
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

UNIVERSITY OF RELIZANE

Faculty of Science and Technology

Computer Science department

Course materials

Algorithmics and Distributed
Systems

1st year Master Networks and Distributed Systems students

Established by :

Dr. MEDJAHED Seyyid Ahmed

Academic Year 2023-2024

█ ▌▐ Table of contents

Contents

List of figures ... 5

List of tables ... 6

Foreword .. 8

Reminder on algorithms ... 10

1. Definition .. 10

2. Structure of an algorithm ... 10

2.1. Read/write operation ... 11

2.2. Conditional structure ... 11

2.3. Loops – FOR ... 11

2.4. Loops – While ... 11

2.5. Functions ... 12

3. Algorithmic Complexity .. 12

3.1. Definition .. 12

3.2. Spatial complexity .. 13

3.3. Time complexity ... 13

3.4. Practical time .. 14

3.5. Theoretical execution time .. 14

3.6. Case of complexity ... 15

3.7. Asymptotic complexity ... 20

4. Search algorithms .. 22

4.1. Sequential search .. 22

4.2. Dichotomous research ... 23

5. Sorting algorithms ... 23

5.1. Definition .. 23

█ ▌▐ Table of contents

5.2. Sorting category .. 24

5.3. Sort by selection .. 25

5.4. Insertion sort ... 26

5.5. Bubble sort .. 27

5.6. Quick sort .. 28

5.7. Merge sort ... 30

5.8. Counting .. 30

5.9. Basis .. 30

6. Distributed/distributed systems .. 30

6.1. History ... 30

6.2. Definition .. 32

6.3. Distributed System .. 32

6.4. A distributed system ... 32

6.5. Development ... 33

6.6. Middleware models ... 33

7. Exercises ... 34

7.1. Series No. 1: Reminder on algorithms .. 34

7.2. Series No. 2: Algorithmic Complexity ... 38

7.3. TD Series No. 3: Algorithmic Complexity (function) .. 40

█ ▌▐ List of figures

List of Figures

Figure 1. Complexity .. 12

Figure 2. Spatial complexity .. 13

Figure 3. Time complexity ... 13

Figure 4. Type of complexity ... 21

Figure 5. Flynn's taxonomy - 1972... 31

file:///C:/Users/Seyyid/Downloads/ASD%20-%20Copy%20(1).docx%23_Toc156522826
file:///C:/Users/Seyyid/Downloads/ASD%20-%20Copy%20(1).docx%23_Toc156522827
file:///C:/Users/Seyyid/Downloads/ASD%20-%20Copy%20(1).docx%23_Toc156522828
file:///C:/Users/Seyyid/Downloads/ASD%20-%20Copy%20(1).docx%23_Toc156522829

█ ▌▐ List of tables

List of paintings

Table 1. Execution time ... 14

Table 2. Type of complexity .. 21

█ ▌▐ Foreword

█ ▌▐ Foreword

8

Foreword

This course materials is intended for 1st year Master Networks and Distributed Systems

students . Its objective is to introduce students to advanced algorithmic concepts. This course

is organized into five parts:

The first part is a reminder of algorithms. The second part is a state of the art on algorithmic

complexity. The third part is devoted to search and sorting algorithms. The fourth part

presents an introduction to distributed systems. The last part is dedicated to the exercises.

█ ▌▐ ASD

█ ▌▐ ASD

1. Reminder on algorithms

2. Definition

An algorithm is a method of solving a problem of size n. An algorithm is a finite number of

elementary operations constituting a calculation or problem-solving scheme.

A program is the creation (implementation) of an algorithm using a given language (on a

given architecture). It is about the implementation of the principle. For example, when

programming we will sometimes explicitly deal with memory management (dynamic

allocation in C) which is an implementation problem ignored at the algorithmic level.

3. Structure of an algorithm

 algorithm name of algorithm // header

 const // declaration

 constantes

 var

 variables

 func // function

 functions

 begin // body

 instruction 1

 …………………………………

 instruction n

 end

█ ▌▐ ASD

3.1. Read/write operation

3.2. Conditional structure

3.3. Loops – FOR

3.4. Loops – While

Var

 x : integer

Begin

 Write(″Write the number x :″)

 Read(x)

end

Var

 x,y : integer

Begin

If (x <= y) Then

Begin

 Write(x)

End

Else

Begin

 Write(y)

EndIf

end

Var

 x, i, n, s : integer

Begin

For i From x to n Step s Do

 Write(i)

EndFor

end

Var

 i : integer

Begin

While condition Do

 Write(i)

EndWhile

end

█ ▌▐ ASD

3.5. Functions

4. Algorithmic Complexity

4.1. Definition

Complexity is a criterion for measuring the quality of an algorithm which is the quantity of

resources in terms of space and time consumed by the implemented program.

