Fermi Perfect Gas Nucleons inside the atomic nucleus or electrons in metals can be 

thought of, approximately, as Fermi perfect gases. In this paragraph, we study the 

thermodynamic properties of an ideal gas consisting of non-relativistic. For the Fermi-Dirac 

statistic, we write 
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Because the energy levels are close to each other for a large enough volume, then the sum on 

k can be replaced by an integral on energy. This becomes: 
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with 
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where s is the spin of the fermions.   

Let's introduce, now, the following integral representation, 
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So, 
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We can show that the internal energy and pressure of this gas are given by, 
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So the pressure is equal to 2/3 times the energy distribution in space. This relationship holds 

for the classical non-relativistic Maxwell-Boltzmann perfect gas, and the non-relativistic 

Bose-Einstein perfect gas. It can also be shown that free energy and entropy are given by 
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IV.5 Exercises & Issues 

Exercise#1: 

We consider a classical ideal gas in a gravitational field. The energy of each particle at 

altitude zi is 

2

2

i
i i

P
E mgz

m
   

where g is the gravitational constant. 

(1) Calculate the grand-canonical partition function Z(gc). 

(2) Calculate the pressure variation as a function of altitude z. 

 

 

Exercise #2: 

We propose to determine, in the first order, the deviation of the Bose-Einstein law from that of 

Maxwell-Boltzmann. The great potential Ω is written: 

Ω=-kTzf() 

*kB is the Boltzmann constant. 

  where z is the transition partition function of a Maxwell-Boltzmann gas; 

 

 

 

where k is Boltzmann's constant; 

𝑓(𝜐) = 𝛼 =
𝑁

𝑧
, z being the transition partition function of a Maxwell-Boltzmann gas; 

𝑓(𝜐) = 𝛼 =
𝑁

𝑧
= −

2

√𝜋
∫ √𝑥

+∞

0
𝑙𝑛(1 − 𝑒(𝜐−𝑥))𝑑𝑥 is a function that only depends on 𝜐 

Establish the expression for the equation of state from 𝑓(𝜐) 

Establish based on𝑓(𝜐) the expressions of : 
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𝑓(𝜐) = 𝛼 =
𝑁

𝑧
  is a function dependent only on? 

 
  

  

Establish the expression of the equation of state starting from() 

Draw upthe expressions of: 

- s entropy. 

- internal energy U. 

- the constant volume heat capacity Cv 

3. Establish a relationship between the pressure P, the internal energy U and the volume V for 

the Boson gas. 

Exercise#3: 

The first theoretical calculation of blackbody radiation properties is due to Planck. Instead of 

reasoning about the quantums of the electromagnetic field (Bose). Planck reasoned about the 

field sources, i.e. the walls of gravity enclosing the electromagnetic field. 

The atoms of the wall, at the temperature T, are likened to harmonic oscillators vibrating at 

the frequency and obeying the Maxwell-Boltzmann statistic. In this case, the average energy 

of an oscillator is 𝜀̅
ℎ𝜐

𝑒
ℎ𝜐
𝑘𝑇−1

 

 

Assuming that the number of oscillators whose frequency is between  and is, calculate the energy 

spectral density      . 

𝑔(𝜐)𝑑𝜐 =
8𝜋𝑉

𝑐3
𝜐2𝑑𝜐 

At a fixed temperature, study the variation of (,) as a function of (): for 

low frequencies (Rayleigh-Jeans law). 

for high frequencies (Wein's law). 

Show thatthe function has a maximum and graphically represent this function. How does the 

maximum move when the temperature varies? 