The complexity of an algorithm quantifies the time required for an algorithm to execute based

on the size of the input.

For a given problem, there are several algorithms that solve that problem. To choose the best

one, we need to compare and analyze the performance of each algorithm.

When analyzing an algorithm, we mainly consider the study of complexity.

Var

 i : integer

Function add(x, y)

Begin

 return x + y

End

Begin

add(2, 3)

end

Complexity

Time Spatial

Figure 1. Complexity

█ ▌▐ ASD

4.2. Spatial complexity

Space complexity is related to the size of the memory space occupied by the program during

its execution. Today the capacity of MC is very large and therefore we do not need to study

spatial complexity, we are only interested in temporal complexity.

4.3. Time complexity

Time complexity describes the time required to execute a program.

Complexity

Time Spatial

Complexity

Time Spatial

Figure 2. Spatial complexity

Figure 3. Time complexity

█ ▌▐ ASD

4.4. Practical time

The practical time depends on several factors such as:

• The machine

• The operating system

• The programming language

• The algorithm used

Given these factors, the study of complexity was limited to the theoretical execution time

4.5. Theoretical execution time

To solve a problem, the algorithm must execute a number of instructions (commands). Each

instruction is composed of one or more elementary operations; an elementary operation is a

fundamental operation with zero, one or two operands (generally) such as assignment,

arithmetic, logic, input, output operations.

Table 1. Execution time

Instruction Number of operations Explanation

x ← y 1 elementary operation Assignment operation

x ← y + z 2 elementary operation Addition and assignment

x ← y +z +w 3 elementary operation 2 additions and 1 assignment

█ ▌▐ ASD

If the average execution time of an elementary operation is t and the number of elementary

operations of an algorithm is n then:

Theoretical execution time = n*t

Knowing that the average execution time of an elementary operation is a constant linked to

several factors (machine), the study of the theoretical execution time was limited to the

number of elementary operations carried out.

4.6. Case of complexity

In complexity, when solving a problem, we can find three cases:

• The best-case scenario

• The average case

• The worst of cases

The study of complexity is limited to the worst case.

Studying complexity means calculating the number of elementary Operations in the worst

case necessary to solve a problem according to its size.

Let n be the number of elementary operations of instruction i :

𝑪 = ∑𝒏𝒊

𝒏

𝒊=𝟏

4.6.1. Conditional

𝑪 = 𝒏𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 +𝒎𝒂𝒙(𝒏𝑩𝒍𝒐𝒄 𝟏, 𝒏𝑩𝒍𝒐𝒄 𝟐)

█ ▌▐ ASD

Example

C = (1+2) + (1 + max (5, 2)) = 3 + (1 + 5) = 9

4.6.2. FOR loop

𝑪 = (𝒌 − 𝒋 + 𝟏) ∗ (𝒏𝑬𝒏𝒕𝒆𝒕𝒆 + 𝒏𝑩𝒍𝒐𝒄) + 𝒏𝑬𝒏𝒕𝒆𝒕𝒆

Example

C = (n-1+ 1)* (1 + 2) + 1 = n*(1 + 2) + 1 = 3n+1

4.6.3. WHILE loop

𝑪 = (𝒏𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 ∗ (𝒏𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 + 𝒏𝑩𝒍𝒐𝒄)) + 𝒏𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏

• The number of iterations = n/step (If i tends towards n by addition or

subtraction)

x ← a

y ← b + c

if (x < y) Then

 y ← y + 1

 x ← y + x +1

else

 y ← x

 x ← b

Endif

FOR i FROM 1 to n Do

 a ← a + b

EndFor

█ ▌▐ ASD

• The number of iterations = Ln(n)/Ln(steps) (If i tends towards n by

multiplication or by division)

Example

The number of iterations = n/3

C = 1 + [(n/3 * (1 + 4)) + 1] = (5n/3) + 2

4.6.4. Call Function

The cost of calling a function is equal to:

• The cost of the function body for its parameters

• The cost of evaluating its parameters

Example

i ← 0

WHILE (i < N) Do

 x ← x + y

 i ← i + 3

EndWhile

FUNCTION checkEven(a:Int):bool

Begin

If (a mod 2 = 0) Then (2)

 return true (1)

Else

 return false (1)

End

Begin

If (checkEven(n)==true) Then 1+1+3

 n ← n + 1 (2)

Else

 n ← n - 1 (2)

End

End

█ ▌▐ ASD

The cost of the function = 3

The cost of the algorithm = 1 + 1 + 3 +2 = 7

The cost of IF = 1

The cost of loading n = 1

The cost of the function = 3

The cost of the IF test = 2

C = 7

4.6.5. Recursive Function

Mathematical reminder - Arithmetic sequence

𝑢𝑛+1 = 𝑢𝑛 + 𝑟

𝑢𝑛 = 𝑢0 + 𝑛 ∗ 𝑟

Generally

𝑢𝑛 = 𝑢𝑝 + (𝑛 − 𝑝) ∗ 𝑟

Geometrical sequence

𝑢𝑛+1 = 𝑞 × 𝑢𝑛

𝑢𝑛 = 𝑢0 × 𝑞𝑛

Generally _

𝑢𝑛 = 𝑢𝑝 × 𝑞𝑛−𝑝

█ ▌▐ ASD

Example

1 = return

1 = multiplication

1 = subtraction

2 = loading parameters

Cn-1 = power function call

Cn = 6 + Cn-1

Cn = 6n + C0

We calculate C0 = 2

Cost of function = Cn = 6n + 2

C = 6n + 7

FUNCTION power(a, n:Int):bool

Begin

If (n = 0) Then (1)

 return 1 (1)

Else

 return (a * power(a, n-1)) (1+1+1+2+ Cn-1)

End

Begin

Read(a , n) (2)

Write(power(a,n)) (1) + 6n + 2 + 2

End

█ ▌▐ ASD

4.7. Asymptotic complexity

Asymptotic complexity consists of studying the approximate behavior of the number of

elementary operations of the algorithm when the size of the problem treated is sufficiently

large (tends towards infinity).

4.7.1. Concept of the Big O

In algorithmics, the notion of the big O is a metric used to describe the execution time of an

algorithm.

4.7.2. Simplifying complexity

• We only keep the dominant term

• We remove the multiplicative constants

Example

VS(𝐧) = 𝟑𝒏𝟓 − 𝟐𝒏𝟑 + 𝟓𝒏𝟐 + 𝟕

We keep the dominant term:𝟑𝒏𝟓

We remove the multiplicative constants: 𝒏𝟓

𝑪(𝒏) = 𝑶(𝒏𝟓)

4.7.3. Type of complexity

The following table gives the types of complexity usually encountered.

█ ▌▐ ASD

Table 2. Type of complexity

Big O notation Name

O(1) Constant complexity

O(log n) Logarithmic complexity

O(n) Linear complexity

O(n log n) Quasi-linear complexity

O(n2) Quadratic complexity

O(2n) Exponential complexity

O(n!) Factorial complexity

Big O notation Name

O(1) Polynomial Complexity

O(log n)

O(n)

O(n log n)

O(n2)

O(2n) Non-Polynomial Complexity

O(n!)

Figure 4. Type of complexity

█ ▌▐ ASD

5. Search algorithms

A search algorithm is an algorithm that searches for an element or the position of an element

in a list or array.

A search algorithm is an algorithm that locates specific data among a collection of data (table,

linked list, tree, graph, etc.).

There are two main search categories that only apply to tables:

5.1. Sequential search

Sequential search (linear search) is the simplest technique for searching for an element in an

array.

The algorithm starts from the beginning of the array and checks each element until the desired

element is found.

Sequential search can be applied on a sorted or unsorted array.

Recherche séquentielle

Lineair Search

Recherche dichotomique

Binary Search

Function sequential_search(table, size, x)

 For i from 0 to size - 1

 if table[i] = x

 return i

 End If

 End for

return -1

End function

█ ▌▐ ASD

5.2. Dichotomous search

Dichotomous search (binary search) is a search algorithm for finding the position of an

element in a drawn array . It is based on the divide and conquer methodology.

The algorithm splits the entire array into two subarrays. If the element is in the box in the

middle of the array it returns the location, otherwise it jumps to the left or right subarray and

repeats the same process until it finds the element.

6. Sorting algorithms

6.1. Definition

A sorting algorithm is an algorithm that puts the elements of a list or array in order.

The most frequently used orders are numerical order and alphabetical order and either

ascending or descending.

Sorting is important to optimize the efficiency of other algorithms such as search algorithms.

It is easier and faster to locate elements in a sorted array than an unsorted one.