3. Find the Rayleigh-Jeans law by the energy equipartition theorem. 
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A1 LIOUVILLE 'S EQUATION 

The description of a system of N indistinguishable particles of mass m using the one-body 

distribution function is an approximation because the correlations between the particles are 

neglected. The total energy of this system, which we will assume to be made up of point particles 

obeying classical mechanics, is the sum of the kinetic energy and the potential energy which we 

will assume to depend only on the coordinates: 
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Quantity H is referred to as the Hamiltonian of the system. It corresponds to the expression of 

the total energy of the system using coordinates and pulses. The quantity i
i

i

pH
r

p m


 



   
 is none 

other than the velocity of the particle i. Newton's equations, which give the dynamic evolution of 

the particles of the system, can be written m .i i

i

H
r p

r


  


 

Together these two equations make up what are called Hamilton's equations. They are equivalent 

to Newton's equations. The first set defines the impulse of the particles and the second set gives 

the dynamic evolution of the particles: 
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H
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
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H
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r


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  i=1 à N   (2) 

 

Let us now express Hamilton's equations in another form by introducing the  N-body 

distribution function f(N)(r1, p1, .. . , rN, pN, t). The phase space associated with this problem of N 

particles has 6N dimensions. 

The quantity f(N)(r1, p1, . . . , rN, pN, t)dr1 dp1. . . drN dpN represents the probability of finding N 

particles in the elementary volume dr1 dp1. . . drN dpN at time t3. Therefore, if we integrate over 

the entire phase space: 

   1 1 1 1, ,  . . . , , , 1 . . . 
N

N N N Nf r p r p t dr dp dr dp 
 

 (3) 

 

f  

Considering a volume element dr1 dp1.. . drN dpN centered at r1, p1, .. . , rN, pN at time t, it will 

become dr'1 dp'1. . . dr'N dp'N centered at r'1 p'1. . . r'N p'N at time t+dt. The quantities r'1,p'1,...,r'N,p'N 

i 
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are deduced from r1,p1,...,rN,pN using the equations of motion. It can be shown that this volume 

element is invariant in the transformation, i.e.: 

dr'1 dp'1 . . . dr'N dp'N= dr1 dp1 . . . drN dpN   (4) 

This simply results from the fact that the Jacobian of the transformation is, to the 

second order, equal to unity. 

Example: 

If any property of the system can be calculated from the distribution function fp(r, p, t), we need 

to know its evolution as a function of time. We will, as part of the approximation of independent 

particles, find the equation that fp(r, p, t) satisfies. As a first step, we will neglect particle 

collisions. 

Consider, at time t, the volume element dr dp centered at r and p of the phase space. It contains 

on average fp(r,p,t)drdp particles. At time t+dt, these particles moved under the influence of the 

mean potential U(r). Indeed, each particle is subjected to a force 
( )U

 


r
F

r

 The volume element drdp has become dr'dp' and is centered at (r',p'). We deduce r and p of the 

particle motion equations: 

 

The volume element dr'dp' is connected to dr dp by the following relation:  

dr p p
v r r dt

dt m m

dp
F p p Fdt

dt

    

        (5) 

 

wherein J is the Jacobian of transformation. Taking into account (5), it is worth: 

 

 

 

 

 

 

 

Therefore, J = 1 implying that: 

(7) 

 

dr'dp' = dr dp (8) 
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A.2 Debye-Einstein model for phonons 

In Einstein's model, the atoms of a solid are represented by 3-dimensional quantum harmonic 

oscillators, which vibrate independently of each other at the same pulsation ω, see section (3.5). 

It has been shown that the internal energy of the total system and the average value of the 

excitation levels of each one-dimensional oscillator (in one direction) are given by 

 
1 1

, 3 .
2 1

U T N N
e 


 

  
      (9) 

1

1e
n

 
 

        (10) 

 

This implies that the average energy of a one-dimensional oscillator, of pulsation ω, is 

 

1
.

2
n 

 
     

       (11) 

 

By analogy with the photon system, we can interpret <n> as the number of indistinguishable 

quanta that we call phonons. So phonons are energy bosons 

 

.sc p 
  .p k      (12) 

 

where cs is the propagation speed of the phonons, it is equal to the sound speed. So in this 

interpretation (or Debye's model), the solid is considered an elastic medium traversed by waves, 

like sound waves, which propagates in both directions 
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transverse to the speed ct, and in the longitudinal direction at the speed cl. In this case, the density 

of states g(ω), as a function of the pulsation ω, is written 

 
2 2

2 3 2 32 l t

g V
c c

 


 

 
  

       (13) 

  

Because the number of normal oscillations is finite (3N), then 

 
1

3 2

3 30

1 2
3 , 18

c

c

l t

N
g d N

V c c



   