Fonction dichotomous_search(table, x, inf, sup)

mil = (inf + sup)/2

while (inf <= sup) do

if table[mil] = x

 return mil

else if table[mil] < x

 inf = mil +1

else

 sup = mil - 1

Fin Si

End while

return -1

end function

█ ▌▐ ASD

Sorting is used to represent data in more human-readable formats.

6.2. Sort category

Sort by comparison Divide and rule Sort by counting

Selection

Insertion

Bubble

Heap

Shell

Fast

Merger

Counting

Base

6.2.1. Sort by comparison

In this category, the items to be sorted are compared two by two, using comparison operations

to determine their relative order.

The most common algorithms in this category are:

• Sort by selection (selection sort),

• Insertion sort (insertion sort),

• Bubble sort ,

• Sort by heap (heap sort),

• Shell sort (shell sort).

█ ▌▐ ASD

6.2.2. Divide and rule

It is a problem-solving strategy that involves dividing a problem into smaller sub-problems,

solving them separately, and then combining the results to solve the original problem. The

most common algorithms in this category are:

• Quick sort (quick sort).

• Merge sort.

6.2.3. Sort by counting

Count sort is a sorting method that counts the number of occurrences of each item in a list and

arranges them in ascending or descending order. The most common algorithms in this

category are:

• Sort by counting (counting sort),

• Sort by radix (radix sort).

6.3. Sort by selection

Selection sorting consists of each step finding the smallest element not yet sorted and placing

it after the already sorted elements. Its principle is as follows:

1. Find the smallest element in the array and swap it with the first element in the

array.

2. Find the 2nd smallest element in the array and swap it with the second element

in the array.

3. Repeat the process until the array is sorted.

█ ▌▐ ASD

6.4. Insertion sort

Insertion sort consists of inserting each element of the array in the correct place among the

elements already sorted. Its principle is as follows:

1. Sort the first two elements of the array in the correct order

2. The 3rd element is inserted in its place among the 2 others

3. The 4th is inserted in its place among the other 3

4. Etc.

Function selection_sort(table)

 for i from 0 to size(table) - 1

 index_min <- i

 for j from i+1 to size(table)

 If table[j] < table[index_min]

 index_min <- j

 end if

 end for

 if index_min ≠ i

 swap table[i] et table[index_min]

 End if

 End for

End function

Function swap(a, b)

tmp <- a

a <- b

b <- tmp

Fin Fonction

█ ▌▐ ASD

6.5. Bubble sort

Bubble sort is the simplest sorting algorithm that works by comparing adjacent elements and

swapping them if they are out of order.

Function insertion_sort(table)

 for i from 1 to size(table) - 1

 element_to_insert <- table[i]

 j <- i - 1

 while j >= 0 and table[j] > element_to_insert

 table[j + 1] <- table[j]

 j <- j - 1

 end while

 table[j + 1] <- element_to_insert

 end for

end function

Function bubble_sort(table)

 n <- size(table)

 for i from 0 to n-1

 for j from 0 to n-i-1

 if table[j] > table[j+1]

 swap table[j] et table[j+1]

 End if

 End for

 End for

End function

█ ▌▐ ASD

6.6. Quick sort

Quicksort is a recursive sorting algorithm. It is based on the divide and conquer paradigm. Its

principle is as follows:

1. Select a pivot element (the last one in the table).

2. Divide the array into two subarrays with the elements lower than the pivot on

the left and the upper ones on the right.

3. Repeat the process recursively on the two subarrays until you have arrays of

length 1.

4. Combine the arrays to construct the sorted array.

Function swap(a, b)

tmp <- a

a <- b

b <- tmp

end Function

█ ▌▐ ASD

Function quick_sort(table, b, h)

Begin

if h > b

pivot = partition(T, b, h)

quick_sort (T, b, pivot-1)

quick_sort (T, pivot+1, h)

end if

end function

Function partition(table, b, h)

begin

pivot = table[h]

i=(b-1)

for j from b to h

if table[j]<=pivot

i++

Echanger(table[i], table[j])

End if

End for

swap(table[i+1], table[h])

Return (i+1)

Fin Fonction

Function swap(a, b)

tmp <- a

a <- b

b <- tmp

end Function

█ ▌▐ ASD

6.7. Merge sort

Merge sort is an algorithm invented by John von Neumann in 1945 that is based on the divide

and conquer paradigm . Its principle is:

1. Divide the array into two arrays of identical sizes and repeat the operation until

you have an array of size 1.