 
    

 


    (14) 

 

 

 

  
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We can show that the internal energy and the heat capacity are written, 

 

 

 

  3

3 0

9 1 1
, ,

1 2

c

c

N
U T V N d

e



 
 



 
  

 


   (15) 

 

2 4

23 2 0

9

1

c

V

c b

N e
C d

k t e

 


 










   (16) 

 

A.3 Stirling's Approximation 

The factorial function: !  1 2 3 . (. 1). n n n        quickly  becomes incalculable when n is 

big It can nevertheless be assessed with an excellent approximation by noting that: 

 

 
11

1

log ! log log log log 1
n n n

i

n i xdx x x x n n n


      
  (17)

 

 

 

When 𝑛 ≫ 1, we get the Stirling approximation: 

Log 𝑛! = 𝑛 Log 𝑛 − 𝑛       (18) 

 

 

which is excellent for the numbers involved in statistical physics. When n is small, a more accurate 

approximation is sometimes used: 

 

Log 𝑛! = 𝑛 Log 𝑛 − 𝑛 +
1

2
Log (2𝜋𝑛)  𝑠𝑜𝑖𝑡 𝑛! = √2𝜋𝑛 𝑛𝑛 𝑒−𝑛  (19) 

 

A.4 Gamma function 

The following defined integral is called a gamma function: 

Γ(𝑛 + 1) = ∫ 𝑥𝑛∞

0
𝑒−𝑥𝑑𝑥     pour  𝑛 > −1      (20) 

By integration by parts, we can establish the following relationship: 

Γ(𝑛 + 1) = ∫ 𝑥𝑛∞

0
𝑒−𝑥𝑑𝑥 =  −[𝑥𝑛𝑒−𝑥]0

∞ + 𝑛 ∫ 𝑥𝑛−1∞

0
𝑒−𝑥𝑑𝑥 = 𝑛Γ(𝑛)  (21) 
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if n is integer Γ(1) = ∫ 𝑒−𝑥∞

0
𝑑𝑥 =  1,  Γ(𝑛 + 1) = 𝑛! Definition (4) makes it possible to generalize the 

notion of factorial to non-integer numbers. For n half-integer numbers, we calculate Γn using the 

recurrence relation (5) and the property Γ (
1

2
) = (−

1

2
) ! = √𝜋 which will be established below. By using 

the results above, it is deduced, after a change of elementary variable, that: 

 

∫ 𝑥𝑛∞

0
𝑒−𝛼𝑥𝑑𝑥 =  

𝑛!

𝛼𝑛+1    pour 𝑛 entier   (22) 

 

A.5 Legendre Transformation 

It is well known that a curve in the plane y=f(x) is perfectly defined as long as its derived 

function f′ is known at any point x. There are a number of situations in physics and mathematics 

where the natural data of the studied problem is the derivative f′(x) rather than the variable x 

itself. The Legendre transformation is a systematic means that makes it possible to define, 

without loss of information, a new function whose independent variable will be the slope of the 

function f at the point x, that is to say f′(x). 

Definition: Let f:R → R be a bounded function with bounded variation. The Legendre transform 

of f is the function g defined by one of two relationships: 

g (f′(x))≡ xf′(x)−f(x)    or   g(f′(x))≡f(x)−xf′(x) . 

The first sign convention is that used in Mathematics, the second is that used in 

Thermodynamics. 

Let's show that this definition is equivalent to the definition which has a clear geometric content: 

 

g(p) ≡ max (px−f(x)) , 

 

g(p) is the maximum distance between the straight line of slope p which passes through the origin 

and the function f. The solution is obtained for xp such that p = f′(xp), i.e. the distance between the 

straight line and the function is maximum at the point xp where the tangent to f is equal to the slope 

of the straight line (see Fig. F3). We therefore also  

have g(p)≡pxp−f(xp), or g(f′(xp))=f′(xp)xp−f(xp), which corresponds to the initial definition. The 

variables x and f′(x) ≡ p are called conjugate variables with respect to the pair of functions f et g. 
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Figure A.5 – Geometric interpretation of the Legendre transform. 
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