2. Recursively sort the two subarrays.

3. Combine the two sorted subarrays into a single sorted array.

6.8. Counting

Count sorting is based on how often elements appear in the array to be sorted.

It counts the number of occurrences of elements then placing them in the array sorted by

number of occurrences.

6.9. Base

Sort by radix is based on sort by counting.

The algorithm sorts the elements according to the ones digits then the tens digits, until

reaching the maximum number of digits contained in an element.

7. Distributed/Distributed Systems

7.1. Historical

• 1945 – 1980 uses of mainframes (Large machines)

• 1985 – LAN, WAN, computing power

• Remote access

█ ▌▐ ASD

Flynn's taxonomy - 1972

SISD: Single instruction on single data-pc uniprocessor

SIMD: Single instruction multiple vector data-machine

MISD: Multiple instructions single data-pipeline

MIMD: Multiple instructions on multiple data

With MIMD we have: Multi-processor and Distributed system

Figure 5. Flynn's taxonomy - 1972

https://fr.wikipedia.org/wiki/Multiple_instructions_single_data

█ ▌▐ ASD

7.2. Definition

7.3. Distributed System

A distributed system emphasizes the distribution of tasks or processes among multiple

computers or network nodes.

In a distributed system, tasks or processes are executed concurrently on different nodes in the

system, often with the goal of improving performance, increasing availability, or distributing

the workload.

Nodes in a distributed system can operate independently and communicate with each other

over a network to coordinate their activities.

A common example of a distributed system is a cluster of servers where each server runs part

of an overall application or service.

7.4. A distributed system

A distributed system emphasizes the distribution of data or resources, rather than the

distribution of tasks or processes.

In a distributed system, data, files, objects or other resources are distributed across different

nodes in the network to facilitate their access and use in a transparent manner.

Distributed resources can be shared and used by multiple users or applications

simultaneously, as in the case of a distributed database or distributed file system.

The primary goal of a distributed system is to provide seamless access to distributed

resources, regardless of the physical location of those resources.

However, the two terms are often used interchangeably, as many modern computing systems

can have both task distribution and data distribution aspects.

Systems which consist of multiple computing resources and which are autonomous resources

(working alone or collaboratively) and independent (no need for information from other

█ ▌▐ ASD

systems) and can be of different types (pc, phone, tablet, etc.) connected through a

communications network.

These resources have no common memory or common clock and we cannot have an

instantaneous global state of the entire system.

The goal is to collaborate to achieve a common task.

From a user point of view, the distributed system is transparent (centralized system).

7.5. Development

To develop a distributed system you must use middleware.

Middleware is a type of software or software component that acts as an intermediate layer

(hence the name) between different applications, systems or computer components to

facilitate communication, data management and coordination of operations.

It is an intermediate software layer that allows distributed applications to communicate

transparently.

7.6. Middleware models

7.6.1. Synchronous

• RMI (Remote Method Invocation)

• CORBA (Common Object Request Broker Architecture)

• Web services

1. SOAP (http1.1+XML)

2. REST (http1.1, JSON, XML, etc.)

3. GraphQL (http1.1, JSON)

█ ▌▐ ASD

4. GRPC (http2, ProtoBuf)

7.6.2. Asynchronous

(MOM: Message Oriented Middleware)

Communication via a Broker

• RabbitMQ

• KAFKA

• ActiveMQ

8. Exercises

8.1. Series No. 1: Reminder on algorithms

Exercise 1

Write an algorithm that calculates the sum of integers from 1 to n.

Solution 1

Beginning

Read n

 sum ← 0

For i from 1 to n Do

 sum ← sum + i

End For

█ ▌▐ ASD

Show "The sum of integers from 1 to", n, "is", sum

END

Exercise 2

Write an algorithm that calculates the PGCD (Greatest Common Divisor).

Solution 2

Beginning

Read a, b

While b ≠ 0 Do

 temp ← b

b ← a % b

a ← temp

 End While

Show "The GCD of", a, "and", b, "is", a

END

Exercise 3

Searching for a maximum element in an array.

█ ▌▐ ASD

Solution 3

Beginning

Read table

 n ← length(array)

 max _element ← array[0]

For i from 1 to n-1 Do

If array[i] > max_element Then

 max _element ← array[i]

End if

End For

Show "Maximum element in array is", max_element

END

Exercise 4

Write an algorithm that searches for an element in an array.

Solution 4

Beginning

█ ▌▐ ASD

Read table

Read item to search for

 found ← False

For each element in array Do

If element = element to search Then

 found ← True

Leave the loop

End if

End For

If found = True Then

Show "The element", element to search for, "was found in the table."

Otherwise

Show "The element", element to search for, "was not found in the table."

End if

END

Exercise 5

Write an algorithm that calculates the factorial of a number.

█ ▌▐ ASD

Solution 5

Beginning

Read n

 result ← 1

For i from 1 to n Do

 result ← result * i

End For

Show "The factorial of", n, "is", result

END

8.2. Series No. 2: Algorithmic Complexity

Exercise 1

Consider the following algorithm:

Algorithm A1

Var A, B, i , N: integer

Beginning

Read(N) A←5 B←3 (3)

If N mod 2=0 then (2)

█ ▌▐ ASD

 For i=1 a N do (3n+1)

A←A+B

 EndFor

Otherwise

As long as N != 0 do (Ln(N)/Ln(2))(4+1)+1

 B←B+A

N←N div 2

 FinTq

End if

Write(A,B) (1)

END

C=(3n+8)

Procedure Read (T[],N: integer)

Var

i: integer

Beginning

For i=l a N make 2n+1

Read(T[i])

EndFor

END

Procedure Sort (T[],N: int)

Var

i,k ,s : integer

Beginning

For i= l a N- l TO DO (n-1)*[(ni)*5+1]+1

For K= i+l a N do (nor)*5+1

If (T[i]>T[k]) then 4

 s←T [i]

T[i]←T[k]

█ ▌▐ ASD

T[k]←s

 End if

 EndFor

EndFor

The variable i repeats itself N-1 times

arithemetic sequence because i is repeated N-1 times

(N- 1)* i= i+i+i …+i=1+2+…+N-1=n*(n-1)/2

Exercise 2

Expression Dominant term

5 + 0.001𝑛3 + 0.025𝑛 0.001𝑛3

500𝑛 + 100𝑛1.5 + 50𝑛𝑙𝑜𝑔10𝑛 100𝑛1.5

0.3𝑛 + 5𝑛1.5 + 2.5𝑛1.75 2.5𝑛1.75

𝑛2𝑙𝑜𝑔2𝑛 + 𝑛(𝑙𝑜𝑔2𝑛)
2 𝑛2𝑙𝑜𝑔2𝑛

𝑛𝑙𝑜𝑔3𝑛 + 𝑛𝑙𝑜𝑔2𝑛 𝑛𝑙𝑜𝑔3𝑛, 𝑛𝑙𝑜𝑔2𝑛

0.01𝑛 + 100𝑛2 100𝑛2

8.3. TD Series No. 3: Algorithmic Complexity (function)

Exercise 1

Calculate the complexity of the following function:

function (n: integer):

Beginning

if n==0 then

 return 0

Otherwise

 return n + sum(n-1)

End if

END

Cn = 1(if)+1(return)+1(sum)+1(subtraction)+1(param)C n-1

= 5+Cn-1=5*n+C 0= 5n+2

█ ▌▐ ASD

Exercise 2

Calculate the complexity of the following algorithm:

Function f1 (x: integer):

Beginning

 x ←x+1

END

Algorithm

Var

i,n : integer

Beginning

Read(n)

For i= l to do

f1(i)

EndFor

END

C=n*(1(param)+2(function))+ 1= 3n+1

Exercise 3

Calculate the complexity of the following algorithm:

Function f1 (x: integer):

Beginning

For i= l to do

x←i+2 (2n+1)

EndFor

END

Function f2 (x: integer):

Beginning

For i =l to do

f1(i) m*(2n+ 3)+ 1

EndFor

END

Algorithm

Beginning

Read(y)

f 2(y)

END

2 +[m *(2n+3)+1]

█ ▌▐ ASD

References

Course Professor Mahseur Mohammed, Houari Boumediene University of Science and

Technology

Course Professor Dalila Chiadmi , Mohammadia School of Engineering

Course Professor Mohamed Youssfi , Hassan II University Casablanca

Course Professor Hassan El Bahi , School of Management, Cadi Ayyad University

www.resilio.com

www. atlassian.com

Aaron McCoy, Declan Delaney, Tomas E Ward. Game-state fidelity across distributed

interactive games . The ACM Magazine for Students, Vol.12, No.1

https://www.resilio.com/
https://www.researchgate.net/publication/220398426_Game-state_fidelity_across_distributed_interactive_games?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/220398426_Game-state_fidelity_across_distributed_interactive_games?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ

